[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TR2021014071A2 - AI-SUPPORTED ELECTRONIC DIAGNOSTIC DEVICE FOR DISEASE DIAGNOSIS - Google Patents

AI-SUPPORTED ELECTRONIC DIAGNOSTIC DEVICE FOR DISEASE DIAGNOSIS

Info

Publication number
TR2021014071A2
TR2021014071A2 TR2021/014071A TR2021014071A TR2021014071A2 TR 2021014071 A2 TR2021014071 A2 TR 2021014071A2 TR 2021/014071 A TR2021/014071 A TR 2021/014071A TR 2021014071 A TR2021014071 A TR 2021014071A TR 2021014071 A2 TR2021014071 A2 TR 2021014071A2
Authority
TR
Turkey
Prior art keywords
sensor
diagnostic device
feature
air
module
Prior art date
Application number
TR2021/014071A
Other languages
Turkish (tr)
Inventor
Nur Canbolat Göçmen Zehra
Si̇lahtaroğlu Gökhan
Doğuç Özge
Original Assignee
Istanbul Medipol Ueniversitesi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Istanbul Medipol Ueniversitesi filed Critical Istanbul Medipol Ueniversitesi
Priority to TR2021/014071A priority Critical patent/TR2021014071A2/en
Publication of TR2021014071A2 publication Critical patent/TR2021014071A2/en
Priority to PCT/TR2022/050964 priority patent/WO2023038606A1/en

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/082Evaluation by breath analysis, e.g. determination of the chemical composition of exhaled breath
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath
    • G01N33/4977Metabolic gas from microbes, cell cultures or plant tissues
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/097Devices for facilitating collection of breath or for directing breath into or through measuring devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Food Science & Technology (AREA)
  • Physiology (AREA)
  • Immunology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Artificial Intelligence (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Pulmonology (AREA)
  • Fuzzy Systems (AREA)
  • Evolutionary Computation (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

Buluş, Covid-19 ve benzeri bulaşıcı hastalıkları daha önceden öğrenmiş yapay zekâ modüllerinden yararlanarak, nefes verisini analiz ederek tanılayabilen bir tanı cihazı ile ilgilidir.The invention relates to a diagnostic device that can diagnose Covid-19 and similar infectious diseases by analyzing breath data by using artificial intelligence modules that have previously learned.

Description

TARIFNAME HASTALIK TESHISINE YÖNELIK YAPAY ZEKÂ DESTEKLI ELEKTRONIK TANI CIHAZI TEKNIK ALAN Bulus, genel olarak nefes verisinden Covid teshisi koyabilen yapay zeka destekli bir cihaz ile TEKNIGIN BILINEN DURUMU Covid-19 pandemisinin yarattigi etki ile toplum sagligi her düzeyde önem kazanmis ve bulas ve hastalik riskini azaltmak için her birey özen göstermeye baslamistir. Maske. mesafe ve hijyen korumasi ve zaman zaman hayati durduran tam kapanma ile bulas önlenmeye çalisilmistir. Görünen 0 dur ki Covid-19`un etkileri uzun süre devam edecektir. DESCRIPTION AI-SUPPORTED ELECTRONIC DIAGNOSTIC DEVICE FOR DISEASE DIAGNOSIS TECHNICAL FIELD The invention is made with an artificial intelligence supported device that can diagnose Covid from breathing data in general. KNOWN STATE OF THE TECHNIQUE With the impact of the Covid-19 pandemic, public health has gained importance at all levels and contagious and each individual has begun to take care to reduce the risk of disease. Mask. distance and With hygiene protection and complete closure that sometimes stops life, contamination is prevented. has been studied. It seems that the effects of Covid-19 will continue for a long time.

Covid-19 hastaligina yakalanmis kisilerin hasta olup olmadigini tespit etmek zordur. Uçaklar, okullar, hastaneler gibi toplu ve kapali alanlara giris ve çikislarda giren kisileri kontrol etmek ve bu kontrolün de güvenilir olmasi gerekmektedir. Hizli bir test ile kisinin hastaligin tasiyicisi olup olmadiginin hemen belirlenmesi önem arz etmektedir. It is difficult to determine whether people infected with Covid-19 are sick. airplanes, To control people entering and exiting public and closed areas such as schools, hospitals and this control also needs to be reliable. The person's carrier of the disease with a quick test It is important to immediately determine whether

Mevcut teknikte, kisilerde Covid-19 ve benzeri hastaliklarin tanisini koymak için PCR temelli tani kitleri gelistirilmistir. Bu kitlerin uzun bir tani koyma süreleri bulunmaktadir. Kisa sürede sonuç vererek hizli tani kitlerinin de güvenilirligi düsüktür. Ayrica, hastanin bogaz ve burun içinden sürüntü alinmasi gibi yöntemler hastayi rahatsiz etmekte ve islemi güçlestirmektedir. In the current technique, PCR-based methods are used to diagnose Covid-19 and similar diseases in individuals. diagnostic kits have been developed. These kits have a long diagnostic time. In a short time The reliability of rapid diagnostic kits is also low by giving results. In addition, the patient's throat and nose Methods such as taking a swab from it disturb the patient and complicate the process.

Detection System' baslikli çalismada, havayolu sistemi içerisinde yolcularin genel hastalik kontrolünün yapildigi bir çözüm sunulmaktadir. Bulus ise, hem kisilerin tek baslarina kullanabilecekleri hem de sanayinin her dalinda sirketlerin uygulayabilecekleri Covid-19 ve benzeri bulasici hastaliklarin tespitini yapabilen elektronik burun ürünü sunmaktadir. detecting plasmodium infection' baslikli çalismada, plasmodium parazitinin yol açtigi sitma gibi hastaliklari tespit edebilen yeni bilesikler sunulmustur. Bu bilesikler hastaligin kolayca ve hizli sekilde tespitini saglayabilmektedirler; ancak laboratuvar ortaminda ve uzman kisiler tarafindan kullanilmalidir. Bulus ise covid ve benzeri bulasici hastaliklarin hizli ve yüksek dogrulukla tespitini saglayan, hem kisisel olarak hem de genis ölçekte kullanilabilecek bir ürün önermektedir. In the study titled 'Detection System', the general illness of the passengers within the airline system A solution with control is provided. Invention, on the other hand, is both individuals alone. Covid-19, which companies can use and which companies in every branch of the industry can apply. offers an electronic nose product that can detect similar infectious diseases. In the study titled 'detecting plasmodium infection', the disease caused by the plasmodium parasite was New compounds that can detect diseases such as These compounds cause the disease to be easily and they are able to detect quickly; only in the laboratory environment and by experts. should be used by The invention means that covid and similar infectious diseases are fast and high. It is a tool that can be used both personally and on a large scale, which ensures its accurate detection. recommends the product.

Teknigin bilinen durumunda yer alan CN102378981A patent numarali 'System and methods for health monitoring of anonymous animals in Iivestock groups' baslikli çalismada sensörler yardimiyla kümes ve ahir hayvanlarinin hastaliklarinin belirlenmesini saglayan bir sistem önerilmistir. Çalismada hayvanlarin atesi, agirligi, çikardigi sesler gibi veriler sensörler vasitasiyla toplanmis ve hastalikli olanlar sistem tarafindan belirlenmistir. Bulusta ise sadece nefes verisiyle insanlarda bulunan Covid-19 ve benzeri bulasici hastaliklari tespit edebilen bir cihaz sunulmaktadir. electronic nose management in personal devices' baslikli çalismada ortamlarda bulunan farkli sensörleri ve elektronik burun cihazlarinin merkezi bir yerden yönetilmesini saglayan bir sistem sunulmaktadir. Bu sistem herhangi bir hastaliga ya da probleme odaklanmamakta; çok sayida cihazdan elde edilen verilerin islenmesi ve anlamlandirilmasi konusunu ele almaktadir. Bulus ise, çok sayida hasta verisiyle egitilmis ve özel olarak Covid-19 ve benzeri hastaliklarin tespitini yüksek dogrulukta yapabilen cihaz önerisinde bulunmaktadir. System and methods with patent number CN102378981A, which is in the state of the art sensors in the study titled for health monitoring of anonymous animals in Iivestock groups' A system that enables the determination of the diseases of poultry and barn animals with the help of has been suggested. In the study, data such as the temperature, weight, and sounds of animals were used by sensors. and diseased ones were determined by the system. In the invention only It is a device that can detect Covid-19 and similar infectious diseases in humans with breath data. device is provided. electronic nose management in personal devices' It is a system that enables different sensors and electronic nose devices to be managed from a central place. system is presented. This system does not focus on any disease or problem; It deals with the processing and interpretation of data obtained from a large number of devices. takes. The invention, on the other hand, has been trained with a large number of patient data and is specifically designed for Covid-19 and similar recommends a device that can detect diseases with high accuracy.

Sonuç olarak tani cihazlarinda gelistirmelere gidilmekte, bu nedenle yukaridaki deginilen dezavantajlari ortadan kaldiracak ve mevcut sistemlere çözüm getirecek yeni yapilanmalara ihtiyaç duyulmaktadir. As a result, improvements are made in diagnostic devices, therefore, the above-mentioned new structures that will eliminate the disadvantages and bring solutions to the existing systems. is needed.

BULUSUN AMACI Mevcut bulus, yukarida bahsedilen gereksinimleri karsilayan, tüm dezavantajlari ortadan kaldiran bir tani cihazi ile ilgilidir. OBJECTIVE OF THE INVENTION The present invention satisfies the above-mentioned requirements, eliminates all disadvantages. relates to a diagnostic device that removes

Bulusun ana amaci; C0vid-19 ve benzeri bulasici hastaliklari daha önceden ögrenmis yapay zekâ modüllerinden yararlanarak, nefes verisini analiz ederek tanilayabilen bir cihaz saglamaktir. The main purpose of the invention; Artificial diseases that have previously learned about C0vid-19 and similar infectious diseases A device that can be diagnosed by analyzing breath data by making use of intelligence modules is to provide.

Bulusun ile farkli gaz sensörlerini birbirleri ile yaristirarak tani koyma özelligine sahip ayrica kendi kendini güncelleyerek, farkli hastaliklar için yetkin olabilecek bir cihaz saglanmaktadir. With the invention, it has the feature of diagnosing different gas sensors by competing with each other. By updating itself, a device is provided that can be competent for different diseases.

Bulus ile; - pis veya patojen tasiyan havayi hapsederek kendi kendine sterilize edecek - kalabalik açik veya kapali alanlarda kullanilabilecek - çok hizli tani koyabilecek ve bunun kesinlik olasiligini yüzde olarak verebilecek o her türlü makine ögrenmesi algoritmasiyla çalisabilecek o kendini otomatik olarak sterilize edebilecek bir cihaz saglanmaktadir. With the invention; - will self-sterilize by trapping dirty or pathogenic air - Can be used in crowded indoor or outdoor areas - will be able to diagnose very quickly and give the probability of this as a percentage o be able to work with any machine learning algorithm it will be able to sterilize itself automatically A device is provided.

Bulusun yapisal ve karakteristik özellikleri ve tüm avantajlari asagida verilen sekiller ve bu sekillere atiflar yapilmak suretiyle yazilan detayli açiklama sayesinde daha net olarak anlasilacaktir. The structural and characteristic features of the invention and all its advantages are given in the following figures and More clearly thanks to the detailed explanation with references to the figures. will be understood.

SEKILLERIN KISA AÇIKLAMASI Mevcut bulusun yapilanmasi ve ek elemanlarla birlikte avantajlarinin en iyi sekilde anlasilabilmesi için asagida açiklamasi yapilan sekiller ile birlikte degerlendirilmesi gerekir. BRIEF DESCRIPTION OF THE FIGURES The embodiment of the present invention and the best use of its advantages with additional elements In order to be understood, it should be evaluated together with the figures explained below.

Sekil 1: Bulus konusu tani cihazinin sematik görünümüdür REFERANS NUMARALARI . Üfleme çubugu . Ufleme hunisi . Oksijen sensörü . CO sensörü . CO2 Sensörü . Hidrojen sensörü . Azot sensörü OCJWIOÜCJW-I>›CJLJI\J-` . Argon sensörü . Helyum sensörü . Ozon sensörü . Metan sensörü . Kripton sensörü . Ksenon sensörü . Nitrojen oksid sensörü . Sayisallastirma modülü . Ögrenmis modül . Ögrenmis modül güncelleme parçasi 18. LCD mini ekran 19. Mini vantilatör . Hava çikis borusu 21. UV isigi 22. Balon yerlestirme borusu 23. Balon 24. Bluetooth baglantisi . USB baglantisi 26. WIFI Baglantisi 27. Mini USB baglantisi 28. Güncelleme Modülü (Baska bir bilgisayar içinde) 29. Güç bataryasi BULUSUN DETAYLI AÇIKLANMASI Bu detayli açiklamada, bulus konusu tani cihazinin tercih edilen yapilanmalari, sadece konunun daha iyi anlasilmasina yönelik olarak ve hiçbir sinirlayici etki olusturmayacak sekilde açiklanmaktadir. Figure 1: The schematic view of the diagnostic device of the invention REFERENCE NUMBERS . blow stick . blowing funnel . oxygen sensor . CO sensor . CO2 Sensor . hydrogen sensor . nitrogen sensor OCJWIOÜCJW-I>›CJLJI\J-` . Argon sensor . Helium sensor . ozone sensor . methane sensor . Krypton sensor . xenon sensor . nitrogen oxide sensor . Digitization module . Learned module . Learned module update piece 18. LCD mini display 19. Mini fan . air outlet pipe 21. UV light 22. Balloon insertion tube 23. Balloon 24. Bluetooth connection . USB connection 26. WIFI Connection 27. Mini USB connection 28. Update Module (In another computer) 29. Power battery DETAILED DESCRIPTION OF THE INVENTION In this detailed description, preferred embodiments of the inventive diagnostic device are only for a better understanding of the subject and will not have any limiting effect is explained in the following.

Sekil 1'de bulus konusu tani cihazinin sematik görünümü yer almaktadir. Figure 1 shows the schematic view of the diagnostic device, which is the subject of the invention.

Cihazi kullanacak kisi üfleme çubugu (1) veya üfleme hunisinden (2) cihazin içine dogru hava üfler. Cihaz içindeki Oksijen sensörü (3), C0 sensörü (4), C02 Sensörü (5), Hidrojen sensörü (6), Azot sensörü (7), Argon sensörü (8), Helyum sensörü (9), Ozon sensörü (10), Metan sensörü (11), Kripton sensörü (12), Ksenon sensörü (13), Nitrojen oksid sensörü (14) içeriye giren havadaki kendileri ile ilgili kismini ölçer. Her bir sensör ölçümlerini sayisallastirma modülüne (15) gönderir. The person who will be using the device should move towards the inside of the device from the blowing rod (1) or the blowing funnel (2). blows air. Oxygen sensor (3), C0 sensor (4), C02 Sensor (5), Hydrogen in the device sensor (6), Nitrogen sensor (7), Argon sensor (8), Helium sensor (9), Ozone sensor (10), Methane sensor (11), Krypton sensor (12), Xenon sensor (13), Nitrogen oxide sensor (14) They measure their part in the air entering the interior. Each sensor measurement sends it to the digitization module (15).

Sayisallastirma modülü (15) gelen ölçümleri her bir degerin diger deger ile farkini, farklarinin karesini, Iogaritmasini, Iogaritmalar arasi farklarin karelerinin toplamini, hesaplayarak ayri ayri degiskenler olusturur. Bu degiskenler ortamdaki havanin sayisal degerleri ile düzgünlesetirilir. Düzgünlestirmede New Min-Max, Z-Score, Logaritmik, Ustsel düzgünlestirme yöntemlerinden biri veya birkaçi kullanilir. Sayisallastirma modülü (15), ürettigi verileri ögrenmis modüle (16) iletir. Ögrenmis modül (16) LSTM, XBOOST, Lojistik Regresyon, lineer regresyon, gradient decent boosted tree, Yapay Sinir Aglari. Olasiliksal Yapay Sinir Aglari, Bayes Nayev ögrenme, Bayes Nayev Aglar, Rasgele orman, Adaboost, C4.5, ID3 gibi algoritmalarla egitilmis bir modüldür. Ögrenmis modül (16) sayilan tüm algoritmalarin bir veya birkaçini ve tüm verileri kullanarak daha önce ögrendigi sekilde hastalik tanisini tahmin eder. Ögrenmis modül (16) güncellenebilir ve yeni algoritmalar yüklenebilen bir modüldür. Ögrenmis modül (16); bluetooth (24), USB (25), wifi (26), Mini USB baglantisi (27) araciligi ile bilgisayara baglanabilir ve bilgisayardaki güncelleme programini kullanabilir. The digitization module (15) measures the incoming measurements, the difference of each value with the other value, Calculate the square, the Ioarithm, the sum of the squares of the differences between the Ioarithms, by calculating creates separate variables. These variables are related to the numerical values of the air in the environment. smoothed out. Smoothing New Min-Max, Z-Score, Logarithmic, Exponential One or more of the smoothing methods are used. Digitization module (15), transmits the data it produces to the learned module (16). Learned module (16) LSTM, XBOOST, Logistic Regression, linear regression, gradient decent boosted tree, Artificial Neural Networks. Probabilistic Neural Networks, Bayes Nayev learning, Bayes Nayev Networks, Random forest, Adaboost, C4.5, ID3 trained with algorithms. is a module. Learned module (16) includes one or more of all algorithms and all data. predicts the diagnosis of the disease as previously learned. Learned module (16) It is a module that can be updated and new algorithms can be loaded. Learned module (16); to computer via bluetooth (24), USB (25), wifi (26), Mini USB connection (27) can connect and use the update program on the computer.

Güncelleme modülü (28); akilli cep telefonu, tablet, bilgisayar, windows, linux, mac os, android, IOS isletim sistemlerinde çalisabilen bir yazilimdir. Güncelleme modülü (28) belirli aralikta merkezden yeni ögrenme güncellemelerini kontrol eder. Bu sayede farkli hastaliklarin tanisini rahatlikla yapabilmektedir. Cihaz istenilen zamanda güncelleme modülü (28)'ne baglanarak güncellenir. LCD mini ekran (18) cihazin tanisini olasilik degeri ile yazar. Update module 28; smart mobile phone, tablet, computer, windows, linux, mac os, android is a software that can run on IOS operating systems. Update module (28) specific checks for new learning updates from the center at intervals. In this way, different can easily diagnose diseases. Device update module at any time It is updated by connecting to (28). LCD mini screen (18) writes the diagnosis of the device with probability value.

LCD mini ekran (18) hangi hastalik veya hastaliklari taniladigini gösterir. Mini vantilatör (19) konduktan sonra havanin balon (23) içine doldurulmasini saglar. The LCD mini display (18) shows which disease or diseases it has been diagnosed with. Mini fan (19) It ensures that the air is filled into the balloon (23) after it is placed.

Hava çikisi borusu (20) balon yerlestirme borusu (22) ile irtibati saglar. Hava çikisi borusu (20) üfleme esnasinda havanin bir kismini balona (23) geçmesini saglar. Pozitif tani kondugunda mini vantilatör (19) tüm havayi, hava çikisi borusu (20) ve balon yerlestirme borusu (21) ile balon (23) içine gönderir. Üflenen havanin balon (23) içerisinde hapsedilmesinin sebebi, olasi pozitif hasta nefesinin dis ortama veya aleti tutan kisiye temas etmesini önlemek içindir. Balon (23) içine hava gönderildikten sonra, hava çikisi borusu (20) kapagini kapatarak havayi balona (23) hapseder. Balon yerlestirme borusu (21) dönerek balon (23) agzini büker ve hava geçmesini engeller. UV isigi (21) her islemden sonra aktif hale geçer ve içerdeki havayi sterilize eder. Negatif tani kondugunda hava çikisi borusu (20) havayi, mini vantilatör (19) yardimiyla disari verir. Negatif tani kondugunda da hava çikisi borusu (20) havayi balon (23) Içine önlem amaçli hapsedebilir. Güç bataryasi (29) cihaza elektrik gücü verir, 12- 40 volt araliginda çalisir. Güç bataryasi (29) sarj edilebilir bir yapidadir.The air outlet pipe (20) provides communication with the balloon placing pipe (22). air outlet pipe (20) allows some of the air to pass into the balloon (23) during blowing. positive diagnosis When placed, the mini ventilator (19) removes all the air, the air outlet pipe (20) and the balloon insertion. sends it into the balloon (23) with its tube (21). The blown air is inside the balloon (23) The reason for the confinement is that the possible positive patient breath is in contact with the outside environment or the person holding the instrument. to prevent it from happening. After the air is sent into the balloon (23) the air outlet pipe (20) It closes the cap and traps the air in the balloon (23). The balloon insertion tube (21) turns The balloon (23) bends its mouth and prevents the passage of air. UV light (21) active after each treatment and sterilizes the air inside. Air outlet tube (20) when diagnosed negative it expels the air with the help of the mini fan (19). Air outflow even when a negative diagnosis is made tube (20) can trap air inside the balloon (23) as a precaution. The power battery (29) is attached to the device. It provides electrical power, works in the range of 12-40 volts. The power battery (29) is a rechargeable is in the structure.

Claims (1)

ISTEMLER . Bir tani cihazi olup, özelligi; Cihazi kullanacak kisinin cihazin içine dogru hava üflemesine yardimci en az bir üfleme çubugu (1) veya üfleme hunisi (2), Cihaz içerisine üflenen havayi analiz etmek üzere en az bir Oksijen sensörü (3), C0 sensörü (4), (302 Sensörü (5), Hidrojen sensörü (6), Azot sensörü (7), Argon sensörü (8), Helyum sensörü (9), Ozon sensörü (10), Metan sensörü (11), Kripton sensörü (12), Ksenon sensörü (13), Nitrojen oksit sensörü (14), Bahsedilen sensörlerden gelen ölçümleri her bir degerin diger deger ile farkini, farklarinin karesini, logaritmasini, Iogaritmalar arasi farklarin karelerinin toplamini, hesaplayarak ayri ayri degiskenler olusturan en az bir sayisallastirma modülü (15), Bahsedilen sayisallastirma modülünün (15) ürettigi verileri alarak daha önce ögrendigi sekilde hastalik tanisini tahmin eden, güncellenebilir ve yeni algoritmalar yüklenebilen yapida olan en az bir ögrenmis modül (16), Belirli aralikla merkezden yeni ögrenme güncellemelerini kontrol eden ve bu sayede farkli hastaliklarin tanisini rahatlikla yapabilmeyi saglayan en az bir güncelleme modülü (28), Cihaz içerisine üflenen havanin homojen olarak cihaz içinde dagilmasini saglayan en az bir mini vantilatör (19), Tani konduktan sonra havanin hapsedildigi ve bu sayede ortamda bulunan kisilerin etkilenmesini önleyen en az bir balon (23), Her islemden sonra aktif hale geçer ve içerdeki havayi sterilize eden en az bir UV içermesidir. . Istem 1'e göre bir tani cihazi olup, özelligi; üfleme esnasinda havanin bir kismini balona (23) geçmesini saglayan en az bir hava çikisi borusu (20) ve balon yerlestirme borusu (22) içermesidir. . Istem 1'e göre bir tani cihazi olup, özelligi; bahsedilen ögrenmis modülün (16) bilgisayara baglanabilmesi ve bilgisayardaki güncelleme programini kullanabilmesini saglamak üzere en az bir bluetooth (24) içermesidir. . Istem 1'e göre bir tani cihazi olup, özelligi; bahsedilen ögrenmis modülün (16) bilgisayara baglanabilmesi ve bilgisayardaki güncelleme programini kullanabilmesini saglamak üzere en az bir USB (25) içermesidir. . Istem 1'e göre bir tani cihazi olup, özelligi; bahsedilen ögrenmis modülün (16) bilgisayara baglanabilmesi ve bilgisayardaki güncelleme programini kullanabilmesini saglamak üzere en az bir wifi (26) içermesidir. . istem 1'e göre bir tani cihazi olup, özelligi; bahsedilen ögrenmis modülün (16) LSTM, XBOOST, Lojistik Regresyon, lineer regresyon, gradient deoent boosted tree, Yapay Sinir Aglari, Olasiliksal Yapay Sinir Aglari, Bayes Nayev ögrenme, Bayes Nayev Aglar, Rasgele orman, Adaboost, 04.5, ID3 algoritmalarin en az biri ile egitilmis olmasidir. . istem 1'e göre bir tani cihazi olup, özelligi; bahsedilen güç bataryasinin (29) sarj edilebilir bir yapida olmasidir. . Istem 7'ye göre bir tani Cihazi olup, özelligi; bahsedilen güç bataryasinin (29) 12- 40 volt araliginda çalismasidir.REQUESTS . It is a diagnostic device and its feature is; At least one blow bar (1) or blow funnel (2) to help the person who will use the device blow air into the device, At least one Oxygen sensor (3), C0 sensor (4), (302 Sensor) to analyze the air blown into the device ( 5), Hydrogen sensor (6), Nitrogen sensor (7), Argon sensor (8), Helium sensor (9), Ozone sensor (10), Methane sensor (11), Krypton sensor (12), Xenon sensor (13) , Nitrogen oxide sensor (14), At least one digitization module (15) that creates separate variables by calculating the measurements from the aforementioned sensors, the difference of each value with the other value, the square of the difference, the logarithm, the sum of the squares of the differences between the logarithms, ) at least one learned module (16), which can be updated and new algorithms can be loaded, predicts the diagnosis of the disease as it has learned before by taking the data it produces module (28) At least one mini ventilator (19) that ensures the homogeneous distribution of the air blown into the device in the device, At least one balloon (23) in which the air is trapped after the diagnosis and thus prevents the people in the environment from being affected, It becomes active after each procedure. passes through and contains at least one UV that sterilizes the air inside. . It is a diagnostic device according to claim 1, its feature is; It comprises at least one air outlet pipe (20) and a balloon placing pipe (22) that allows some of the air to pass into the balloon (23) during blowing. . It is a diagnostic device according to claim 1, its feature is; said learned module (16) includes at least one bluetooth (24) in order to be able to connect to the computer and use the update program on the computer. . It is a diagnostic device according to claim 1, its feature is; said learned module (16) includes at least one USB (25) to enable it to be connected to the computer and to use the update program on the computer. . It is a diagnostic device according to claim 1, its feature is; said learned module (16) includes at least one wifi (26) in order to be able to connect to the computer and use the update program on the computer. . It is a diagnostic device according to claim 1 and its feature is; at least one of the aforementioned learned module (16) LSTM, XBOOST, Logistic Regression, linear regression, gradient deoent boosted tree, Artificial Neural Networks, Probabilistic Artificial Neural Networks, Bayes Nayev learning, Bayes Nayev Networks, Random forest, Adaboost, 04.5, ID3 algorithms is trained with. . It is a diagnostic device according to claim 1 and its feature is; said power battery (29) is of a rechargeable nature. . It is a diagnostic device according to claim 7, and its feature is; said power battery (29) works in the range of 12-40 volts.
TR2021/014071A 2021-09-08 2021-09-08 AI-SUPPORTED ELECTRONIC DIAGNOSTIC DEVICE FOR DISEASE DIAGNOSIS TR2021014071A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TR2021/014071A TR2021014071A2 (en) 2021-09-08 2021-09-08 AI-SUPPORTED ELECTRONIC DIAGNOSTIC DEVICE FOR DISEASE DIAGNOSIS
PCT/TR2022/050964 WO2023038606A1 (en) 2021-09-08 2022-09-08 Artificial intelligence-assisted electronic diagnostic device for disease diagnosis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TR2021/014071A TR2021014071A2 (en) 2021-09-08 2021-09-08 AI-SUPPORTED ELECTRONIC DIAGNOSTIC DEVICE FOR DISEASE DIAGNOSIS

Publications (1)

Publication Number Publication Date
TR2021014071A2 true TR2021014071A2 (en) 2021-10-21

Family

ID=83999849

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2021/014071A TR2021014071A2 (en) 2021-09-08 2021-09-08 AI-SUPPORTED ELECTRONIC DIAGNOSTIC DEVICE FOR DISEASE DIAGNOSIS

Country Status (2)

Country Link
TR (1) TR2021014071A2 (en)
WO (1) WO2023038606A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2097363A1 (en) * 1992-06-03 1993-12-04 Hideo Ueda Expired air examination device and method for clinical purpose
US20200337594A1 (en) * 2019-03-18 2020-10-29 Canary Health Technologies Inc. Biomarkers for systems, methods, and devices for detecting and identifying substances in a subject's breath, and diagnosing and treating health conditions
AU2020100553A4 (en) * 2020-04-13 2020-05-28 Ledger Assets Pty Ltd System to detect Viruses such as COVID19 and other Pathogens and Bacteria
CN212644876U (en) * 2020-05-27 2021-03-02 李士博 Mobile ventilation diagnosis and treatment equipment for preventing cross infection between doctors and patients in diagnosis and treatment process
TR202011037A2 (en) * 2020-07-12 2020-09-21 New Senses Uzay Teknoloji Ve Saglik Arastirmalari A S ARTIFICIAL INTELLIGENCE SUPPORTED COVID-19 DIAGNOSTIC KIT

Also Published As

Publication number Publication date
WO2023038606A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
KR102139341B1 (en) An access inspection system for prevention of spread out plague
Irawan et al. Detecting Heart Rate Using Pulse Sensor As Alternative Knowing Heart Condition
US20230260627A1 (en) A remote medical examination system and method
JP2012517276A (en) Breath analysis
JP6462142B2 (en) Cancer incidence risk assessment apparatus, program, and method for testing cancer incidence risk
CN112245177A (en) Medical treatment cabin
KR102171543B1 (en) Artificial Intelligence Treatment Booth
TR2021014071A2 (en) AI-SUPPORTED ELECTRONIC DIAGNOSTIC DEVICE FOR DISEASE DIAGNOSIS
EP4018927A1 (en) Apparatus for identifying pathological states and corresponding method.
KR101785788B1 (en) Computing system and method for providing classifying of mibyou using analyzing result respiratory gas
US20210186344A1 (en) Clinical artificial intelligence (ai) software and terminal gateway hardware method for monitoring a subject to detect a possible respiratory disease
JP2019517835A5 (en)
WO2022167453A1 (en) Touch-free infectious disease screening
US11406728B2 (en) Self-contained, portable, sanitization device and telemedicine station
CN113113151A (en) New crown pneumonia exposure risk assessment system for medical institution staff
CN115515480A (en) Disease detection system
CN109640819B (en) Apparatus, system and method for detecting asthma attack or asthma in a subject
Zemelka-Wiacek et al. Symptom assessment of patients with allergic rhinitis using an allergen exposure chamber
CN213607734U (en) Medical treatment cabin
TR2022012702A2 (en) AI-BASED TRIAGE SYSTEM AND WORKING METHOD
GB2595258A (en) Non-Contact disease screening device
Singh et al. Real time respiration rate measurement using temperature sensor
JP2023520774A (en) Method and apparatus for early diagnosis of severity of pulmonary infection
US11957447B2 (en) Systems and methods of use thereof for determining aerosol particle characteristics
CN113808286A (en) Body temperature detection and disinfection equipment for station ticket checker