TR2021014071A2 - AI-SUPPORTED ELECTRONIC DIAGNOSTIC DEVICE FOR DISEASE DIAGNOSIS - Google Patents
AI-SUPPORTED ELECTRONIC DIAGNOSTIC DEVICE FOR DISEASE DIAGNOSISInfo
- Publication number
- TR2021014071A2 TR2021014071A2 TR2021/014071A TR2021014071A TR2021014071A2 TR 2021014071 A2 TR2021014071 A2 TR 2021014071A2 TR 2021/014071 A TR2021/014071 A TR 2021/014071A TR 2021014071 A TR2021014071 A TR 2021014071A TR 2021014071 A2 TR2021014071 A2 TR 2021014071A2
- Authority
- TR
- Turkey
- Prior art keywords
- sensor
- diagnostic device
- feature
- air
- module
- Prior art date
Links
- 201000010099 disease Diseases 0.000 title claims description 18
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 title claims description 18
- 238000003745 diagnosis Methods 0.000 title claims description 8
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 238000004422 calculation algorithm Methods 0.000 claims description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 6
- 238000007664 blowing Methods 0.000 claims description 5
- 238000013528 artificial neural network Methods 0.000 claims description 4
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052786 argon Inorganic materials 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 239000001307 helium Substances 0.000 claims description 3
- 229910052734 helium Inorganic materials 0.000 claims description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 229910052743 krypton Inorganic materials 0.000 claims description 3
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 229910052724 xenon Inorganic materials 0.000 claims description 3
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 3
- 238000012417 linear regression Methods 0.000 claims description 2
- 238000007477 logistic regression Methods 0.000 claims description 2
- 238000007637 random forest analysis Methods 0.000 claims description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- 208000025721 COVID-19 Diseases 0.000 abstract description 8
- 208000035473 Communicable disease Diseases 0.000 abstract description 5
- 238000013473 artificial intelligence Methods 0.000 abstract description 2
- 241001465754 Metazoa Species 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 238000009007 Diagnostic Kit Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 241000223960 Plasmodium falciparum Species 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 201000004792 malaria Diseases 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 244000144977 poultry Species 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/08—Detecting, measuring or recording devices for evaluating the respiratory organs
- A61B5/082—Evaluation by breath analysis, e.g. determination of the chemical composition of exhaled breath
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
- G01N33/497—Physical analysis of biological material of gaseous biological material, e.g. breath
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
- G01N33/497—Physical analysis of biological material of gaseous biological material, e.g. breath
- G01N33/4977—Metabolic gas from microbes, cell cultures or plant tissues
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/08—Detecting, measuring or recording devices for evaluating the respiratory organs
- A61B5/097—Devices for facilitating collection of breath or for directing breath into or through measuring devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Biophysics (AREA)
- Surgery (AREA)
- Food Science & Technology (AREA)
- Physiology (AREA)
- Immunology (AREA)
- Heart & Thoracic Surgery (AREA)
- General Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Artificial Intelligence (AREA)
- Analytical Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Pulmonology (AREA)
- Fuzzy Systems (AREA)
- Evolutionary Computation (AREA)
- Databases & Information Systems (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Buluş, Covid-19 ve benzeri bulaşıcı hastalıkları daha önceden öğrenmiş yapay zekâ modüllerinden yararlanarak, nefes verisini analiz ederek tanılayabilen bir tanı cihazı ile ilgilidir.The invention relates to a diagnostic device that can diagnose Covid-19 and similar infectious diseases by analyzing breath data by using artificial intelligence modules that have previously learned.
Description
TARIFNAME HASTALIK TESHISINE YÖNELIK YAPAY ZEKÂ DESTEKLI ELEKTRONIK TANI CIHAZI TEKNIK ALAN Bulus, genel olarak nefes verisinden Covid teshisi koyabilen yapay zeka destekli bir cihaz ile TEKNIGIN BILINEN DURUMU Covid-19 pandemisinin yarattigi etki ile toplum sagligi her düzeyde önem kazanmis ve bulas ve hastalik riskini azaltmak için her birey özen göstermeye baslamistir. Maske. mesafe ve hijyen korumasi ve zaman zaman hayati durduran tam kapanma ile bulas önlenmeye çalisilmistir. Görünen 0 dur ki Covid-19`un etkileri uzun süre devam edecektir. DESCRIPTION AI-SUPPORTED ELECTRONIC DIAGNOSTIC DEVICE FOR DISEASE DIAGNOSIS TECHNICAL FIELD The invention is made with an artificial intelligence supported device that can diagnose Covid from breathing data in general. KNOWN STATE OF THE TECHNIQUE With the impact of the Covid-19 pandemic, public health has gained importance at all levels and contagious and each individual has begun to take care to reduce the risk of disease. Mask. distance and With hygiene protection and complete closure that sometimes stops life, contamination is prevented. has been studied. It seems that the effects of Covid-19 will continue for a long time.
Covid-19 hastaligina yakalanmis kisilerin hasta olup olmadigini tespit etmek zordur. Uçaklar, okullar, hastaneler gibi toplu ve kapali alanlara giris ve çikislarda giren kisileri kontrol etmek ve bu kontrolün de güvenilir olmasi gerekmektedir. Hizli bir test ile kisinin hastaligin tasiyicisi olup olmadiginin hemen belirlenmesi önem arz etmektedir. It is difficult to determine whether people infected with Covid-19 are sick. airplanes, To control people entering and exiting public and closed areas such as schools, hospitals and this control also needs to be reliable. The person's carrier of the disease with a quick test It is important to immediately determine whether
Mevcut teknikte, kisilerde Covid-19 ve benzeri hastaliklarin tanisini koymak için PCR temelli tani kitleri gelistirilmistir. Bu kitlerin uzun bir tani koyma süreleri bulunmaktadir. Kisa sürede sonuç vererek hizli tani kitlerinin de güvenilirligi düsüktür. Ayrica, hastanin bogaz ve burun içinden sürüntü alinmasi gibi yöntemler hastayi rahatsiz etmekte ve islemi güçlestirmektedir. In the current technique, PCR-based methods are used to diagnose Covid-19 and similar diseases in individuals. diagnostic kits have been developed. These kits have a long diagnostic time. In a short time The reliability of rapid diagnostic kits is also low by giving results. In addition, the patient's throat and nose Methods such as taking a swab from it disturb the patient and complicate the process.
Detection System' baslikli çalismada, havayolu sistemi içerisinde yolcularin genel hastalik kontrolünün yapildigi bir çözüm sunulmaktadir. Bulus ise, hem kisilerin tek baslarina kullanabilecekleri hem de sanayinin her dalinda sirketlerin uygulayabilecekleri Covid-19 ve benzeri bulasici hastaliklarin tespitini yapabilen elektronik burun ürünü sunmaktadir. detecting plasmodium infection' baslikli çalismada, plasmodium parazitinin yol açtigi sitma gibi hastaliklari tespit edebilen yeni bilesikler sunulmustur. Bu bilesikler hastaligin kolayca ve hizli sekilde tespitini saglayabilmektedirler; ancak laboratuvar ortaminda ve uzman kisiler tarafindan kullanilmalidir. Bulus ise covid ve benzeri bulasici hastaliklarin hizli ve yüksek dogrulukla tespitini saglayan, hem kisisel olarak hem de genis ölçekte kullanilabilecek bir ürün önermektedir. In the study titled 'Detection System', the general illness of the passengers within the airline system A solution with control is provided. Invention, on the other hand, is both individuals alone. Covid-19, which companies can use and which companies in every branch of the industry can apply. offers an electronic nose product that can detect similar infectious diseases. In the study titled 'detecting plasmodium infection', the disease caused by the plasmodium parasite was New compounds that can detect diseases such as These compounds cause the disease to be easily and they are able to detect quickly; only in the laboratory environment and by experts. should be used by The invention means that covid and similar infectious diseases are fast and high. It is a tool that can be used both personally and on a large scale, which ensures its accurate detection. recommends the product.
Teknigin bilinen durumunda yer alan CN102378981A patent numarali 'System and methods for health monitoring of anonymous animals in Iivestock groups' baslikli çalismada sensörler yardimiyla kümes ve ahir hayvanlarinin hastaliklarinin belirlenmesini saglayan bir sistem önerilmistir. Çalismada hayvanlarin atesi, agirligi, çikardigi sesler gibi veriler sensörler vasitasiyla toplanmis ve hastalikli olanlar sistem tarafindan belirlenmistir. Bulusta ise sadece nefes verisiyle insanlarda bulunan Covid-19 ve benzeri bulasici hastaliklari tespit edebilen bir cihaz sunulmaktadir. electronic nose management in personal devices' baslikli çalismada ortamlarda bulunan farkli sensörleri ve elektronik burun cihazlarinin merkezi bir yerden yönetilmesini saglayan bir sistem sunulmaktadir. Bu sistem herhangi bir hastaliga ya da probleme odaklanmamakta; çok sayida cihazdan elde edilen verilerin islenmesi ve anlamlandirilmasi konusunu ele almaktadir. Bulus ise, çok sayida hasta verisiyle egitilmis ve özel olarak Covid-19 ve benzeri hastaliklarin tespitini yüksek dogrulukta yapabilen cihaz önerisinde bulunmaktadir. System and methods with patent number CN102378981A, which is in the state of the art sensors in the study titled for health monitoring of anonymous animals in Iivestock groups' A system that enables the determination of the diseases of poultry and barn animals with the help of has been suggested. In the study, data such as the temperature, weight, and sounds of animals were used by sensors. and diseased ones were determined by the system. In the invention only It is a device that can detect Covid-19 and similar infectious diseases in humans with breath data. device is provided. electronic nose management in personal devices' It is a system that enables different sensors and electronic nose devices to be managed from a central place. system is presented. This system does not focus on any disease or problem; It deals with the processing and interpretation of data obtained from a large number of devices. takes. The invention, on the other hand, has been trained with a large number of patient data and is specifically designed for Covid-19 and similar recommends a device that can detect diseases with high accuracy.
Sonuç olarak tani cihazlarinda gelistirmelere gidilmekte, bu nedenle yukaridaki deginilen dezavantajlari ortadan kaldiracak ve mevcut sistemlere çözüm getirecek yeni yapilanmalara ihtiyaç duyulmaktadir. As a result, improvements are made in diagnostic devices, therefore, the above-mentioned new structures that will eliminate the disadvantages and bring solutions to the existing systems. is needed.
BULUSUN AMACI Mevcut bulus, yukarida bahsedilen gereksinimleri karsilayan, tüm dezavantajlari ortadan kaldiran bir tani cihazi ile ilgilidir. OBJECTIVE OF THE INVENTION The present invention satisfies the above-mentioned requirements, eliminates all disadvantages. relates to a diagnostic device that removes
Bulusun ana amaci; C0vid-19 ve benzeri bulasici hastaliklari daha önceden ögrenmis yapay zekâ modüllerinden yararlanarak, nefes verisini analiz ederek tanilayabilen bir cihaz saglamaktir. The main purpose of the invention; Artificial diseases that have previously learned about C0vid-19 and similar infectious diseases A device that can be diagnosed by analyzing breath data by making use of intelligence modules is to provide.
Bulusun ile farkli gaz sensörlerini birbirleri ile yaristirarak tani koyma özelligine sahip ayrica kendi kendini güncelleyerek, farkli hastaliklar için yetkin olabilecek bir cihaz saglanmaktadir. With the invention, it has the feature of diagnosing different gas sensors by competing with each other. By updating itself, a device is provided that can be competent for different diseases.
Bulus ile; - pis veya patojen tasiyan havayi hapsederek kendi kendine sterilize edecek - kalabalik açik veya kapali alanlarda kullanilabilecek - çok hizli tani koyabilecek ve bunun kesinlik olasiligini yüzde olarak verebilecek o her türlü makine ögrenmesi algoritmasiyla çalisabilecek o kendini otomatik olarak sterilize edebilecek bir cihaz saglanmaktadir. With the invention; - will self-sterilize by trapping dirty or pathogenic air - Can be used in crowded indoor or outdoor areas - will be able to diagnose very quickly and give the probability of this as a percentage o be able to work with any machine learning algorithm it will be able to sterilize itself automatically A device is provided.
Bulusun yapisal ve karakteristik özellikleri ve tüm avantajlari asagida verilen sekiller ve bu sekillere atiflar yapilmak suretiyle yazilan detayli açiklama sayesinde daha net olarak anlasilacaktir. The structural and characteristic features of the invention and all its advantages are given in the following figures and More clearly thanks to the detailed explanation with references to the figures. will be understood.
SEKILLERIN KISA AÇIKLAMASI Mevcut bulusun yapilanmasi ve ek elemanlarla birlikte avantajlarinin en iyi sekilde anlasilabilmesi için asagida açiklamasi yapilan sekiller ile birlikte degerlendirilmesi gerekir. BRIEF DESCRIPTION OF THE FIGURES The embodiment of the present invention and the best use of its advantages with additional elements In order to be understood, it should be evaluated together with the figures explained below.
Sekil 1: Bulus konusu tani cihazinin sematik görünümüdür REFERANS NUMARALARI . Üfleme çubugu . Ufleme hunisi . Oksijen sensörü . CO sensörü . CO2 Sensörü . Hidrojen sensörü . Azot sensörü OCJWIOÜCJW-I>›CJLJI\J-` . Argon sensörü . Helyum sensörü . Ozon sensörü . Metan sensörü . Kripton sensörü . Ksenon sensörü . Nitrojen oksid sensörü . Sayisallastirma modülü . Ögrenmis modül . Ögrenmis modül güncelleme parçasi 18. LCD mini ekran 19. Mini vantilatör . Hava çikis borusu 21. UV isigi 22. Balon yerlestirme borusu 23. Balon 24. Bluetooth baglantisi . USB baglantisi 26. WIFI Baglantisi 27. Mini USB baglantisi 28. Güncelleme Modülü (Baska bir bilgisayar içinde) 29. Güç bataryasi BULUSUN DETAYLI AÇIKLANMASI Bu detayli açiklamada, bulus konusu tani cihazinin tercih edilen yapilanmalari, sadece konunun daha iyi anlasilmasina yönelik olarak ve hiçbir sinirlayici etki olusturmayacak sekilde açiklanmaktadir. Figure 1: The schematic view of the diagnostic device of the invention REFERENCE NUMBERS . blow stick . blowing funnel . oxygen sensor . CO sensor . CO2 Sensor . hydrogen sensor . nitrogen sensor OCJWIOÜCJW-I>›CJLJI\J-` . Argon sensor . Helium sensor . ozone sensor . methane sensor . Krypton sensor . xenon sensor . nitrogen oxide sensor . Digitization module . Learned module . Learned module update piece 18. LCD mini display 19. Mini fan . air outlet pipe 21. UV light 22. Balloon insertion tube 23. Balloon 24. Bluetooth connection . USB connection 26. WIFI Connection 27. Mini USB connection 28. Update Module (In another computer) 29. Power battery DETAILED DESCRIPTION OF THE INVENTION In this detailed description, preferred embodiments of the inventive diagnostic device are only for a better understanding of the subject and will not have any limiting effect is explained in the following.
Sekil 1'de bulus konusu tani cihazinin sematik görünümü yer almaktadir. Figure 1 shows the schematic view of the diagnostic device, which is the subject of the invention.
Cihazi kullanacak kisi üfleme çubugu (1) veya üfleme hunisinden (2) cihazin içine dogru hava üfler. Cihaz içindeki Oksijen sensörü (3), C0 sensörü (4), C02 Sensörü (5), Hidrojen sensörü (6), Azot sensörü (7), Argon sensörü (8), Helyum sensörü (9), Ozon sensörü (10), Metan sensörü (11), Kripton sensörü (12), Ksenon sensörü (13), Nitrojen oksid sensörü (14) içeriye giren havadaki kendileri ile ilgili kismini ölçer. Her bir sensör ölçümlerini sayisallastirma modülüne (15) gönderir. The person who will be using the device should move towards the inside of the device from the blowing rod (1) or the blowing funnel (2). blows air. Oxygen sensor (3), C0 sensor (4), C02 Sensor (5), Hydrogen in the device sensor (6), Nitrogen sensor (7), Argon sensor (8), Helium sensor (9), Ozone sensor (10), Methane sensor (11), Krypton sensor (12), Xenon sensor (13), Nitrogen oxide sensor (14) They measure their part in the air entering the interior. Each sensor measurement sends it to the digitization module (15).
Sayisallastirma modülü (15) gelen ölçümleri her bir degerin diger deger ile farkini, farklarinin karesini, Iogaritmasini, Iogaritmalar arasi farklarin karelerinin toplamini, hesaplayarak ayri ayri degiskenler olusturur. Bu degiskenler ortamdaki havanin sayisal degerleri ile düzgünlesetirilir. Düzgünlestirmede New Min-Max, Z-Score, Logaritmik, Ustsel düzgünlestirme yöntemlerinden biri veya birkaçi kullanilir. Sayisallastirma modülü (15), ürettigi verileri ögrenmis modüle (16) iletir. Ögrenmis modül (16) LSTM, XBOOST, Lojistik Regresyon, lineer regresyon, gradient decent boosted tree, Yapay Sinir Aglari. Olasiliksal Yapay Sinir Aglari, Bayes Nayev ögrenme, Bayes Nayev Aglar, Rasgele orman, Adaboost, C4.5, ID3 gibi algoritmalarla egitilmis bir modüldür. Ögrenmis modül (16) sayilan tüm algoritmalarin bir veya birkaçini ve tüm verileri kullanarak daha önce ögrendigi sekilde hastalik tanisini tahmin eder. Ögrenmis modül (16) güncellenebilir ve yeni algoritmalar yüklenebilen bir modüldür. Ögrenmis modül (16); bluetooth (24), USB (25), wifi (26), Mini USB baglantisi (27) araciligi ile bilgisayara baglanabilir ve bilgisayardaki güncelleme programini kullanabilir. The digitization module (15) measures the incoming measurements, the difference of each value with the other value, Calculate the square, the Ioarithm, the sum of the squares of the differences between the Ioarithms, by calculating creates separate variables. These variables are related to the numerical values of the air in the environment. smoothed out. Smoothing New Min-Max, Z-Score, Logarithmic, Exponential One or more of the smoothing methods are used. Digitization module (15), transmits the data it produces to the learned module (16). Learned module (16) LSTM, XBOOST, Logistic Regression, linear regression, gradient decent boosted tree, Artificial Neural Networks. Probabilistic Neural Networks, Bayes Nayev learning, Bayes Nayev Networks, Random forest, Adaboost, C4.5, ID3 trained with algorithms. is a module. Learned module (16) includes one or more of all algorithms and all data. predicts the diagnosis of the disease as previously learned. Learned module (16) It is a module that can be updated and new algorithms can be loaded. Learned module (16); to computer via bluetooth (24), USB (25), wifi (26), Mini USB connection (27) can connect and use the update program on the computer.
Güncelleme modülü (28); akilli cep telefonu, tablet, bilgisayar, windows, linux, mac os, android, IOS isletim sistemlerinde çalisabilen bir yazilimdir. Güncelleme modülü (28) belirli aralikta merkezden yeni ögrenme güncellemelerini kontrol eder. Bu sayede farkli hastaliklarin tanisini rahatlikla yapabilmektedir. Cihaz istenilen zamanda güncelleme modülü (28)'ne baglanarak güncellenir. LCD mini ekran (18) cihazin tanisini olasilik degeri ile yazar. Update module 28; smart mobile phone, tablet, computer, windows, linux, mac os, android is a software that can run on IOS operating systems. Update module (28) specific checks for new learning updates from the center at intervals. In this way, different can easily diagnose diseases. Device update module at any time It is updated by connecting to (28). LCD mini screen (18) writes the diagnosis of the device with probability value.
LCD mini ekran (18) hangi hastalik veya hastaliklari taniladigini gösterir. Mini vantilatör (19) konduktan sonra havanin balon (23) içine doldurulmasini saglar. The LCD mini display (18) shows which disease or diseases it has been diagnosed with. Mini fan (19) It ensures that the air is filled into the balloon (23) after it is placed.
Hava çikisi borusu (20) balon yerlestirme borusu (22) ile irtibati saglar. Hava çikisi borusu (20) üfleme esnasinda havanin bir kismini balona (23) geçmesini saglar. Pozitif tani kondugunda mini vantilatör (19) tüm havayi, hava çikisi borusu (20) ve balon yerlestirme borusu (21) ile balon (23) içine gönderir. Üflenen havanin balon (23) içerisinde hapsedilmesinin sebebi, olasi pozitif hasta nefesinin dis ortama veya aleti tutan kisiye temas etmesini önlemek içindir. Balon (23) içine hava gönderildikten sonra, hava çikisi borusu (20) kapagini kapatarak havayi balona (23) hapseder. Balon yerlestirme borusu (21) dönerek balon (23) agzini büker ve hava geçmesini engeller. UV isigi (21) her islemden sonra aktif hale geçer ve içerdeki havayi sterilize eder. Negatif tani kondugunda hava çikisi borusu (20) havayi, mini vantilatör (19) yardimiyla disari verir. Negatif tani kondugunda da hava çikisi borusu (20) havayi balon (23) Içine önlem amaçli hapsedebilir. Güç bataryasi (29) cihaza elektrik gücü verir, 12- 40 volt araliginda çalisir. Güç bataryasi (29) sarj edilebilir bir yapidadir.The air outlet pipe (20) provides communication with the balloon placing pipe (22). air outlet pipe (20) allows some of the air to pass into the balloon (23) during blowing. positive diagnosis When placed, the mini ventilator (19) removes all the air, the air outlet pipe (20) and the balloon insertion. sends it into the balloon (23) with its tube (21). The blown air is inside the balloon (23) The reason for the confinement is that the possible positive patient breath is in contact with the outside environment or the person holding the instrument. to prevent it from happening. After the air is sent into the balloon (23) the air outlet pipe (20) It closes the cap and traps the air in the balloon (23). The balloon insertion tube (21) turns The balloon (23) bends its mouth and prevents the passage of air. UV light (21) active after each treatment and sterilizes the air inside. Air outlet tube (20) when diagnosed negative it expels the air with the help of the mini fan (19). Air outflow even when a negative diagnosis is made tube (20) can trap air inside the balloon (23) as a precaution. The power battery (29) is attached to the device. It provides electrical power, works in the range of 12-40 volts. The power battery (29) is a rechargeable is in the structure.
Claims (1)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TR2021/014071A TR2021014071A2 (en) | 2021-09-08 | 2021-09-08 | AI-SUPPORTED ELECTRONIC DIAGNOSTIC DEVICE FOR DISEASE DIAGNOSIS |
PCT/TR2022/050964 WO2023038606A1 (en) | 2021-09-08 | 2022-09-08 | Artificial intelligence-assisted electronic diagnostic device for disease diagnosis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TR2021/014071A TR2021014071A2 (en) | 2021-09-08 | 2021-09-08 | AI-SUPPORTED ELECTRONIC DIAGNOSTIC DEVICE FOR DISEASE DIAGNOSIS |
Publications (1)
Publication Number | Publication Date |
---|---|
TR2021014071A2 true TR2021014071A2 (en) | 2021-10-21 |
Family
ID=83999849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TR2021/014071A TR2021014071A2 (en) | 2021-09-08 | 2021-09-08 | AI-SUPPORTED ELECTRONIC DIAGNOSTIC DEVICE FOR DISEASE DIAGNOSIS |
Country Status (2)
Country | Link |
---|---|
TR (1) | TR2021014071A2 (en) |
WO (1) | WO2023038606A1 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2097363A1 (en) * | 1992-06-03 | 1993-12-04 | Hideo Ueda | Expired air examination device and method for clinical purpose |
US20200337594A1 (en) * | 2019-03-18 | 2020-10-29 | Canary Health Technologies Inc. | Biomarkers for systems, methods, and devices for detecting and identifying substances in a subject's breath, and diagnosing and treating health conditions |
AU2020100553A4 (en) * | 2020-04-13 | 2020-05-28 | Ledger Assets Pty Ltd | System to detect Viruses such as COVID19 and other Pathogens and Bacteria |
CN212644876U (en) * | 2020-05-27 | 2021-03-02 | 李士博 | Mobile ventilation diagnosis and treatment equipment for preventing cross infection between doctors and patients in diagnosis and treatment process |
TR202011037A2 (en) * | 2020-07-12 | 2020-09-21 | New Senses Uzay Teknoloji Ve Saglik Arastirmalari A S | ARTIFICIAL INTELLIGENCE SUPPORTED COVID-19 DIAGNOSTIC KIT |
-
2021
- 2021-09-08 TR TR2021/014071A patent/TR2021014071A2/en unknown
-
2022
- 2022-09-08 WO PCT/TR2022/050964 patent/WO2023038606A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO2023038606A1 (en) | 2023-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102139341B1 (en) | An access inspection system for prevention of spread out plague | |
Irawan et al. | Detecting Heart Rate Using Pulse Sensor As Alternative Knowing Heart Condition | |
US20230260627A1 (en) | A remote medical examination system and method | |
JP2012517276A (en) | Breath analysis | |
JP6462142B2 (en) | Cancer incidence risk assessment apparatus, program, and method for testing cancer incidence risk | |
CN112245177A (en) | Medical treatment cabin | |
KR102171543B1 (en) | Artificial Intelligence Treatment Booth | |
TR2021014071A2 (en) | AI-SUPPORTED ELECTRONIC DIAGNOSTIC DEVICE FOR DISEASE DIAGNOSIS | |
EP4018927A1 (en) | Apparatus for identifying pathological states and corresponding method. | |
KR101785788B1 (en) | Computing system and method for providing classifying of mibyou using analyzing result respiratory gas | |
US20210186344A1 (en) | Clinical artificial intelligence (ai) software and terminal gateway hardware method for monitoring a subject to detect a possible respiratory disease | |
JP2019517835A5 (en) | ||
WO2022167453A1 (en) | Touch-free infectious disease screening | |
US11406728B2 (en) | Self-contained, portable, sanitization device and telemedicine station | |
CN113113151A (en) | New crown pneumonia exposure risk assessment system for medical institution staff | |
CN115515480A (en) | Disease detection system | |
CN109640819B (en) | Apparatus, system and method for detecting asthma attack or asthma in a subject | |
Zemelka-Wiacek et al. | Symptom assessment of patients with allergic rhinitis using an allergen exposure chamber | |
CN213607734U (en) | Medical treatment cabin | |
TR2022012702A2 (en) | AI-BASED TRIAGE SYSTEM AND WORKING METHOD | |
GB2595258A (en) | Non-Contact disease screening device | |
Singh et al. | Real time respiration rate measurement using temperature sensor | |
JP2023520774A (en) | Method and apparatus for early diagnosis of severity of pulmonary infection | |
US11957447B2 (en) | Systems and methods of use thereof for determining aerosol particle characteristics | |
CN113808286A (en) | Body temperature detection and disinfection equipment for station ticket checker |