SI24778A - Momentary noninvasive blood pressure monitor and vascular and blood parameters - Google Patents
Momentary noninvasive blood pressure monitor and vascular and blood parameters Download PDFInfo
- Publication number
- SI24778A SI24778A SI201400272A SI201400272A SI24778A SI 24778 A SI24778 A SI 24778A SI 201400272 A SI201400272 A SI 201400272A SI 201400272 A SI201400272 A SI 201400272A SI 24778 A SI24778 A SI 24778A
- Authority
- SI
- Slovenia
- Prior art keywords
- blood
- vascular
- light
- fingers
- pressure
- Prior art date
Links
Landscapes
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
Predmet predstavljenega izuma so naprava in postopki, s katerimi je omogočen nov način hitrega in nemotečega merjenja krvnega tlaka ter žilnih in krvnih parametrov. Izum temelji na elektronski napravi, ki vsebuje vgrajeni računalnik in fotopletizmograf, sestavljen iz svetlobnih izvorov vsaj dveh različnih valovnih dolžin svetlobe in linijskih optičnih senzorjev z večjim številom fotodiod, ter večosni pospeškomer. Optični senzorji so nameščeni tako, da se jih opazovanec med vsakodnevnimi opravili oprime zroko, ob tem pa svetila presvetlijo njegove prste. Naprava po izumu je lahko nameščena na elementih bivalnega okolja, ki jih je treba odpreti s potegom roke in se šele pri določeni vlečni sili nenadoma sprostijo, kot na primer vrata hladilnika. Lahko pa je naprava po izumu nameščena v namenski, samostojni izvedbi ohišja, ki zagotavlja enak učinek hipnega popuščanja sile pritiska na prste. Postopki po izumu izračunajo iz zelo kratkega odseka posnetih fotopletizmografskih signalov in pospeškov nasičenostkrvi s kisikom, koeficient stisljivosti za opazovančeve žile, maksimalno prostornino žil in prostornino pri izenačenem zunanjem in notranjem tlaku na stene žil ter trenutni krvni tlak.The subject of the present invention is a device and procedures that enable a new method of rapid and ineffective blood pressure and vascular and blood parameters measurement. The invention is based on an electronic device comprising an embedded computer and a photopletizmograph composed of light sources of at least two different wavelengths of light and linear optical sensors with a higher number of photodiodes and a multi-axis accelerator. The optical sensors are positioned in such a way that the observer grips them during the day-to-day tasks, while the lamps illuminate his fingers. The device according to the invention can be mounted on elements of the living environment that need to be opened by pulling out the arm and only suddenly releasing themselves to a certain pulling force, such as a refrigerator door. Alternatively, the device according to the invention can be installed in a dedicated, self-supporting housing, which provides the same effect of instantaneous release of the force applied to the fingers. The procedures according to the invention are calculated from a very short section of recorded photopletizmographic signals and accelerations of saturation of the blood with oxygen, a compressibility coefficient for the observer vessels, a maximum vessel volume, and a volume at equalized external and internal pressure on the walls of the vessels and the current blood pressure.
Description
HIPNI NEINVAZIVNI MERILNIK KRVNEGA TLAKA IN ŽILNIH TERINSTANT NON-INVASIVE METER OF BLOOD PRESSURE AND VASCULAR AND
KRVNIH PARAMETROVBLOOD PARAMETERS
Izum se nanaša na novo konstrukcijo fotopletizmografskega (PPG) merilnika, ki je skupaj s pospeškomerom uporabljen za neinvazivno in nemoteče merjenje krvnega tlaka ter žilnih in krvnih parametrov. Ocene parametrov iz izmerjenih signalov so vezane na uporabo, ki zagotavlja, da opazovanec s prsti povečuje pritisk na merilnik, nato pa ob vnaprej določeni sili zapora hipno popusti in odstrani pritisk na prste. Iz prehodnega pojava v PPG-signalih je nato mogoče v zelo kratkem času oceniti omenjene parametre in krvni tlak.The invention relates to a new construction of a photoplethysmographic (PPG) meter, which together with an accelerometer is used for non-invasive and undisturbed measurement of blood pressure and vascular and blood parameters. The parameter estimates from the measured signals are tied to the use, which ensures that the observer increases the pressure on the meter with his fingers, and then, at a predetermined lock force, instantly releases and removes the pressure on the fingers. From the transient in the PPG signals, it is then possible to estimate the mentioned parameters and blood pressure in a very short time.
Izum torej temelji na elektronski napravi, ki vsebuje vgrajeni računalnik in fotopletizmograf, sestavljen iz svetlobnih izvorov vsaj dveh različnih valovnih dolžin svetlobe in linijskih optičnih senzorjev z večjim številom fotodiod, ter večosni pospeškomer. Optični senzorji so nameščeni tako, da se jih opazovanec med vsakodnevnimi opravili oprime z roko, ob tem pa svetila presvetlijo njegove prste. Naprava po izumu je lahko nameščena na elementih bivalnega okolja, ki jih je treba odpreti s potegom roke in se šele pri določeni vlečni sili nenadoma sprostijo, kot na primer vrata hladilnika. Lahko pa je naprava po izumu nameščena v namenski, samostojni izvedbi ohišja, ki zagotavlja enak učinek hipnega popuščanja sile pritiska na prste. Postopki po izumu izračunajo iz zelo kratkega odseka posnetih PPG-signalov in pospeškov nasičenost krvi s kisikom, koeficient stisljivosti za opazovančeve žile, maksimalno prostornino žil in prostornino pri izenačenem zunanjem in notranjem tlaku na stene žil ter trenutni krvni tlak.The invention is therefore based on an electronic device comprising a built-in computer and a photoplethysmograph consisting of light sources of at least two different wavelengths of light and line optical sensors with a plurality of photodiodes, and a multi-axis accelerometer. Optical sensors are placed in such a way that the observer grabs them by hand during daily tasks, while the lights illuminate his fingers. The device according to the invention can be mounted on elements of the living environment, which must be opened by a hand stroke and only suddenly released at a certain traction force, such as a refrigerator door. However, the device according to the invention can be installed in a dedicated, independent embodiment of the housing, which provides the same effect of instantaneous relaxation of the pressure force on the fingers. The methods according to the invention calculate from a very short section of recorded PPG signals and accelerations the oxygen saturation of the blood, the coefficient of compression for the observed vessels, the maximum vessel volume and volume at equal external and internal pressure on the vessel walls and current blood pressure.
Jedro vgrajenega računalnika tvori mikrokrmilnik, ki vsebuje analogno-digitalni pretvornik, kot periferija pa sta dodana komunikacijska enota za žično ali brezžično povezovanje z nadrejenim računalniškim strežnikom in prikazovalnik za izpis izmerjenih rezultatov. Naprava po izumu je napajana z notranjo baterijo, kadar pa je komunikacijsko žično povezana z nadrejenim računalnikom, se prek te povezave tudi energetsko napaja.The core of the embedded computer consists of a microcontroller containing an analog-to-digital converter, and as a peripheral, a communication unit for wired or wireless connection to the parent computer server and a display for displaying the measured results are added. The device according to the invention is powered by an internal battery, but when it is connected to the parent computer via a communication wire, it is also powered by this connection.
OPIS IZUMADESCRIPTION OF THE INVENTION
Opis problemaProblem description
Srčno-žilne bolezni so nemalokrat povezane s krvnim tlakom. Hipertenzija je tako imenovani tihi ubijalec. Bolnik se visokega krvnega tlaka ne zaveda neposredno, na njegovo ožilje, srce, možgane in vse notranje organe pa deluje razdiralno.Cardiovascular diseases are often associated with blood pressure. Hypertension is the so-called silent killer. The patient is not directly aware of high blood pressure, and it has a destructive effect on his blood vessels, heart, brain and all internal organs.
Pogosto merjenje krvnega tlaka je zato nujno, še posebej za bolnike s hiperterfžijo infiltracijah;·· · ko nevrovegetativni sistem poviša krvni tlak zaradi napora, bolezenskih stanj ali starosti. Sfigmomanometri se za merjenje krvnega tlaka uporabljajo že dalj kot sto let. Če arterijo v levi roki pretisnemo z manšeto s takšnim zunanjim pritiskom, da zaustavimo pretok krvi, obstajata v splošnem dva neinvazivna načina, s katerima ugotovimo, pod kakšnim tlakom potiska srce kri v aorto in arterije. Merjenje je lahko avskulatorično ali oscilometrično. V prvem primeru poslušamo s stetoskopom, kdaj se zasliši krvni pretok, ko znižujemo tlak v manšeti. Slišno območje turbulentnega pretoka krvi določa s skrajnima mejama zgoraj sistolični in spodaj diastolični krvni talk. Oscilometrična metoda predvideva, da manšeta pritiska na arterijo s tlakom med diastoličnim in sistoličnim. V takšnem primeru manometer zaznava oscilacije ob bitju srca in zaznana nihanja se lahko preračunajo v vrednost krvnega tlaka.Frequent measurement of blood pressure is therefore necessary, especially for patients with hyperthermia infiltrates; ·· · when the neurovegetative system raises blood pressure due to exertion, disease or age. Sphygmomanometers have been used to measure blood pressure for over a hundred years. If the artery in the left arm is squeezed with a cuff with such external pressure as to stop blood flow, there are generally two noninvasive ways to determine the pressure at which the heart pushes blood into the aorta and arteries. The measurement can be auscultatory or oscillometric. In the first case, we listen with a stethoscope when blood flow is heard as we lower the pressure in the cuff. The audible range of turbulent blood flow is defined by the extremes of systolic bloodstream above and diastolic blood talc below. The oscillometric method assumes that the cuff presses on the artery with pressure between diastolic and systolic. In such a case, the manometer detects oscillations during the heartbeat and the detected oscillations can be converted into a blood pressure value.
Znane so tudi merilne metode, ki vključujejo pletizmografijo. Če imamo na razpolago podatek o časovnem intervalu med dvema zaznavama srčnega utripa na ločenih delih človekovega telesa, lahko iz tega intervala ocenimo krvni tlak. Običajno se kot prva zaznava jemlje električni srčni impulz, izmerjen ob sistoli in v elektrokardiogramu imenovan val R, kot druga zaznava pa srčni utrip, odkrit v PPG-signalu na ekstremitetah.Measurement methods involving plethysmography are also known. If we have data on the time interval between two heart rate sensations on separate parts of the human body, we can estimate blood pressure from this interval. Normally, the first sensing is an electrical heart pulse measured at systole and an R wave called in the electrocardiogram, and the second sensing is the heart rate detected in the PPG signal on the extremities.
V zvezi s PPG-signali sta znana še dva pristopa. Prvi odkrije v signalu srčni utrip in izračuna ploščino, ki jo oklepata časovna os in amplituda utripa. Ploščina je premo sorazmerna krvnemu tlaku. Drugi PPG-pristop izkorišča dejstvo, da večja količina krvi v krvnih žilah absorbira več rdeče svetlobe. Če torej z zunanjim pritiskom stiskamo manjše dele telesa, praviloma prste na rokah, tako dolgo, da iztisnemo vso kri, je čas iztiskanja krvi premo sorazmeren krvnemu tlaku.Two other approaches are known regarding PPG signals. The first detects the heart rate in the signal and calculates the area enclosed by the time axis and the pulse amplitude. The area is directly proportional to blood pressure. The second PPG approach takes advantage of the fact that a larger amount of blood in the blood vessels absorbs more red light. Thus, if we squeeze smaller parts of the body with external pressure, usually the fingers of the hands, so long as we squeeze out all the blood, the time of squeezing the blood is directly proportional to the blood pressure.
Med vsemi omenjenimi metodami je le merjenje ploščine pod zaznanimi utripi v signalih PPG zelo hitro in najmanj moteče, saj ostale metode zahtevajo blokado krvnega pretoka, in to z napihljivo manšeto ali podobno napravo, ki pretisne krvne žile. Postopek je lahko neprijeten in traja dalj časa. Računanje ploščine pod odzivi na srčne utripe v signalih PPG te slabosti sicer nima, ne zagotavlja pa zanesljive in konstantne ocene krvnega tlaka, zato je treba meritev ponavljati skozi večje število srčnih utripov, kar spet pomeni, daje končni rezultat na razpolago šele po določenem času.Among all the mentioned methods, only measuring the area under the detected pulses in PPG signals is very fast and the least disturbing, as other methods require blockage of blood flow, with an inflatable cuff or similar device that blisters blood vessels. The process can be uncomfortable and take a long time. Calculating the area under heart rate responses in PPG signals does not have this disadvantage, but it does not provide a reliable and constant assessment of blood pressure, so the measurement must be repeated through a higher heart rate, which again means that the final result is available only after a certain time.
Fotopletizmografski pristop pa omogoča tudi podrobnejšo analizo parametrov, ki so značilni za kri in krvne žile. Če ob izvedbi avskulatorične meritve krvnega tlaka spremljamo PPG-signal, lahko zabeležimo, kako se spreminja signalna amplituda (razpon med točko najvišjega, tj. sistoličnega, in točko najnižjega, tj. diastoličnega tlaka) v odvisnosti od naraščajočega zunanjega pritiska na žilo oz. organ v tlačni manšeti. Iz te povezave se da izračunati Jftožnošt Oz: togost · · · žilnih sten, prostornina žil pri največji prožnosti in maksimalna prostornina žil ter krivulja pulzirajočega tlaka oz. sistolični, diastolični in povprečni krvni tlak. Znane so tudi rešitve, ki iz časa, potrebnega za iztisnjenje krvi iz žil s pomočjo zunanjega pritiska, in spremembe PPG-ravni ob tem izračunajo viskoznost krvi.The photoplethysmographic approach also allows a more detailed analysis of the parameters that are characteristic of the blood and blood vessels. If the PPG signal is monitored when performing auscultatory blood pressure measurement, we can record how the signal amplitude changes (range between the point of highest, ie systolic, and the point of lowest, ie diastolic pressure) depending on the increasing external pressure on the vessel or. organ in the pressure cuff. From this connection it is possible to calculate Jftožnošt Oz: stiffness · · · of vessel walls, volume of veins at maximum flexibility and maximum volume of veins and curve of pulsating pressure or systolic, diastolic, and mean blood pressure. Solutions are also known which calculate the blood viscosity from the time required to squeeze blood out of the arteries by external pressure and changes in the PPG level.
Znane rešitveKnown solutions
Rešitev in naprava po izumu omogoča merjenje trenutnega krvnega tlaka in hkrati parametrov krvnih žil in krvi, na primer oksigenacije, prožnosti žil ali žilne prostornine, v zelo kratkem času in nemoteče. Naprava vrne rezultate meritev in analize bistveno prej kot znane rešitve, hkrati pa opazovani osebi pri meritvi ni treba sodelovati, saj se ta izvede samodejno in za osebo nemoteče oz. nezavedno.The solution and device according to the invention makes it possible to measure the current blood pressure and at the same time the parameters of blood vessels and blood, for example oxygenation, vascular flexibility or vascular volume, in a very short time and without interruption. The device returns the results of measurements and analysis significantly earlier than the known solutions, and at the same time the observed person does not have to participate in the measurement, as it is performed automatically and for a person undisturbed or. unconsciously.
Podeljeni so patenti, ki ščitijo naprave za ocenjevanje krvnega tlaka ali parametrov ožilja in krvi s pomočjo fotopletizmografije in zunanjega pritiska na dele človeškega telesa, na primer na prste. Objavljene so bile tudi študije na to temo, kakor sledi v nadaljevanju. Pri njihovem opisu navajamo tudi, v čem od njih odstopa rešitev po izumu.Patents are granted to protect devices for assessing blood pressure or vascular and blood parameters by means of photoplethysmography and external pressure on parts of the human body, such as fingers. Studies on this topic have also been published as follows. In their description, we also state in what way the solution according to the invention differs from them.
V članku Some Effects on the Blood Vessels of the Human Forearm of Local Exposure to Pressures below Atmospheric (J. Physiol., 203, str. 31-43, 1969) so avtorji B. L. Ardill, P. H. Fentem, R. D. Finlay in P. Isaac pokazali, da velja med dotokom krvi v ročne arterije in zunanjim podtlakom linearna povezava, vsaj dokler ni zunanji tlak manjši od notranjega v žilah za 85 mmHg. Avtorja X-F Teng in Υ-Τ Zhang sta v prispevku Theoretical Study on the Sffect of Sensor Contact Force on Pulse Transit Time (IEEE Trans, on BME, vol. 54, no. 8, str. 14901498, 2007) preučevala spreminjanje pulznih prehodnih časov, ki sta jih merila med aktivacijo srca (val R) in zaznanim pulznim valom s signalom PPG v prstih roke. Pri tem sta spreminjala in merila zunanji pritisk na prste. Ugotovila sta, da je neodvisno od velikosti zunanjega pritiska hitrost dotoka krvi vedno večja, če je notranji povprečni krvni tlak višji. Hkrati pa se hitrost eksponentno niža, če se zunanji pritisk linearno viša. Te ugotovitve smo izrabili pri napravi po izumu, vendar smo se izognili potrebi po nadzorovanem spreminjanju zunanjega pritiska. Izvedba naprave in postopkov, ki to omogočajo, pomeni bistvo izuma.In the article Some Effects on the Blood Vessels of the Human Forearm of Local Exposure to Pressures below Atmospheric (J. Physiol., 203, pp. 31-43, 1969), the authors BL Ardill, PH Fentem, RD Finlay, and P. Isaac showed that there is a linear connection between the inflow of blood into the carotid arteries and the external vacuum, at least until the external pressure is 85 mmHg lower than the internal pressure in the vessels. In Theoretical Study on the Sffect of Sensor Contact Force on Pulse Transit Time (IEEE Trans, on BME, vol. 54, no. 8, p. 14901498, 2007), XF Teng and Υ-Τ Zhang examined the change in pulse transition times. , measured between cardiac activation (R wave) and a detected pulse wave with a PPG signal in the fingers. In doing so, they changed and measured the external pressure on the fingers. They found that regardless of the magnitude of external pressure, the rate of blood flow always increases if the internal mean blood pressure is higher. At the same time, the velocity decreases exponentially if the external pressure increases linearly. These findings were exploited in the device according to the invention, but the need for a controlled change in external pressure was avoided. The implementation of the device and the procedures that enable this is the essence of the invention.
Evropska patentna prijava EP 1 623 668 Al, ki jo je pod naslovom Evaluation of blood fluidity vložil 2. 8. 2004 japonski izumitelj Yoshiki Yamakoshi, predlaga naprstno manšeto in fotopletizmograf. Manšeta se stisne tako, da se prekine pritok krvi v prstne kapilare. S fotopletizmografom izmeri dvig prosojnosti za rdečo svetlobo, ki sledi manjši absoTfitijt Varadf · · znižanega volumna krvi v prstu. Ko je vsa kri iztisnjena, je prehod svetlobe najmočnejši. Izmeri čas iztiskanja krvi in pokaže, da je premo sorazmeren viskoznosti krvi, ki jo natančno izračuna. Patentirana naprava vsebuje nadzorovano spreminjanje zunanjega pritiska z naprstno manšeto. Ocenjuje viskoznost krvi, pri čemer je postopek odvisen od nadziranja in poznavanja vsakokratnega zunanjega pritiska. Krvnega tlaka ali drugih parametrov krvi oz. ožilja naprava ne določa. Čeprav je pri napravi po izumu izkoriščen podoben učinek, torej sprememba žilne prostornine in s tem količine krvi v žili, pa za nasprotje od prijave EP 1 623 668 Al ne potrebuje elementa za nadzorovano spreminjanje zunanjega pritiska, temveč izkorišča pritiske zunanjih sil na opazovančevo telo med njegovimi vsakodnevnimi opravili, ki niso povezana z meritvijo krvnega tlaka ali parametrov krvi oz. ožilja.European patent application EP 1 623 668 Al, filed under the title Evaluation of blood fluidity by the Japanese inventor Yoshiki Yamakoshi on 2 August 2004, proposes a finger cuff and a photoplethysmograph. The cuff is compressed by interrupting the flow of blood into the finger capillaries. He uses a photoplethysmograph to measure the increase in transparency for red light, which is followed by a smaller absoTfitijt Varadf · · reduced blood volume in the finger. When all the blood is squeezed out, the passage of light is strongest. It measures the time of blood extrusion and shows that it is directly proportional to the viscosity of the blood, which it calculates accurately. The patented device contains a controlled change of external pressure with a finger cuff. It assesses the viscosity of the blood, and the procedure depends on controlling and knowing each external pressure. Blood pressure or other blood parameters or. vascular device does not determine. Although the device according to the invention uses a similar effect, ie a change in vascular volume and thus the amount of blood in a vessel, in contrast to EP 1 623 668 A1 it does not need an element for controlled change of external pressure, but uses external pressure on the observer's body during his daily tasks that are not related to the measurement of blood pressure or blood parameters or. scars.
Nadgradnjo prijave iz prejšnjega odstavka so 15. 7. 2010 vložili pod naslovom Method and device for evaluation of blood fluidity izumitelji Shinji Koshino, Hiroki Shimizu in Hiroo Sato. Evropska vloga je oštevilčena kot EP 2 292 142 Al. Namesto naprstne manšete je tukaj uporabljena tipka, na katero je treba nadzorovano pritiskati s prstom, dokler naprava ne opravi meritve. Tudi v tem primeru računa viskoznost krvi. Naprava po izumu ima tudi glede na to prijavo že omenjeno bistveno razliko: ni potreben element za nadzorovano spreminjanje zunanjega pritiska na del telesa, kjer se meritev opravlja.The upgrade of the application from the previous paragraph was submitted on 15 July 2010 under the title Method and device for evaluation of blood fluidity by the inventors Shinji Koshino, Hiroki Shimizu and Hiroo Sato. The European application is numbered as EP 2 292 142 Al. Instead of a finger cuff, a key is used here, which must be pressed with a finger in a controlled manner until the device takes a measurement. Even in this case, it calculates the viscosity of the blood. According to this application, the device according to the invention also has the essential difference already mentioned: no element is required for the controlled change of the external pressure on the part of the body where the measurement is performed.
Ameriški patent z naslovom Total compliance method and apparatus for noninvasive arterial blood pressure measurement sta pridobila izumitelja Justin S. Clark in Shuxing Sun pod številko 5423322 dne 13. 6. 1995. Zaščitila sta napravo, ki z manšeto stisne prst z znanim zunanjim pritiskom in opazuje PPG-amplitude pulzirajočega tlaka (med diastoličnim in sistoličnim) v odvisnosti od zunanjega pritiska. V dolgotrajnejši meritvi se iz poteka PPG-signala izračuna stisljivostni model ožilja in oceni krvni tlak. Čeprav tudi naprava po izumu temelji na stisljivostnem modelu žil, kakršnega je mogoče povezati s signali PPG oz. njihovimi odvodi, pa je naprava zasnovana drugače in tudi postopki za ocenjevanje parametrov so drugačni. Naprava po izumu nima elementa za nadzorovano ustvarjanje zunanjega pritiska na opazovančeve prste, ampak izkorišča zunanje sile, ki se pojavljajo med opazovančevimi rutinskimi opravili. Tudi ocenjevanje parametrov in krvnega tlaka ne temelji na krivulji pulzirajoče žilne prostornine, ampak na hipnem vdoru krvi v delno izpraznjene žile.The U.S. patent, entitled Total compliance method and apparatus for noninvasive arterial blood pressure measurement, was obtained by inventors Justin S. Clark and Shuxing Sun under number 5423322 on June 13, 1995. They protected a device that compresses a finger with a cuff with known external pressure and observes PPG-amplitudes of pulsating pressure (between diastolic and systolic) as a function of external pressure. In a longer measurement, the vascular compression model is calculated from the course of the PPG signal and blood pressure is assessed. Although the device according to the invention is also based on the compressibility model of the veins, which can be connected to the PPG signals or. their leads, however, the device is designed differently and also the procedures for estimating the parameters are different. The device according to the invention does not have an element for the controlled creation of external pressure on the observer's fingers, but exploits external forces that occur during the observer's routine tasks. Also, the assessment of parameters and blood pressure is not based on a pulsating vascular volume curve, but on the instantaneous intrusion of blood into partially emptied vessels.
V preteklosti smo na Fakulteti za elektrotehniko, računalništvo in informatiko razvili kombinirani senzor, ki gaje mogoče vgraditi v odpirala gospodinjskih aparatov. Senzor vsebuje fotopletizmograf, merilne lističe za merjenje vlečne sile, termistorje za merjenje temperature in pospeškomer. Zaščitili smo ga s slovenskim patentom št. SI 24037 (A), 70. 10**201Š* pod·· · nazivom Računalniška naprava in postopek za nemoteče merjenje parametrov funkcionalnega zdravja. V njem je tudi patentni zahtevek, ki ščiti postopek za ugotavljanje krvnega tlaka. Postopek se sklicuje na PPG-signal iz svetlobnega senzorja in signal sile iz senzorja sile. Primerja spremembe v zunanji (vlečni) sili in vzporedno opazuje amplitudo dinamične komponente v PPG-signalu. Iz tega razmerja oceni krvni tlak. Tudi naprava po izumu uporablja fotopletizmograf in pospeškomer, ne potrebuje pa merjenja zunanje sile. Postopki po izumu namreč ne primerjajo PPG-amplitud s trenutno velikostjo zunanje sile, ampak ocenijo parametre krvi in ožilja ter krvni tlak iz poteka signalov PPG, ko pride do nenadne spremembe zunanje sile. V celoti sta zasnova in delovanje naprave po izumu drugačna kot pri patentirani rešitvi, je pa uporaba v obeh primerih lahko enaka, torej z vgradnjo naprave v odpirala gospodinjskih aparatov.In the past, the Faculty of Electrical Engineering, Computer Science and Informatics has developed a combined sensor that can be installed in the openings of household appliances. The sensor contains a photoplethysmograph, measuring sheets for measuring traction, thermistors for measuring temperature and an accelerometer. We protected it with Slovenian patent no. SI 24037 (A), 70. 10 ** 201Š * under ·· · title Computer device and procedure for undisturbed measurement of functional health parameters. It also contains a patent claim that protects the blood pressure detection procedure. The procedure refers to the PPG signal from the light sensor and the force signal from the force sensor. It compares the changes in external (traction) force and observes the amplitude of the dynamic component in the PPG signal in parallel. From this ratio, he estimates blood pressure. The device according to the invention also uses a photoplethysmograph and an accelerometer, but does not require the measurement of external force. The methods according to the invention do not compare PPG amplitudes with the current magnitude of the external force, but evaluate the parameters of blood and blood vessels and blood pressure from the course of PPG signals when there is a sudden change in external force. In general, the design and operation of the device according to the invention are different from the patented solution, but the use in both cases can be the same, ie by installing the device in the openers of household appliances.
Nova rešitevA new solution
S poskusi smo ugotovili, da je za odpiranje vrat pri hladilniku potrebna vedno približno enaka vlečna sila. Za izbrani hladilnik je bila izmerjena povprečna sila 23,98 N, standardni odklon pa ±2,43 N. Odpiranje poteka tako, da uporabnik s prsti vleče odpiralo in pri tem povečuje silo do vršne, ki je potrebna, da se vrata »odlepijo«. V tem trenutku pritisk na prste skokovito popusti. Pri vlečenju se najprej izriva kri iz prstnih ven, venol, kapilar in arteriol, vendar je ta proces končan že pri okoli 20 % sile, ki je potrebna za odprtje vrat. Pri stopnjevanju sile se delno ali v celoti izpraznijo tudi arterije. Ko vrata popustijo, vdre pritočni val krvi v izpraznjene žile. Če so prsti ob tem presvetljeni z rdečo in infrardečo svetlobo, se umikanje krvi ob vlečenju odpirala kaže kot povečevanje svetlobne jakosti, ki prodira skozi prste, v trenutku odprtja vrat pa se svetlobni tok hitro slabša, saj ga vedno bolj zastira kri, ki se vrača v prste.Experiments have shown that approximately the same traction force is always required to open the refrigerator door. An average force of 23.98 N was measured for the selected refrigerator, and the standard deviation was ± 2.43 N. The opening is done by the user pulling the opener with his fingers, increasing the force to the peak required for the door to "peel off". . At this point, the pressure on your fingers drops abruptly. When pulled, blood is first expelled from the finger veins, venoles, capillaries, and arterioles, but this process is completed at about 20% of the force required to open the door. As the force escalates, the arteries are partially or completely emptied. When the door sags, an influx of blood rushes into the emptied veins. If the fingers are illuminated with red and infrared light, the withdrawal of blood when pulling the opener is manifested as an increase in light intensity penetrating through the fingers, and at the moment of opening the door, the light flux rapidly deteriorates, as it is increasingly obscured by returning blood. in the fingers.
Hitrost pritoka krvi je kvadratno odvisna od povečevanja prostornine krvi, ko priteka v žilo. Sprememba prostornine je eksponentno odvisna od razlike med notranjim in zunanjih pritiskom na žile. Zunanji pritisk povzročajo vrata, preden se odprejo, in je pri vsaki uporabi praktično enak. Razlika je torej premo sorazmerna z notranjim krvnim tlakom, ki pritiska na stene žil v trenutku, ko se vrata odprejo. Tudi hitrost vračanja krvi in s tem zmanjševanje jakosti svetlobe, ki preseva skozi prste, je prav tako premo sorazmerna notranjemu krvnemu tlaku od odprtju vrat.The rate of blood flow is quadratically dependent on the increase in blood volume as it flows into the vessel. The change in volume depends exponentially on the difference between internal and external pressure on the veins. The external pressure is caused by the door before it opens, and is practically the same with each use. The difference is therefore directly proportional to the internal blood pressure that presses on the vessel walls at the moment the door opens. The rate of blood return, and thus the reduction in the intensity of the light that passes through the fingers, is also directly proportional to the internal blood pressure from the opening of the door.
Postopek za ocenitev trenutnega krvnega tlaka je povezan z zaznavo trenutka, ko se odprejo vrata oz. ko popusti zunanji pritisk na prste roke. Ker pri tem pride do sunkovitega gibanja fotopletizmografa, ki je vgrajen v odpiralo vrat ali v posebno, samostojno ročno δζ’ natfiizncf * napravo, pride do občutnih pospeškov, kijih zaznamo s pospeškomerom.The procedure for assessing the current blood pressure is related to the perception of the moment when the door opens or. when the external pressure on the fingers of the hand is relieved. Because of the jerky movement of the photoplethysmograph, which is built into the door opener or into a special, independent manual δζ ’natfiizncf * device, significant accelerations occur, which are detected by an accelerometer.
Postopki za določanje parametrov krvi in ožilja ter oceno trenutnega krvnega tlaka temeljijo na modelu stisljivih, okroglih žil in na Beer-Lambertovem zakonu o absorpciji svetlobe v snoveh. Absorpcija je odvisna od lastnosti snovi in od dolžine poti skozi snov. V našem primeru gre za kri, dolžino presvetljene poti pa določa premer žile, ki se skozi čas spreminja, zato ga označimo z d(t) kot funkcijo časa. Če presvetlimo del okrogle žile v dolžini L dolžinskih enot, znaša prostornina krvi v tem žilnem odseku:Procedures for determining blood and vascular parameters and estimating current blood pressure are based on the model of compressible, round vessels and on Beer-Lambert's law of light absorption in substances. Absorption depends on the properties of the substance and on the length of the path through the substance. In our case, it is blood, and the length of the translucent path is determined by the diameter of the vessel, which changes over time, so we denote it by d (t) as a function of time. If we illuminate a part of a round vessel in the length L of units of length, the volume of blood in this vascular section is:
V(t) = li^>, (1) V (t) = li ^>, (1)
Prostornina žile in krvi v njej je odvisna od lastnosti (parametrov) ožilja in od notranjega ter zunanjega tlaka na izbranem žilnem odseku. Velja:The volume of a vessel and blood in it depends on the properties (parameters) of the vessel and on the internal and external pressure on the selected vascular section. Deal:
P(t) =P (t) =
V0e^P^\cePz>Pn V 0 e ^ P ^ \ ceP z > P n
Vm - (Vm - V0)e“^(Pn“Pz\č<V m - (Vm - V 0 ) e “^ (Pn “ Pz \ č <
(2) pri čemer sta Pn in P: notranji in zunanji tlak žile, Vm maksimalna prostornina žile, Po prostornina žile pri izenačenem notranjem in zunanjem tlaku ter Cm koeficient maksimalne prožnosti žile.(2) where P n and P are : internal and external vein pressure, V m is the maximum vein volume, Po is the vein volume at equal internal and external pressure, and C m is the coefficient of maximum vein flexibility.
Enačba (2) potrjuje praktično dejstvo, da se žile raztezajo in krčijo po dveh različnih modusih, ki se spajata v točki, ki sta notranji in zunanji tlak pri žili enaka in je zato prečni tlak na žilno steno enak 0. Ta točka je pomembna tudi za postopke, ki jih vključuje tukajšnji izum. Izberimo jo kot središče časovne osi (t = 0), tako da bomo čase v intervalu Pz > Pn opisovali kot negativne, v intervalu Pz < Pn pa kot pozitivne.Equation (2) confirms the practical fact that the veins stretch and contract in two different modes, joining at a point that is the same as the internal and external pressure at the vessel and therefore the transverse pressure on the vessel wall is equal to 0. This point is also important for the processes included in the present invention. We choose it as the center of the time axis (t = 0), so that we will describe the times in the interval P z > P n as negative, and in the interval P z <P n as positive.
Ko prekrvavljen organ presvetlimo, je svetlobni tok, ki ga zaznamo na izstopni strani organa določen z Beer-Lambertovim zakonom:When the circulating organ is transilluminated, the luminous flux detected on the exit side of the organ is determined by Beer-Lambert's law:
/iCt) = IOiie-£i[dW+d], (3) pri čemer je loj jakost vpadnega toka svetlobe z z-to valovno dolžino, ε, posplošen ekstinkcijski koeficient za to svetlobo in snov, skozi katero prehaja (v našem primeru kri), d pa nadomestna dolžina poti, ki jo svetloba opravi skozi okoliška tkiva, kombinirana z razmerjem ekstinkcijskih koeficientov za kri in okoliška tkiva. Posplošen ekstinkcijski koeficient določimo kot:/ iCt) = I Oii e- £ i [dW + d] , (3) where tallow is the intensity of the incident light flux with the z- th wavelength, ε, the generalized extinction coefficient for that light and the substance through which it passes (in in our case blood), d is the alternate path length that light travels through the surrounding tissues combined with the ratio of the extinction coefficients for the blood and the surrounding tissues. The generalized extinction coefficient is defined as:
~ Q)(To,i £d,i) T (4) pri tem c0 pomeni koncentracijo kisika v krvi (oksigenacija v %), i in'šdi sta ekStinkcijska· · koeficienta pri ž-ti valovni dolžini svetlobe za oksihemoglobin, tj. hemoglobin s kisikom, in dezoksihemoglobin, tj. homoglobin brez kisika.~ Q) (To, i £ d, i) T (4) where c 0 means the concentration of oxygen in the blood (oxygenation in%), i in'š di are the extinction · · coefficients at the ž-th wavelength of light for oxyhemoglobin , ie. hemoglobin with oxygen, and deoxyhemoglobin, i. homoglobin without oxygen.
Ko združimo enačbi (1) in (3), pridemo do povezave med izstopnim svetlobnim tokom in premerom žil (v našem primeru arterij):When we combine equations (1) and (3), we come to the connection between the output luminous flux and the diameter of the vessels (in our case the arteries):
I?(t) =(5)I? (T) = (5)
Enačbo (5) logaritmiramo in odvajamo po času. Prva dva člena na desni strani enačbe sta od časa neodvisna, zato pri odvajanju odpadeta, ostane pa:Equation (5) is logarithmic and subtracted over time. The first two terms on the right-hand side of the equation are independent of time, so they are omitted from the derivative, leaving:
= „2 2(6) dt Ii(t) 1 nL dt ' = „2 2 (6) dt Ii (t) 1 nL dt '
Ker smo v diskretnih razmerah, moramo odvode v enačbi (6) zamenjati z razlikami, tako da dobimo:Since we are in a discrete situation, we must replace the derivatives in equation (6) with differences so that we obtain:
=(7) /i(t)= (7) / i (t)
Nazadnje povežemo enačbi (2) in (7):Finally, we connect equations (2) and (7):
in _ o2 2 ” — — CI 1 vL l rri U .,0, Pz>Pn (8) ^21 = ε2 2_(μ y ) 1 in _ o2 2 ”- - CI 1 vL l rri U., 0, P z > P n (8) ^ 21 = ε 2 2_ (μ y) 1
Cm n tj Cm n £/_1 'Vm-Vo ntk2 - e Vm~V° n tk2 ;j = i.Cm n t j Cm n £ / _1 'Vm-Vo n t k2 - e Vm ~ V ° n tk 2; j = i.
k2> Pz — ?n >k 2 > Pz -? n>
(9) pri čemer časovna trenutka tkl in tk2 določimo iz PPG-signalov tako, da tkl sovpada s trenutkom, ko izgine pritisk zunanje sile, na primer ob odprtju vrat, tk2 pa je kasnejši trenutek, ob katerem velja ΔΕ(t>2) ~ 0·(9) where the time moments t kl and t k2 are determined from PPG signals so that t kl coincides with the moment when the external force pressure disappears, for example when the door is opened, and t k2 is the later moment at which ΔΕ ( t> 2 ) ~ 0 ·
Bistvo izuma je rešitev za neinvazivno in nemoteče merjenje parametrov krvi in ožilja ter trenutnega krvnega tlaka. Senzorske komponente naprave so povezane z vgrajenim računalnikom, ki skrbi za izvedbo meritev. Postopke meritve in njihove nadaljnje obdelave ter izdvajanja informacij o opazovančevem funkcionalnem zdravju vodijo računalniški algoritmi, ki določajo funkcionalnost in namembnost naprave po izumu.The essence of the invention is a solution for non-invasive and unobtrusive measurement of blood and vascular parameters and current blood pressure. The sensor components of the device are connected to the built-in computer, which takes care of the measurements. Measurement procedures and their further processing and extraction of information about the observer's functional health are guided by computer algorithms that determine the functionality and purpose of the device according to the invention.
Naprava vsebuje naslednje elemente:The device contains the following elements:
1. polje optičnih senzorjev,1. field of optical sensors,
2. svetlobne izvore z vsaj dvema valovnima dolžinama svetlobe,2. light sources with at least two wavelengths of light,
3. večosni pospeškomer,3. perpetual accelerometer,
4. mikrokrmilniško enoto,4. microcontroller unit,
5. enoto za prikazovanje,5. display unit,
6. enoto za komuniciranje in6. communication unit and
7. enoto za napajanje z vklopnim stikalom.7. power supply unit with power switch.
Optični senzorji se uporabljajo za zajem fotopletizmografskega signala (PPG), tj. svetlobnega toka, ki ga prepuščajo opazovančevi prsti. Svetlobo oddajajo svetleče diode vsaj dveh vrst, na primer rdeče (R) ter infrardeče (IR). Polje svetlečih diod je prav tako v sestavi naprave po izumu. Pospeškomer zaznava nenadne premike naprave po izumu. Postopki za analizo meritev tečejo v mikrokrmilniški enoti, rezultati pa se prikazujejo na prikazovalni enoti. Pošiljajo se tudi nadrejeni napravi - računalniškemu strežniku, in sicer s pomočjo komunikacijske enote, ki lahko deluje brezžično ali z žično povezavo. Pri slednji izvedbi je žična komunikacijska povezava izkoriščena hkrati še za energijsko napajanje naprave po izumu (na primer po standardu USB). Sicer pa je v napravo po izumu vgrajena tudi posebna enota za napajanje, ki vsebuje električno baterijo.Optical sensors are used to capture photoplethysmographic signal (PPG), ie. the luminous flux transmitted by the observer's fingers. Light is emitted by LEDs of at least two types, such as red (R) and infrared (IR). The field of light-emitting diodes is also in the composition of the device according to the invention. The accelerometer detects sudden movements of the device according to the invention. Measurement analysis procedures are performed in the microcontroller unit, and the results are displayed on the display unit. They are also sent to the parent device - a computer server, via a communication unit that can operate wirelessly or with a wired connection. In the latter embodiment, the wired communication connection is also used to power the device according to the invention (for example according to the USB standard). Otherwise, a special power supply unit containing an electric battery is also installed in the device according to the invention.
Zasnovo in delovanje postopka in naprave po izumu pojasnjuje 5 slik, od tega 2 kažeta zasnovo naprave po izumu, preostale 3 pa potek postopkov, ki določajo lastnosti naprave po izumu.The design and operation of the method and device according to the invention are explained by 5 figures, 2 of which show the design of the device according to the invention, and the remaining 3 show the course of processes determining the properties of the device according to the invention.
slika 1 prikazuje bločno zgradbo naprave po izumu. Mikrokrmilniška enota 100 upravlja s svetlobnimi izvori 110 in sprejema signale od svetlobnih senzorjev 120 ter pospeškomera 130. Svetlobni senzor posreduje analogne signale, ki jih ojači enota z operacijskimi ojačevalniki 125. Mikrokrmilniška enota ima vgrajen analogno-digitalni (A/D) pretvornik, s katerim digitalizira zajete analogne signale. Analizira jih s postopki po izumu in prikazuje rezultate na prikazovalni enoti 140. Sporoča jih tudi nadrejenemu računalniku s komunikacijsko enoto 150. Povezava je lahko žična 155 in v tem primeru je izkoriščena tudi za energetsko napajanje naprave po izumu. Baterija 160 skrbi za trajno oskrbo naprave z električno energijo, kadar je stikalo 165 vključeno;Figure 1 shows a block structure of a device according to the invention. The microcontroller 100 controls the light sources 110 and receives signals from the light sensors 120 and the accelerometer 130. The light sensor transmits analog signals amplified by the unit with operational amplifiers 125. The microcontroller unit has a built-in analog-to-digital (A / D) converter with which digitizes captured analog signals. It analyzes them by the methods according to the invention and displays the results on the display unit 140. It also communicates them to the parent computer with the communication unit 150. The connection can be wired 155 and in this case it is also used to power the device according to the invention. The battery 160 provides a permanent supply of power to the device when the switch 165 is turned on;
slika 2 kaže sestavljanko merilnika, tj. naprave po izumu. Nosilec 200 je tiskano vezje, ki spaja vse elektronske elemente naprave. Na zgornji strani so svetlobni senzorji 121, 122, 123 in 124, ki so izvedeni kot linearna polja z množico fotodiod. Na spodnji strani so povezani baterija 160 za napajanje naprave, mikrokrmilnik 100, enota z operacijskimi ojačevalniki 125, pospeškomer 130 in komunikacijske enota 150, ki ima priključek 155 za opcijsko žično povezavo. Z nosilcem je na zgornji strani spojen zaščitni pokrov 250, ki je oblikovan tako, da se prilega opazovančevim prstom (od kazalca do mezinca). Lego prstov opredeli tako, da blazinice'prstov sedbjb čiffi bolj” · konstantno na optične senzorje 120. Pokrov 250 ima na vrhu vgrajene svetlobne izvore 111, 112, 113 in 114. Vsak od njih je sestavljen iz vsaj dveh množic svetlečih diod; množice diod se razlikujejo po valovni dolžini oddajane svetlobe. Enota za prikazovanje, na primer vrstični LCDprikazovalnik, 140 je pritrjena na vrh ali ob strani pokrova 150. Prav tako je stransko na pokrov 250 pritrjeno stikalo 165 za priklop naprave na baterijsko napajanje;Figure 2 shows the puzzle of the meter, i. devices according to the invention. The bracket 200 is a printed circuit board that connects all the electronic elements of the device. At the top are light sensors 121, 122, 123 and 124, which are designed as linear fields with a plurality of photodiodes. At the bottom are connected the battery 160 for powering the device, the microcontroller 100, the unit with operational amplifiers 125, the accelerometer 130 and the communication unit 150, which has a connector 155 for optional wired connection. A protective cover 250 is connected to the holder on the upper side, which is shaped to fit the observer's fingers (from the index finger to the little finger). The position of the fingers is defined so that the pads'fingers sedbjb čiffi more ”· constant on the optical sensors 120. The cover 250 has built-in light sources 111, 112, 113 and 114. Each of them consists of at least two sets of LEDs; the sets of diodes differ in the wavelength of the light emitted. A display unit, such as a line LCD display 140, is attached to the top or side of the cover 150. Also, a switch 165 for attaching the device to a battery power supply is attached to the side 250 of the cover;
slika 3 kaže diagram poteka za zaznavanje trenutka, ko se mora začeti meritev;Figure 3 shows a flow diagram for detecting the moment when the measurement should start;
slika 4 kaže diagram poteka za izvajanje meritve;Figure 4 shows a flow diagram for performing a measurement;
slika 5 kaže diagram poteka za izračun krvnih in žilnih parametrov ter trenutnega krvnega tlaka.Figure 5 shows a flow chart for calculating blood and vascular parameters and current blood pressure.
Slika 2 prikazuje fizično zasnovo naprave po izumu, medtem ko slika 1 nakazuje električno povezanost posameznih elementov naprave. Pri izvedbi je pomembno, da so optični senzorji 121, 122, 123 in 124 nameščeni na nosilcu 200 v sklenjeno vrsto in da so vzdolžno poravnani s svetlobnimi izvori 111, 112, 113 in 114 v pokrovu 250. Pokrov 250 upošteva različne dimenzije prstov tako, da pušča dovolj prostora za maksimalno debele prste, ki so zato med meritvijo vstavljeni v pokrov tesno drug ob drugem. Tanjši prsti v pokrovu ne ležijo tesno drug ob drugem, vendar izvedba pokrova s pregradami med prsti zagotovi, da se primemo razporedijo vzdolž celotne dolžine optičnih senzorjev 120. Oblika pokrova 250 v napravi po izumu nudi dodatno zaščito pred okoliško svetlobo, saj so razdelki za prste na zadnji strani zaprti - spuščeni do nosilca 200.Figure 2 shows the physical design of the device according to the invention, while Figure 1 shows the electrical connection of the individual elements of the device. In the embodiment, it is important that the optical sensors 121, 122, 123 and 124 are mounted on the bracket 200 in a closed row and that they are longitudinally aligned with the light sources 111, 112, 113 and 114 in the cover 250. The cover 250 takes into account different finger dimensions. that it leaves enough space for the maximum thick fingers, which are therefore inserted close to each other during the measurement. The thinner fingers in the cover do not lie close together, but the design of the cover with partitions between the fingers ensures that the grips are distributed along the entire length of the optical sensors 120. The shape of the cover 250 in the device according to the invention provides additional protection from ambient light. closed at the back - lowered to the bracket 200.
Vklop stikala 165 dovede napajalno energijo mikrokrmilniku 100, ki začne izvajati postopek, s katerim se pripravi na izvedbo meritve. Postopek kaže slika 3. Po vklopu naprave se izvede inicializacijski blok 305, ki ustvari podatkovne strukture in povezave, potrebne za nadaljnje prekinitveno delovanje mikrokrmilnika 100. Nato se pulzno aktivirajo IR-svetila, in sicer s frekvenco nekaj desetkrat na sekundo (blok 310). Istočasno se z vseh kanalov (fotodiod) v svetlobnih senzorjih sprejemajo in digitalizirajo odzivi na osvetlitev iz IR-svetil (blok 315). V bloku 320 sledi preverjanje, ali je morda svetlost na vnaprej določenem številu kanalov upadla za vnaprej določen odstotek, na primer na polovici kanalov za četrtino maksimalne osvetlitve. Dokler se to ne zgodi, se ponavlja zanka z bloki 310, 315 in 320. Če pa preverjanje pokaže, daje pogoj za upad svetlosti bil izpolnjen, se to vzame kot znak za začetek meritve. Pričakuje se namreč, da do nenadnega upada zaznane jakosti svetlobe pride, ko opazovanec vtakne prste med svetila 110 in svetlobne senzorje 120. Začetek meritve se označi v bloku 325.Turning on the switch 165 supplies power to the microcontroller 100, which begins to perform a process to prepare for the measurement. The procedure is shown in Figure 3. After switching on the device, the initialization block 305 is performed, which creates the data structures and connections necessary for further interrupting operation of the microcontroller 100. The IR lights are then pulsed at a frequency of several tens of times per second (block 310). At the same time, responses to illumination from IR lamps (block 315) are received and digitized from all channels (photodiodes) in the light sensors. In block 320, a check is made as to whether the brightness on a predetermined number of channels may have decreased by a predetermined percentage, for example on half of the channels by a quarter of the maximum illumination. Until this happens, the loop with blocks 310, 315 and 320 is repeated. However, if the check shows that the condition for the decrease in brightness has been met, this is taken as a sign to start the measurement. Namely, a sudden drop in the perceived light intensity is expected to occur when the observer inserts his fingers between the lights 110 and the light sensors 120. The start of the measurement is indicated in block 325.
Okvirni postopek merjenja opisuje slika 4. Najprej mikrokrmilnik lOtf spremeni*Upravljanje · svetil 110. Periodično začne pulzno aktivirati svetila z različno valovno dolžino, na primer najprej rdeče in nato infrardeče, zatem pa naredi krajšo pavzo (blok 405). S svetlobnimi senzorji 120 zajema vrednosti svetlobne jakosti v vseh fazah: najprej pri osvetlitvah različnih valovnih dolžin, na primer pri R-osvetlitvi in nato pri IR-osvetlitvi, nazadnje pa še v času zatemnitve svetlobnih izvorov, ko dejansko ugotavlja jakost okoliške svetlobe (blok 410). Najprej se v bloku 415 preveri, ali še prepisano število kanalov zaznava znižano svetilnost, kar pomeni, da so prsti še vstavljeni nad svetlobne senzorje 120 (preverjanje podobno kot v bloku 320 na sliki 3). Ce pogoj ni izpolnjen, se naprava po izumu vrne v stanje pripravljenosti, kar pomeni, da z znižano vzorčevalno frekvenco prižiga le IR-svetila (vstopna točka A pred blokom 310 na sliki 3). Če je pogoj izpolnjen, se meritev nadaljuje.The general measurement procedure is described in Figure 4. First, the lOtf microcontroller changes * Lamp control 110. Periodically, it starts pulsing lights of different wavelengths, for example first red and then infrared, and then pauses for a short time (block 405). With light sensors 120, it captures light intensity values in all phases: first in illuminations of different wavelengths, for example in R-illumination and then in IR illumination, and finally during dimming of light sources, when it actually detects ambient light intensity (block 410 ). First, in block 415, it is checked whether the overwritten number of channels detects a reduced brightness, which means that the fingers are still inserted above the light sensors 120 (checking similar to block 320 in Figure 3). If the condition is not met, the device according to the invention returns to the standby state, which means that only the IR lights are switched on with a reduced sampling frequency (entry point A in front of block 310 in Figure 3). If the condition is met, the measurement is continued.
Zajem podatkov teče vzporedno z vseh K optičnih kanalov, tj. fotodiod. Perioda oz. frekvenca ponovitev vseh faz z zajemom različnih svetlob je določena glede na lastnosti oz. frekvenčno vsebino PPG-signalov, na primer na 100 Hz. Trajanje osvetlitve s posamezno valovno dolžino, torej širina pulzov, ki aktivirajo svetila 110, je bistveno krajše od trajanja ene periode osvetljevanja, mora pa trajati toliko časa, da utegne mikrokrmilnik 100 medtem povzročiti vseh K kanalov pri svetlobnih senzorjih. To lahko traja pri, recimo, K = 512 okoli 100 ps. Z vzorčenjem svetlobnih senzorjev se formirajo signalni vektorji z vrednostmi za K svetlobnih kanalov v vsakem trenutku /:Data acquisition runs in parallel from all K optical channels, i. photodiode. Period oz. the frequency of repetitions of all phases by capturing different lights is determined according to the properties or. the frequency content of PPG signals, for example at 100 Hz. The duration of illumination with a single wavelength, ie the width of the pulses activating the lamps 110, is significantly shorter than the duration of one period of illumination, but must last long enough for the microcontroller 100 to cause all K channels in the light sensors. This can take at, say, K = 512 around 100 ps. By sampling the light sensors, signal vectors with values for K light channels at each moment are formed /:
Ii(t) = [/i,i(t)J2,i(tX-^,iW]Tn ε {/?,//?,...}, (10) tako da vsak 4,(/); k = 1, ..., K ustreza signalu /,(/) v enačbi (3).Ii (t) = [/ i, i (t) J2, i [tX - ^, iW] T n ε {/?, //?, ...}, (10) so that every 4, (/) ; k = 1, ..., K corresponds to the signal /, (/) in equation (3).
Mikrokrmilnik 100 istočasno vzorči v bloku 420 tudi pospeške, izmerjene s večosnim pospeškomerom 130, tako da pri izvedbi s tremi osmi velja:At the same time, the microcontroller 100 also samples in block 420 the accelerations measured with the multi-axis accelerometer 130, so that in the case of the three-axis version:
P(t) = VpKO +Py(0 +Pf(O > (11) pri čemer so px(t), py(t) in pz(t) pospeški, izmerjeni v času t v pospeškomerovih smereh x, y in z.P (t) = VpKO + Py (0 + Pf (O> (11 ) where p x (t), p y (t) and p z (t) are the accelerations measured during the tv accelerometer directions x, y and z.
V bloku 425 preveri, ali je sprememba pospeška kp(t) v trenutku t dosegla vrh in hkrati presegla vnaprej določeno vrednost, ki ustreza najnižjim pospeškom, ko pride v napravi po izumu do gibanja, povzročenega z nenadnim spustom zunanjega pritiska na opazovančeve prste. Če je pogoj izpolnjen, se začne odštevati vnaprej predpisan časovni interval, na primer v trajanju 0,5 s (primerjalni blok 430), indeks časa pri maksimalni spremembi pospeškov pa si zapomnimo kot tmp. V vsakem primeru se s predpisano periodo nadaljuje zanka z osvetljevanjem in vzorčenjem svetlobnih signalov in pospeškov v blokih 405, 410, 415, 420. V bloku*430*se ugotŠMja’hli jd”’ nastavljeno odštevanje časovnega intervala po zaznavi maksimalne spremembe v pospeških, maks(Ap(?)). Ko se ta interval izteče, se sproži izračun krvnih in žilnih parametrov ter trenutnega krvnega tlaka (blok 435). Po izračunu in prikazu rezultatov se meritev nadaljuje, tako da se v zanki spet aktivira blok 405.In block 425, it is checked whether the change in acceleration kp (t) at the moment t reaches a peak and at the same time exceeds a predetermined value corresponding to the lowest accelerations when a movement caused by a sudden descent of external pressure on the observer's fingers occurs in the device according to the invention. If the condition is met, a predetermined time interval begins to be counted down, for example for 0.5 s (comparison block 430), and the time index at the maximum change in acceleration is remembered as t mp . In any case, the loop continues with the prescribed period with illumination and sampling of light signals and accelerations in blocks 405, 410, 415, 420. In block * 430 * the countdown of the time interval is set after the detection of the maximum change in accelerations, max (Ap (?)). When this interval expires, the calculation of blood and vascular parameters and current blood pressure is triggered (block 435). After calculating and displaying the results, the measurement is continued so that block 405 is reactivated in the loop.
Analiza zajetih signalov, ki jo sproži blok 435, je prikazana na sliki 5. V bloku 505 se najprej odredi začetek časovnega intervala za analizo signalov. Od trenutka, ko je bila najdena maksimalna sprememba pospeškov, tj. od tmp, gremo v času nazaj, dokler se spremembe pospeškov Δρ(Ζ) ne spustijo v vnaprej predpisan tolerančni pas. Ta trenutek se opredeli kot začetni čas opazovanega intervala. Nato postopek, začet v bloku 510, poišče na opazovanem intervalu med vsemi signali 7k,(/); k = 1, ..., K, i = R, IR, ... tistega, ki je najprimernejši za nadaljnjo analizo. Iskanje vključuje sočasno preverjanje signalov za posamezne valovne dolžine, na primer R- in 77?-signalov, v vsakem kanalu posebej. Iščemo kanal, v katerem se hkrati svetlobne zaznave najhitreje znižujejo od začetka opazovanega intervala naprej. Kot rečeno, pomeni najdeni interval z največjimi spremembami pospeškov situacijo, v kateri je nenadoma popustila zunanja sila, ki je pritiskala na ožilje opazovane osebe, na primer ob odprtju hladilnikovih vrat. Ker se zaradi tega začne dotok krvi, se presvetlitev prstov praviloma znižuje. Lahko pa se zgodi, da opazovanec ne pritiska z vsemi prsti enako močno na svetlobne senzorje 120, zato izmerjeni svetlobni signali niso vsi enako kakovostni oz. nimajo enako dobre ločljivosti. Zaradi čim boljših rezultatov je treba najti kanal, kjer je dogajanje naj izrazitejše in zato tudi z največjo ločljivostjo. Najboljši kanal označimo z indeksom k0.The analysis of the captured signals triggered by block 435 is shown in Figure 5. In block 505, the start of the time interval for signal analysis is first ordered. From the moment the maximum change in acceleration was found, i. from t mp , we go back in time until the acceleration changes Δρ (Ζ) drop to a pre-prescribed tolerance band. This moment is defined as the initial time of the observed interval. It then locates the process started in block 510 on the observed interval between all signals 7 k , (/); k = 1, ..., K, i = R, IR, ... of the one most suitable for further analysis. The search involves the simultaneous verification of signals for individual wavelengths, such as R- and 77? -Signals, in each channel separately. We are looking for a channel in which, at the same time, light perceptions decrease the fastest from the beginning of the observed interval onwards. As said, the interval found with the greatest changes in accelerations means a situation in which an external force suddenly pressed, pressing on the vessels of the observed person, for example, when the refrigerator door was opened. As this causes blood flow to begin, the translucency of the fingers usually decreases. However, it may happen that the observer does not press with all his fingers equally hard on the light sensors 120, so the measured light signals are not all of the same quality or. they do not have the same good resolution. For the best possible results, it is necessary to find a channel where the events are most pronounced and therefore also with the highest resolution. The best channel is denoted by the index k 0 .
Signal v optimalnem kanalu k0 zaradi enostavnosti in ujemanja z oznakami v enačbah od (1) do (9) pišemo kot /,(/); i = R, IR, ..., in to brez oznake izbranega kanala. V bloku 515 se izračuna spreminjanje krvne prostornine glede na levo stran enačb (8) in (9) - dobljena funkcija je proporcionalna AK(/). Blok 520 poišče v tej funkciji minimum in v pripadajoči časovni trenutek postavi izhodišče časovne osi t = 0. Istočasno opredeli razliko med začetkom opazovanega intervala in tem trenutkom kot čas tkl. V bloku 525 se nadaljuje iskanje od t = 0 naprej, in sicer iščemo trenutek, ko se funkcija A7(t) približa vrednosti 0 z vnaprej predpisano toleranco. Ta trenutek označimo kot tk2.The signal in the optimal channel k 0 is written as /, (/) for simplicity and to match the notation in equations (1) to (9); i = R, IR, ..., without the designation of the selected channel. In block 515, the change in blood volume is calculated with respect to the left side of equations (8) and (9) - the resulting function is proportional to AK (/). Block 520 finds the minimum in this function and sets the starting point of the time axis t = 0 in the corresponding time moment. At the same time, it defines the difference between the beginning of the observed interval and this moment as time t kl . In block 525, the search continues from t = 0 onwards, looking for the moment when the function A7 (t) approaches the value 0 with a predetermined tolerance. We denote this moment as t k2 .
Izračun se nadaljuje v bloku 530, ki vzame poteka signalov z e {R, IR, ...} in z izbrano metodo najboljšega prileganja, na primer z najmanjšimi kvadratnimi odstopanji, izračunamo modelne parametre a, in = atebd-,t = 0, ...,tk2,i& {R, IR, ...}.The calculation continues in block 530, which takes the course of the signals ze {R, IR, ...} and with the selected best fit method, for example with the smallest square deviations, we calculate the model parameters a, and = ate b d-, t = 0 , ..., t k2 , i & {R, IR, ...}.
Podobno se v bloku 535 ocenijo še modelni parametri c, in d,:Similarly, in block 535, the model parameters c, and d, are estimated:
= c.edit.t=_t^ o, Z e {7ζ IR> (13)= c . e d it . t = _ t ^ o, Z e {7ζ IR> (13)
Z izenačevanjem desnih strani enačb (12) in (9) ter (13) in (8) in upoštevanjem vseh vzorcev iz obeh intervalov se v bloku 540 oceni povprečna stopnja nasičenosti krvi s kisikom, tj. c0, z njeno pomočjo pa še iz enačb (12) in (13) prostornini Vm in Po, upoštevajoč modelna parametra a, in c,.By equalizing the right-hand sides of equations (12) and (9) and (13) and (8) and taking into account all the samples from both intervals, the average oxygen saturation rate of blood is estimated in block 540, i. c 0 , and with its help from equations (12) and (13) of volume V m and Po, taking into account the model parameters a, and c ,.
Sledi ocena zunanjega pritiska P-. Prsti so položeni prek optičnih senzorjev 120, ki imajo znane dimenzije M x L. Na dolžini M je K kanalov (fotodiod), tako da posamezen kanal zaseda —The following is an estimate of the external pressure P-. The fingers are laid via optical sensors 120 having known dimensions M x L. At the length M there are K channels (photodiode) so that each channel occupies -
K dolžinskih enot. V bloku 545 se glede na enačbo (10) vzamejo signali /,(/); t = -tkl, ...,tk,i e {R, IR, ...} in oceni se, koliko izmed njih ima pri vseh valovnih dolžinah svetlobe na celotnem opazovanem intervalu vrednosti vzorcev pod vnaprej izbranim pragom, ki predvideva, da svetlobo v kanalu zakriva prst, vstavljen v pokrov 250. Če je takšnih kanalov K-_, je ploščina, s katero prsti prekrivajo optične senzorje, enaka L — Kz. Ker je vnaprej znano, s kakšno silo je treba potegniti, da pride do nenadnega popuščanja pritiska, ki ga izvaja merilnik na prste, se iz teh podatkov oceni maksimalni zunanji pritisk:To length units. In block 545, the signals /, () are taken according to equation (10); t = -t kl , ..., t k , ie {R, IR, ...} and estimate how many of them have, at all wavelengths of light, over the entire observed range of sample values below a pre-selected threshold that assumes that the light in the channel is obscured by a finger inserted in the cover 250. If such channels are K-_, the area with which the fingers cover the optical sensors is equal to L - K z . Since j e is known in advance, with what force is necessary to pull it comes to a sudden failure of pressure by the meter on the fingers, from this information to estimate the maximum external pressure:
(14) če F pomeni maksimalno vlečno silo.(14) if F represents the maximum tractive force.
Iz eksponenta na desni strani enačbe (8) in modelnega parametra d, lahko izračunamo koeficient maksimalne stisljivosti Cm (blok 550). Ko poznamo Cm, določimo iz enačbe (9) in modelnega parametra bj še notranji trenutni krvni tlak Pn (blok 555).From the exponent on the right side of equation (8) and the model parameter d, we can calculate the coefficient of maximum compressibility C m (block 550). When C m is known, the internal current blood pressure P n (block 555) is determined from equation (9) and model parameter bj.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI201400272A SI24778A (en) | 2014-07-31 | 2014-07-31 | Momentary noninvasive blood pressure monitor and vascular and blood parameters |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI201400272A SI24778A (en) | 2014-07-31 | 2014-07-31 | Momentary noninvasive blood pressure monitor and vascular and blood parameters |
Publications (1)
Publication Number | Publication Date |
---|---|
SI24778A true SI24778A (en) | 2016-02-29 |
Family
ID=55358989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SI201400272A SI24778A (en) | 2014-07-31 | 2014-07-31 | Momentary noninvasive blood pressure monitor and vascular and blood parameters |
Country Status (1)
Country | Link |
---|---|
SI (1) | SI24778A (en) |
-
2014
- 2014-07-31 SI SI201400272A patent/SI24778A/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7350806B2 (en) | Observational heart failure monitoring system | |
US10849508B2 (en) | System and method for continuous monitoring of blood pressure | |
KR100660349B1 (en) | Mobile blood pressure monitoring device using optical blood flow measurement signal | |
EP3030145B1 (en) | Monitoring system and method for monitoring the hemodynamic status of a subject | |
EP2973394B1 (en) | Device and method for determining the blood oxygen saturation of a subject | |
KR101560287B1 (en) | Earphone including bodysignal measuring means and body signal monitoring system including the same earphone | |
US20030212316A1 (en) | Method and apparatus for determining blood parameters and vital signs of a patient | |
US20170049336A1 (en) | Physiological sensors, systems, kits and methods therefor | |
WO2014122577A1 (en) | System and method for determining vital sign information of a subject | |
CA2696054A1 (en) | Method and apparatus for processing a pulsatile biometric signal | |
US20140187992A1 (en) | System and method for non-invasively determining cardiac output | |
KR100650044B1 (en) | Portable wireless terminal with blood pressure measurement system using optical blood flow measurement signal | |
US9649039B1 (en) | Mobile plethysmographic device | |
Liu et al. | Effects of cuff inflation and deflation on pulse transit time measured from ECG and multi-wavelength PPG | |
Myint et al. | Blood pressure measurement from photo-plethysmography to pulse transit time | |
KR20200141029A (en) | Portable hydration monitoring device and method | |
JP4726085B2 (en) | Blood pressure measuring device and blood pressure measuring device control method | |
Shao et al. | Non-contact simultaneous photoplethysmogram and ballistocardiogram video recording towards real-time blood pressure and abnormal heart rhythm monitoring | |
WO2009147597A1 (en) | Detection of impending syncope of a patient | |
CN110192846B (en) | Wearable device | |
TWI538659B (en) | Method and device for measuring heart rate | |
SI24778A (en) | Momentary noninvasive blood pressure monitor and vascular and blood parameters | |
Janjua et al. | A low-cost tonometer alternative: A comparison between photoplethysmogram and finger ballistocardiogram and validation against tonometric waveform | |
Fiala et al. | Implantable sensor for blood pressure determination via pulse transit time | |
KR102622935B1 (en) | Medical apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OO00 | Grant of patent |
Effective date: 20160324 |
|
KO00 | Lapse of patent |
Effective date: 20190305 |