SI23691A - Gas discharge tube with metal body for high current surges - Google Patents
Gas discharge tube with metal body for high current surges Download PDFInfo
- Publication number
- SI23691A SI23691A SI201100094A SI201100094A SI23691A SI 23691 A SI23691 A SI 23691A SI 201100094 A SI201100094 A SI 201100094A SI 201100094 A SI201100094 A SI 201100094A SI 23691 A SI23691 A SI 23691A
- Authority
- SI
- Slovenia
- Prior art keywords
- insulating element
- graphite
- electrode
- metal housing
- gas arrester
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T4/00—Overvoltage arresters using spark gaps
- H01T4/10—Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel
- H01T4/12—Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel hermetically sealed
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T1/00—Details of spark gaps
- H01T1/20—Means for starting arc or facilitating ignition of spark gap
- H01T1/22—Means for starting arc or facilitating ignition of spark gap by the shape or the composition of the electrodes
Landscapes
- Thermistors And Varistors (AREA)
Abstract
Izum se nanaša na plinske odvodnike s kovinskim ohišjem, ki se uporabljajo za prenapetostno zaščito, kjer potrebujemo odvodnike za najviše tokovne impulze. Plinski odvodnik s kovinskim ohišjem za visokotokovne udare je sestavljen iz zunanjega ohišja (1), ki je obenem zunanja elektroda, sredinske elektrode sestavljene iz notranjega (3) in zunanjega dela (4), izolirnega elementa (5), izolirnega elementa (6), grafitnih sledi (8) in plinske mešanice (7) v notranjosti odvodnika in je značilen po tem, da je vnotranjosti dela (1b) ohišja (1) nameščen valjast ščit (2), v katerem je približno tretjina notranjega dela (3) sredinske elektrode. Ožji zunanji del (4) elektrode poteka skozi izolirni element (5) in izolirni element (6), pri čemer je na izolirnem elementu (5 in/ali 6) narejen nanos grafitnih prevodnih sledi (8), ki so debeline le okoli enega mikrometra ali manj. Grafitna sled (8) je približno v obliki velike črke J in je na izolirnem elementu (5). Izolirni element (6) je oblikovan v obliki ploščice zluknjo, kjer ploščica ne sega do zunanje elektrode (1). S tem je zagotovljena funkcija senčenja obloka za zaščito grafitnega nanosa na izolirnem elementu (5).The invention relates to metallic casing gas terminals used for overvoltage protection, where we need arrester for the highest current impulses. The gas arrester with a metal housing for high-impact impacts consists of an outer casing (1), which is at the same time an external electrode, the central electrodes consisting of an inner (3) and an outer part (4), an insulating element (5), an insulating element (6) graphite traces (8) and gas mixtures (7) inside the arrester and characterized in that a cylindrical shield (2) is mounted inside the part (1b) of the housing (1), in which about one third of the inner part (3) of the middle electrode . The narrow outer part (4) of the electrode passes through the insulating element (5) and the insulating element (6), with the application of the graphite conductive traces (8) on the insulating element (5 and / or 6), which are only about one micrometer thick or less. The graphite trace (8) is approximately in the form of a capital letter J and is on the insulating element (5). The insulating element (6) is formed in the form of a grating plate, wherein the plate does not extend to the outer electrode (1). This ensures the shading function of the arc to protect the graphite coating on the insulating element (5).
Description
PLINSKI ODVODNIK S KOVINSKIM OHIŠJEM ZA VISOKOTOKOVNE UDAREGas arrester with metal housing for high-impact shocks
Področje tehnikeThe field of technology
Izum se nanaša na plinske odvodnike s kovinskim ohišjem, ki se uporabljajo za prenapetostno zaščito, kjer potrebujemo odvodnike za najviše tokovne impulze.The invention relates to gas arresters with metal housings used for overvoltage protection, where arresters are required for the highest current pulses.
Tehnični problemA technical problem
Tehnični problem je konstrukcijska rešitev plinskega odvodnika, ki bo zasnovan na kovinskem ohišju, s funkcijo zunanje elektrode v kombinaciji z zaščitnim elementom za grafitne nanose, ki morajo biti tako oblikovani, da omogočajo optimalno hitrost odziva plinskega odvodnika ob prekomernem zvišanju napetosti. Oblika zaščitnega elementa mora biti taka, da ob nastanku obloka v notranjosti plinskega odvodnika ščiti površino izolirnega elementa od par materiala, prednostno bakra, iz katerega je narejeno ohišje, oziroma zunanja elektroda. Pri segrevanju, ki nastane zaradi gorenja obloka, se namreč baker prične relativno hitro taliti in izparevati, kar lahko povzroči hude termične poškodbe na zunanji elektrodi v notranjosti plinskega odvodnika. Pri tem izparjeni material lahko povzroči nastanek tanke prevodne plasti na izolirnih elementih, kar vpliva na znižanje omske upornosti med elektrodama. Vse to lahko vpliva na spremembo vžignih napetosti in s tem na samo uporabnost plinskega odvodnika. Z namenom izboljšanja visokotemperaturne obstojnosti notranjosti zunanje elektrode je potrebno narediti ščit iz materialov, ki imajo dobro odpornost proti visokim temperaturam, poleg tega pa so tudi dobri prevodniki električnega toka. Značilna materiala sta molibden ali volfram-baker, kjer je delež volframa vsaj 10 %. Ščit mora pokriti vsaj najbolj obremenjene dele zunanje elektrode, to je predvsem del okoli konice notranjega dela sredinske elektrode, ki je prednostno prav tako iz visokotemperaturno odpornih materialov (molibden ali volfram-baker). Elektrodi ločuje izolativni element, ki je prednostno iz keramike ali po kemijskih lastnostih podobnega materiala. Nanos grafitnih sledi naj bo na enem ali obeh izolirnih elementih, pri čemer naj oblika grafitnih sledi omogoča ustrezno hitrost odziva plinskega odvodnika na naraščajočo prenapetost. To je pomembno predvsem pri hitrem naraščanju napetosti, ki je običajno velikostnega reda 109 V/s ali več. S hitrostjo odziva plinskega odvodika je opredeljena dinamična vžigna napetost, ki je vedno višja od vžigne napetosti pri počasnem naraščanju napetosti (npr.: 100 V/s). Z nanosom grafitnih sledi na izolirni element se lahko zniža dinamična vžigna napetost. S tem se poveča zaščitni nivo prenapetostne zaščite, saj je najvišja možna napetost na plinskem odvodniku s hitrim odzivom nižja kot v primeru plinskega odvodnika s počasnim odzivom. Te dinamične vžigne napetosti pri plinskih odvodnikih za visokotokovne udare morajo običajno biti nižje od 1500 V.A technical problem is a structural solution of a gas arrester, which will be based on a metal housing, with the function of an external electrode in combination with a protective element for graphite deposits, which must be designed to allow the optimum speed of response of the gas arrester in case of excessive voltage increase. The shape of the safety element must be such that, when a cloud is formed inside the gas arrester, it protects the surface of the insulating element from a pair of material, preferably copper, from which the housing is made, or an external electrode. In the case of heating due to the burning of the arc, the copper begins to melt and evaporate relatively quickly, which can cause severe thermal damage to the outer electrode inside the gas arrester. Evaporated material may cause a thin conductive layer to form on the insulating elements, which will reduce the ohmic resistance between the electrodes. All this can have an effect on the change in the ignition voltage and thus on the usefulness of the gas arrester itself. In order to improve the high-temperature stability of the inside of the outer electrode, it is necessary to make a shield made of materials that have good resistance to high temperatures and are also good conductors of electrical current. Typical materials are molybdenum or tungsten copper, with a tungsten content of at least 10%. The shield should cover at least the most loaded parts of the outer electrode, that is, in particular, the part around the tip of the inner part of the center electrode, which is preferably also made of high temperature resistant materials (molybdenum or tungsten copper). The electrodes are separated by an insulating element, preferably of ceramic or chemical properties of a similar material. The application of graphite traces should be on one or both insulating elements, whereby the shape of the graphite traces should allow an adequate rate of response of the gas arrester to the increasing surge. This is especially important in the case of a rapid increase in voltage, usually of the order of 10 9 V / s or more. The rate of response of the gas outlet defines a dynamic ignition voltage that is always higher than the ignition voltage at a slow rise in voltage (eg: 100 V / s). Applying graphite traces to an insulating element can reduce the dynamic firing voltage. This increases the protection level of the surge protector, since the highest possible voltage on the quick-response gas arrester is lower than in the case of the slow-response gas arrester. These dynamic ignition voltages for high-pressure gas arresters should normally be lower than 1500 V.
Pri samem nanosu grafitnih sledi je potrebno rešiti problem, ki se pojavi v primeru visokotokovnih udarov, ko lahko oblok poškoduje del nanosa grafitnih sledi. S tem se podaljša odzivni čas plinskega odvodnika in dinamična vžigna napetost lahko preseže dopustne vrednosti. Naloga in cilj izuma je konstrukcijska oblika izolirnih elementov v kombinaciji z obliko grafitnih sledi.The very application of graphite traces must solve the problem that arises in the case of high-current shocks, when the arc can damage part of the graphite trace. This extends the response time of the gas arrester and the dynamic ignition voltage can exceed the permissible values. The object and object of the invention is the structural design of insulating elements in combination with the shape of graphite traces.
Stanje tehnikeThe state of the art
Plinski odvodniki za najvišje tokovne impulze se uporabljajo v prenapetostnih zaščitah razreda I in II. Uporabljajo se pretežno v inštalacijskih sistemih tipa TT in TN. Plinski odvodnik v splošnem vključuje dve elektrodi, ki sta ločeni z izolatorjem in notranjost napolnjeno s plinsko mešanico, ki je hermetično zaprta. Razdalja med elektrodami in plinska mešanica določata vžigno napetost in tudi odvodne tokovne zmogljivosti. Pri nizki napetosti na elektrodah plinskega odvodnika je element popolni izolator. Ko napetost naraste nad določeno mejo pa pride do preboja med elektrodama v plinu in vzpostavi se prevoden oblok. Pri tem kratkotrajne tokovne obremenitve lahko znašajo tudi do 200 kA. Po končanem udaru mora priti do ugašanja obloka ob prisotnosti posledičnega toka, ki je lahko tudi 100 A.Gas arresters for peak current pulses are used in Class I and II surge protectors. They are mainly used in TT and TN installation systems. The gas arrester generally includes two electrodes which are separated by an insulator and the interior filled with a gas mixture which is hermetically sealed. The distance between the electrodes and the gas mixture determines the ignition voltage as well as the drain current capacity. At low voltage at the gas arrester electrodes, the element is a complete insulator. When the voltage rises above a certain limit, a breakdown occurs between the electrodes in the gas and a conductive arc is formed. In this case, short-term current loads can be up to 200 kA. Upon completion of the impact, the arc must be extinguished in the presence of a subsequent current, which may also be 100 A.
Po patentu US 4,924,347 so poznani plinski odvodniki s keramičnim ohišjem in plinski odvodniki s kovinskim ohišjem. Trenutno so v praktični uporabi mnogo pogostejši plinski odvodniki s keramičnim ohišjem, kjer sta elektrodi ločeni s keramičnim izolirnim elementom, ki je običajno v obliki cevi. Odprtini keramične cevi sta zaprti s kovinskima elementoma oziroma sestavom kovinskih elementov, ki imajo funkcijo elektrod. Odvodniki s kovinskim ohišjem so relativno redki. Pri njih je kovinsko ohišje v obliki cevi, ki ima odprtino le na eni strani in opravlja funkcijo zunanje elektrode. Odprtina je zaprta z izolirnim elementom, skozi katerega gre druga elektroda. Do nedavnega je bila njihova glavna slabost uporaba steklenega izolirnega elementa, ki se v praksi izkaže slabo predvsem pri mehanskih in temperaturnih obremenitevah. Po patentu Sl 23042 je poznana nova rešitev plinskega odvodnika s kovinskim ohišjem, ki ima izolirni element iz keramike namesto stekla. S tem so rešeni problemi mehanske in temperaturne vzdržljivosti plinskih odvodnikov s kovinskim ohišjem. Glavna prednost pri izvedbi s kovinskim ohišjem je v doseganju večje površine notranjih elektrod kot pri enako veliki izvedbi s keramičnim ohišjem. Večje površine elektrod omogočajo manjše obremenitve elektrod in s tem večjo vzdržljivost plinskega odvdnika pri visokih tokovnih udarih. Problem lahko ostane le še bistveno krajša zunanja razdalja med elektrodama pri odvodniku s kovinskim ohišjem v primerjavi z keramičnim ohišjem, kar je razvidno tudi iz risb v patentu US 4,924,347. Majhna razdalja poveča možnost zunanjega preboja.According to U.S. Pat. No. 4,924,347, ceramic housing gas arresters and metal housing gas arresters are known. At present, gas arresters with a ceramic housing are much more common in practical use, where the electrodes are separated by a ceramic insulating element, which is usually tube-shaped. The openings of the ceramic tube are closed with metal elements or assemblies of metal elements having the function of electrodes. Metal case arresters are relatively rare. They have a tube-shaped metal housing that has an opening on one side only and serves as an external electrode. The opening is closed with an insulating element through which another electrode passes. Until recently, their main drawback was the use of a glass insulating element, which in practice proves to be poor especially in mechanical and temperature loads. According to the patent Sl 23042, there is a new solution of a gas arrester with a metal housing having an insulating element made of ceramic instead of glass. This solves the problems of mechanical and temperature durability of gas arresters with metal housing. The main advantage of the metal housing is that it has a larger surface area than the electrodes of the same size as the ceramic housing. Larger electrode surfaces allow for less electrode loading and thus greater durability of the gas arrester in high-current shocks. The problem can only be left with a substantially shorter external distance between the electrodes at the arrester with a metal housing compared to the ceramic housing, as can also be seen from the drawings in US patent 4,924,347. The small distance increases the possibility of an external puncture.
Stabilen in hiter odziv plinskega odvodnika se običajno zagotavlja na dva načina: z dodatkom primernih kemijskih spojin in z grafitnim nanosom. Po US 4,924,347 so poznani dodatki raznih metalnih oksidov, po patentu US 7,795,810 se kot ugodna izkaže spojina K2WO4, medtem ko je po patentu US 5,995,355 predpostavljen dodatek večjega števeila različnih aktivnih spojin. Po patentih CA 1,126,329 in US 6,617,770 je znanih več rešitev nanosa grafitnih sledi na izolirnem elementu. V vseh primerih je grafitni nanos dodan na izolirni element pri plinskem odvodniku s keramičnim ohišjem. Po patentu Sl 23042 je znana tudi rešitev plinskega odvodnika s kovinskim ohišjem in nanosom grafitnih sledi. Pri tem natančna oblika nanosa ni predpostavljena.The stable and rapid response of a gas arrester is usually ensured in two ways: by the addition of suitable chemical compounds and by graphite application. According to U.S. Pat. No. 4,924,347, various metal oxide supplements are known, according to U.S. Pat. No. 7,795,810, the compound K 2 WO 4 is advantageous, while according to U.S. Pat. According to patents CA 1,126,329 and US 6,617,770, several solutions for applying graphite traces on an insulating element are known. In all cases, a graphite coating is added to the insulation element of a gas arrester with a ceramic housing. According to the patent Sl 23042, there is also a known solution of a gas arrester with a metal housing and the application of graphite traces. The exact form of the application is not assumed.
Opis rešitve tehničnega problemaDescription of solution to a technical problem
Bistvo plinskega odvodnika s kovinskim ohišjem je v tem, da vsebuje kovinsko ohišje kot zunanjo elektrodo, sredinsko elektrodo, ščit zunanje elektrode na najbolj obremenjenem mestu, izolirne elemente, plinsko polnjenje in grafitne sledi na izolirnih elementih. Hitro odzivnost in zanesljivo delovanje pri in po visokotokovnih obremenitvah odvodnika omogoča ščit in značilna geometrjska oblika izolirnih elementov ter primerno oblikovani nanosi grafitnih sledi na izolirnih elementih v kombinaciji z visokotemperaturno odpornimi materiali.The essence of a gas arrester with a metal housing is that it contains a metal housing as an external electrode, a center electrode, an external electrode shield at the busiest place, insulating elements, gas filling and graphite traces on the insulating elements. Fast response and reliable operation at and after high current arrester loads are ensured by the shield and the characteristic geometric shape of the insulating elements, as well as the appropriately formed deposits of graphite traces on the insulating elements in combination with high temperature resistant materials.
• ·• ·
V nadaljevanju bo izum podrobneje opisan s pomočjo slik, ki prikazujejo:Hereinafter, the invention will be described in greater detail by means of pictures showing:
Slika 1 - Presek plinskega odvodnika po izumuFigure 1 - Cross section of a gas arrester according to the invention
Slika 2 - Podrobnejši prikaz grafitnega nanosa na izolirnem elementu 5 ob uporabi izolirnega elementa 6Figure 2 - Detailed illustration of graphite coating on insulating element 5 using insulating element 6
Slika 3 - Prikaz detajla grafitnega nanosa na izolirnem elementu po varianti IFigure 3 - Detail of graphite coating on insulating element according to variant I
Slika 4 - Prikaz detajla grafitnega nanosa na izolirnem elementu po varianti IIFigure 4 - Detail of graphite coating on insulating element according to variant II
Slika 5 - Prikaz detajla grafitnega nanosa na izolirnem elementu po varianti IIIFigure 5 - Detail of graphite coating on insulating element according to variant III
Slika 6 - Prikaz oblike grafitnega nanosa na izolirnem elementu, kjer se nanos ne dotika elektrodFigure 6 - Display of the graphite coating form on an insulating element where the electrode is not contacted
Slika 7 - Prikaz oblike grafitnega nanosa na izolirnem elementu, kjer se nanos dotika elektrodFigure 7 - Illustration of a graphite coating shape on an insulating element where the coating contacts the electrodes
Slika 8 - Prikaz zaščite izolirnih elementov pred naparevanjem kovinskih parFigure 8 - Demonstration of protection of insulating elements against vaporization of metal vapors
Plinski odvodnik s kovinskim ohišjem za visokotokovne udare po izumu je sestavljen iz zunanjega ohišja 1, ki je obenem zunanja elektroda in je sestavljen iz ožjega dela 1a in širšega votlega valjastega dela 1b. V notranjosti dela 1b ohišja 1 je nameščen valjast ščit 2, v katerem je približno tretjina notranjega dela 3 sredinske elektrode. Ožji zunanji del 4 sredinske elektrode poteka skozi izolirni element 5 in izolirni element 6. Na izolirnem elementu 5 in/ali 6 je narejen nanos grafitnih prevodnih sledi 8, ki so debeline le okoli enega mikrometra ali manj. Kot prikazuje slika 6 je grafitna sled 8 približno v obliki velike črke J. Ker izkušnje kažejo, da se glede na mehanske in termične obremenitve najbolje izkažejo izolirni elementi iz keramike, bodo v nadaljevanju obravnavane izvedbe s keramičnimi izolirnimi elementi. Notranjost odvodnika je polnjena s primerno plinsko mešanico 7.The gas arrester with a metal housing for high-current shocks according to the invention consists of an outer housing 1, which is at the same time an external electrode and consists of a narrower part 1a and a wider hollow cylindrical part 1b. A cylindrical shield 2 is housed inside the part 1b of the housing 1, in which about one third of the inner part 3 is of the center electrode. The narrow outer portion 4 of the center electrode is passed through an insulating element 5 and an insulating element 6. An insulating element 5 and / or 6 is coated with graphite conductive tracers 8 which are only about one micrometer thick or less. As shown in Figure 6, the graphite trace 8 is roughly in the form of a capital J. Since experience shows that ceramic insulating elements are best shown in terms of mechanical and thermal loads, the following will be considered embodiments of ceramic insulating elements. The interior of the arrester is filled with a suitable gas mixture 7.
Kovinsko ohišje 1 je prednostno iz bakra, ki pa nima najboljše odpornosti proti visokim temperaturam, ki nastanejo ob gorenju obloka v notranjosti plinskega odvodnika. Izboljšanje visokotemperaturne obstojnosti notranjosti zunanje elektrode opravi ščit 2, ki je narejen iz materialov z dobro odpornostjo proti visokim temperaturam, ki poleg tega tudi dobro prevajajo električni tok. V izvedbenih primerih je uporabljen molibden ali volfram-baker, kjer je delež volframa vsaj 10 %. Ščit 2 je oblikovan kot kratka valjasta posodica, ki prekriva zunanjo elektrodo 1 na mestu konice notranjega dela 3 sredinske elektrode, ker je le-ta najbolj obremenjen del zunanje elektrode, kot je prikazano na sliki 1. V skrajnem primeru bi lahko celotno zunanjo elektrodo izdelali iz visokotemperaturno odpornega materiala, vendar takšna rešitev ni ekonomsko upravičena. Iz podobnih razlogov kot ščit je tudi notranji del 3 sredinske elektrode iz visokotemperaturno odpornih materialov kot je molibden ali volfram-baker, kjer je delež volframa vsaj 10 %. Ta kombinacija materiala je potrebna zato, ker je aktivna površina sredinske elektrode bistveno manjša od površine zunanje elektrode. Iz ekonomskih razlogov je sredinska elektroda lahko sestavljena iz dveh delov, kjer je zunanji del 4 iz cenejšega bakra.The metal housing 1 is preferably copper, but it does not have the best resistance to the high temperatures produced by the arc burning inside the gas arrester. Improving the high temperature stability of the inside of the outer electrode is accomplished by a shield 2 made of materials with good resistance to high temperatures, which also conduct electrical current well. In embodiments, molybdenum or tungsten copper is used, wherein the tungsten content is at least 10%. The shield 2 is designed as a short cylindrical container that covers the outer electrode 1 at the point of the tip of the inner part 3 of the center electrode, since this is the most loaded part of the outer electrode, as shown in Figure 1. In the extreme case, the entire outer electrode could be made made of high temperature resistant material, but such a solution is not economically justified. For shielding reasons, the inner part 3 of the center electrode is made of high temperature resistant materials such as molybdenum or tungsten copper, with a tungsten content of at least 10%. This combination of material is required because the active surface of the center electrode is significantly smaller than the surface of the outer electrode. For economic reasons, the center electrode can be made up of two parts where the outer part 4 is made of cheaper copper.
Izolimi element 5 kot tudi izolirni element 6 je iz keramike ali po kemijskih lastnostih podobnega materiala. Nanos grafitnih sledi 8 se lahko nahaja na vsakem izmed izolirnih elementov 5 in/ali 6. Funkcija grafitnega nanosa je dobro poznana, saj vpliva predvsem na hitrost odziva plinskega odvodnika na naraščajočo prenapetost. To je pomembno predvsem pri hitrem naraščanju napetosti, ki je običajno velikostnega reda 109 V/s ali več. S hitrostjo odziva plinskega odvodnika je opredeljena dinamična vžigna napetost, ki je vedno višja od vžigne napetosti pri počasnem naraščanju napetosti, npr. 100 V/s. S posebno oblikovanim nanosom grafitnih sledi 8 na izolirni element 5 in/ali 6 se zniža dinamična vžigna napetost. S tem se poveča zaščitni nivo prenapetostne zaščite, saj je najvišja možna napetost na plinskem odvodnkiku s hitrim odzivom nižja kot v primeru plinskega odvodnika s počasnim odzivom. Te dinamične vžigne napetosti pri plinskih odvodnikih za visokotokovne udare morajo biti običajno nižje od 1500 V.The insulating element 5 as well as the insulating element 6 is made of ceramic or chemical material of a similar material. The application of graphite traces 8 may be located on any of the insulating elements 5 and / or 6. The function of graphite deposition is well known, since it mainly affects the speed of response of the gas arrester to the increasing surge. This is especially important in the case of a rapid increase in voltage, usually of the order of 10 9 V / s or more. The response rate of a gas arrester defines a dynamic ignition voltage that is always higher than the ignition voltage at a slow rise in voltage, e.g. 100 V / s. The specially designed application of graphite traces 8 to the insulating element 5 and / or 6 reduces the dynamic firing voltage. This increases the protection level of the surge protector, since the highest possible voltage on a quick-response gas arrester is lower than in the case of a slow-response gas arrester. These dynamic ignition voltages for high-pressure gas arresters should normally be lower than 1500 V.
V primeru visokotokovnih udarov lahko oblok poškoduje del nanosa grafitnih sledi 8 in posledično se lahko podaljša tudi odzivni čas plinskega odvodnika in s tem dinamična vžigna napetost lahko preseže dopustne vrednosti. Po izumu so grafitne sledi narejene na tak način, da oblika izolirnih zagotavlja varovanje sledi pred oblokom. S posebno obliko izolirnega elementa 5 in/ali izolirnega elementa 6 je preprečeno, da bi grafitni nanos prišel v stik s preveč vročo plazmo, ki nastane ob gorenju obloka. Oblok ima določeno električno upornost in se segreva zaradi električnega toka, ki teče skozi oblok. S prevajanjem toplote se segreva tudi preostali plin okoli obloka, ki prav tako prične prevajati električni tok. V plinskem odvodniku je torej med elektrodama vroča plazma, katere temperaturna porazdelitev je odvisna od električnega toka, ki segreva plazmo oziroma plinsko mešanico 7. Temperatura narašča hitreje na delih kjer teče več toka. Osnovna značilnost toka pa je, da si izbere pot z najmanjšo upornostjo, kar pomeni, da se lahko mesto grafitnega nanosa s primerno oviro zaščiti, tako da se prepreči potek obloka povsem blizu grafitnega nanosa. Posledično se pričakuje nižja temperatura na mestu grafitnega nanosa in s tem manjši vpliv vroče plazme na grafitni nanos.In the case of high-impact shocks, the arc may damage part of the application of graphite traces 8 and, as a consequence, the response time of the gas arrester may be extended and thus the dynamic ignition voltage may exceed the allowable values. According to the invention, the graphite traces are made in such a way that the shape of the insulators ensures the protection of the traces against the arc. The special design of the insulating element 5 and / or the insulating element 6 prevents the graphite application from coming into contact with the excessively hot plasma produced by the burning of the arc. The arc has a certain electrical resistance and is heated due to the electrical current flowing through the arc. The heat transfer also heats the remaining gas around the arc, which also starts to conduct electrical current. In the gas arrester, therefore, there is hot plasma between the electrodes, whose temperature distribution depends on the electric current that heats the plasma or gas mixture 7. The temperature rises faster in parts where more current flows. The basic feature of the flow, however, is that it chooses the path with the least resistance, which means that the site of the graphite coating can be protected with a suitable barrier so as to prevent the arc from flowing completely close to the graphite coating. As a consequence, a lower temperature at the site of graphite deposition is expected and thus a smaller influence of hot plasma on graphite deposition.
V nadaljevanju je opisanih nekaj primerov zaščite grafitnega nanosa, ki imajo skupno značilnost, da sta izolirna elementa oblikovana tako, da opravljata funkcijo senčenja obloka. Na sliki 2 je prikazan primer uporabe izolirnega elementa 5 in zaščitnega izolirnega elementa 6, kjer je grafitni nanos nanešen na izolirni element 5. Pri tem ima izolirni element 6 obliko ploščice z luknjo, ploščica pa ne sega do zunanje elektrode 1.The following are some examples of graphite coating protection that have the common feature that the insulating elements are designed to perform the function of shading the arc. Figure 2 shows an example of the use of an insulating element 5 and a protective insulating element 6, where a graphite coating is applied to the insulating element 5. In this case, the insulating element 6 takes the form of a hole plate and the plate does not extend to the outer electrode 1.
Senčenje lahko zagotovimo tudi brez izolirnega elementa 6. Plinski odvodnik s kovinskim ohišjem prikazan na sliki 3 po varianti I je značilen po obliki izolirnega elementa 5a, ki ima po celem obodu ozek zvišan del 5a' ter da je grafitni sled 8a narejena po ploskvi 5a. Plinski odvodnik s kovinskim ohišjem prikazan na sliki 4 po varianti II je značilen po obliki izolirnega elementa 5b, ki ima po celem obodu ozek del 5b' ter da je grafitni nanos 8b narejen po ploskvi 5b. Plinski odvodnik s kovinskim ohišjem prikazan na sliki 5 po varianti III je značilen po obliki izolirnega elementa 5c, ki ima po celem obodu vdolbino 5c' ter da je grafitni nanos 8c narejen v tej vdolbini.Shading can also be ensured without an insulating element 6. The gas arrester with a metal housing shown in Figure 3 according to variant I is characterized by the form of an insulating element 5a having a narrow elevated portion 5a 'along the entire circumference and that the graphite trace 8a is made on the surface 5a. The gas arrester with metal housing shown in Fig. 4 according to variant II is characterized by the form of an insulating element 5b having a narrow part 5b 'along the entire circumference and that the graphite coating 8b is made on the surface 5b. The gas arrester with metal housing shown in Figure 5 according to variant III is characterized by the form of an insulating element 5c having a recess 5c 'along the entire circumference and that a graphite coating 8c is formed in this recess.
Poleg obstojnosti grafitnega nanosa pa ima oblika nanosa grafitnih sledi 8 vpliv tudi na vžigne napetosti. Oddaljenost grafitnega nanosa od elektrod ima vpliv na samo vžigno napetost, kot tudi na stabilnost vžigne napetosti pri zaporednih meritvah. Pri plinskem odvodniku s kovinskim ohišjem je razdalja med elektrodama po izolirnem elementu bistveno krajša kot v primeru plinskega odvodnika s keramičnim ohišjem pri enaki dimenziji, zato je zelo pomemben poudarek na natančnem nanosu grafitnih sledi na površino. Na slikah 6 in 7 so prikazane osnovne značilnosti oblike nanosa grafitnih sledi 8 na izolirnem elementu 5. Sliki 6 in 7 kažeta prerez plinskega odvodnika tik nad izolirnim elementom 5 v pogledu proti izolirnem elementu 5 kjer so prikazani razni primeri nanosa grafitnih sledi. V primeru da ne želimo stika grafitne sledi 8 z zunanjim delom 4 sredinske elektrode mora biti del nanosa grafitnih sledi, ki je najbližje sredinski elektrodi nanesen v tangentni smeri glede na stik zunanjega dela 4 sredinske elektrode s primarnim izolirnim elementom 5 (slika 6). S tem dosežemo najbolj enakomerno razdaljo med sredinsko elektrodo in začetkom nanosa grafitnih sledi. Na sliki 6 je s črtkano črto prikazana tudi ustrezna tangenta, ki je odmaknjena za razdaljo 1c od stika sredinske elektrode in izolirnega elementa. V primeru da stik grafitne sledi 8 z zunanjo elektrodo 1 ni zaželen, mora biti del nanosa grafitnih sledi 8, ki je najbližje zunanji elektrodi nanesen na delu ali celi krožnici, ki ima isto središče kot krožnica, ki označuje stik zunanje elektrode 1 z izolirnim elementom 5. S tem je dosežena enakomerna razdalja med zunanjo elektrodo in začetkom nanosa grafitnih sledi 8. Na sliki 6 je s črtkano krožnico prikazana tudi ustrežena istosrediščna krožnica, ki je odmaknjena za razdaljo 1d od stika zunanje elektrode in izolirnega elementa. Stabilnost vžignih napetosti pri zaporednih meritvah vžigne napetosti pa se lahko izboljša tudi s tem da se nanos grafitnih sledi 8 dotika bodisi sredinske bodisi zunanje elektrode. Različni primeri stika nanosa grafitnih sledi z zunanjo in sredinsko elektrodo so prikazani na sliki 7. Grafitna sled 8e je približno v obliki velike črke J in je v stiku s sredinsko elektrodo. Grafitna sled 8f je v obliki male črke r in je v stiku z zunanjo elektrodo. Grafitna sled 8g je v obliki kratke črte in je v stiku s sredinsko elektrodo. Grafitna sled 8h je v obliki kratke črte in je v stiku z zunanjo elektrodo. Lastnosti nanosa grafitnih sledi 8 na izolirnem elementu 5, kot je prikazano na slikah 6 in 7 v splošnem veljajo tudi za nanos grafitnih sledi 8 na izolirnem elementu 6. Mesto nanosa grafitne sledi je odvisna od zahtev in geometrije plinskega odvodnika in je lahko nanešen na izolirnem elementu 5 ali 6 ali pa na obeh izolirnih elementih.In addition to the persistence of graphite coating, the form of graphite trace coating 8 also has an effect on ignition stresses. The distance of the graphite coating from the electrodes has an effect on the ignition voltage itself, as well as the stability of the ignition voltage in successive measurements. In the case of a gas arrester with a metal housing, the distance between the electrodes along the insulating element is much shorter than in the case of a gas arrester with a ceramic housing of the same dimension, so it is very important to emphasize the precise application of graphite traces on the surface. Figures 6 and 7 show the basic characteristics of the form of deposition of graphite tracers 8 on the insulating element 5. Figures 6 and 7 show the cross-section of the gas arrester just above the insulating element 5 in view of the insulating element 5 showing various examples of depositing graphite tracings. If we do not want the contact of graphite trace 8 with the outer part 4 of the center electrode, the part of the graphite trace application closest to the center electrode should be applied in a tangent direction with respect to the contact of the outer part 4 of the center electrode with the primary insulating element 5 (Figure 6). This achieves the most uniform distance between the center electrode and the beginning of the application of graphite traces. In Fig. 6, the dashed line also shows the corresponding tangent, which is offset by a distance of 1c from the contact of the center electrode and the insulating element. If the contact of graphite trace 8 with the outer electrode 1 is not desirable, the part of the graphite trace application 8 that is closest to the outer electrode must be applied to a part or the whole circle having the same center as the circle marking the contact of the outer electrode 1 with the insulating element 5. In this way a uniform distance is reached between the outer electrode and the beginning of deposition of graphite traces 8. In Fig. 6, the dashed circle also shows a aligned center circle, which is spaced 1d away from the contact of the outer electrode and the insulating element. The stability of the ignition voltages in successive measurements of the ignition voltages can also be improved by the application of graphite traces 8 by touching either the center or the outer electrode. Various examples of the contact of the application of graphite traces with the outer and center electrodes are shown in Figure 7. The graphite trace 8e is approximately in the capital letter J and is in contact with the center electrode. Graphite trace 8f is r-shaped and in contact with an outer electrode. The 8g graphite trace is in the form of a short line and in contact with the center electrode. The 8h graphite trace is in the form of a short line and in contact with an external electrode. The properties of the application of graphite traces 8 on the insulating element 5, as shown in Figures 6 and 7 are generally applicable to the application of graphite traces 8 on the insulating element 6. The location of the application of graphite traces depends on the requirements and geometry of the gas arrester and can be applied on the insulating element element 5 or 6 or on both insulating elements.
Ob visokotokovnih obremenitvah se pogosto pojavi izparevanje materiala iz elektrod. Posledično se lahko izparjen material kondenzira na izolirnih elementih, kar povzroči zmanjšanje omske upornosti med elektrodama plinskega odvodnika. V skrajnem primeru se lahko vžigna napetost tako zmanjša, da odvodnik ni več primeren za prvotni namen uporabe, kjer mora v primeru nizke napetosti na elektrodah delovati kot popolni izolator. To je lahko učinkovito rešeno s primerno obliko izolirnega elementa 6. Primer je prikazan na sliki 8, kjer ima izolirni element 6 v stiku z izolirnimEvaporation of the material from the electrodes often occurs under high current loads. As a result, the evaporated material may condense on the insulating elements, resulting in a decrease in the ohmic resistance between the gas arrester electrodes. In extreme cases, the ignition voltage may be reduced so that the arrester is no longer suitable for its original purpose of use, where in the case of low voltage the electrodes must act as a complete insulator. This can be efficiently solved by the appropriate shape of the insulating element 6. An example is shown in Figure 8, where the insulating element 6 is in contact with the insulating element.
elementom 5 zaobljenem rob, ki je označen s krogom B. V primeru kondenzacije kovinskih par na površinah izolirnih elementov se večina par kondenzira na površinah, ki so direktno vidne oziroma dostopne iz notranjosti plinskega odvodnika. Krog B označuje del, ki je zasenčen z izolirnim elementom 6, kjer je naparevanje minimalno.element 5 the rounded edge indicated by circle B. In the case of condensation of metal vapors on the surfaces of insulating elements, most vapors condense on surfaces that are directly visible or accessible from the inside of the gas arrester. Circle B indicates the part shaded by the insulating element 6, where the evaporation is minimal.
Z opisano inovacijo je zagotovljena visoka omska upornost med elektrodama plinskega odvodnika tudi v primeru visokotokovnih udarov, ki povzročijo odparevanje materiala iz kovinskih elektrod. Reakcijski čas plinskega odvodnika je reda nekaj deset nanosekund. V primeru zelo hitrega naraščanja napetosti na elektrodah le-ta lahko doseže zelo visoko vrednost. Posledično lahko pride celo do preboja med ožjim zunanjim delom 4 sredinske elektrode in zunanjo elektrodo 1 po zunanjem delu odvodnika. Učinkovita in enostavna je rešitev, da ima primarni izolirni element 5 na zunanjem delu oblikovan dodaten obroč 5', ki podaljša zunanjo izolacijsko razdaljo med elektrodama plinskega odvodnika. Ta razdalja je znatno daljša od razdalje med elektrodama znotraj plinskega odvodnika. S tem je močno zmanjšana verjetnost zunanjega preboja in poenostavljena montaža plinskega odvodnika.The described innovation ensures high ohmic resistance between the gas arrester electrodes even in the case of high-current shocks that cause the material from the metal electrodes to evaporate. The reaction time of the gas arrester is of the order of tens of nanoseconds. In the case of a very rapid increase in voltage on the electrodes, the electrode voltage can reach a very high value. As a result, there may even be a break between the narrow outer portion 4 of the center electrode and the outer electrode 1 along the outer portion of the arrester. An effective and simple solution is that the primary insulating element 5 has an additional ring 5 'formed on the outer part, which extends the outer insulation distance between the gas arrester electrodes. This distance is significantly longer than the distance between the electrodes inside the gas arrester. This greatly reduces the likelihood of an external leak and simplifies the installation of a gas arrester.
S plinskim odvodnikom s kovinskim ohišjem za visokotokovne udare po izumu je rešen problem zaščite grafitnih prevodnih sledi in posledično boljše in zanesljivejše odzivnosti odvodnika. Z zagotavljanjem funkcije senčenja obloka je podaljšana življenjska doba grafitnega nanosa in posledično vzdržljivost plinskega odvodnika. Stabilnost vžignih napetosti plinskega odvodnika pa se izboljša, če nanesemo grafitne sledi tako da se dotikajo kovinskega ohišja. Ščit iz visokotemperaturno obstojnega materiala zmanjšuje odparevanje materiala s kovinskega ohišja. Vsi ti novi tehnološki prijemi omogočajo izdelavo plinskih odvodnikov za tokovne udare do 200 kA, pri čemer so zunanje mere plinskega odvodnika manjše kot pri do sedaj znanih rešitvah.A gas arrester with a metal housing for high-current shocks according to the invention solves the problem of protecting the graphite conductive traces and, consequently, better and more reliable response of the arrester. Providing the shading function of the arc extends the life of the graphite coating and consequently the durability of the gas arrester. However, the stability of the ignition voltages of the gas arrester is improved by applying graphite traces by touching the metal housing. A shield made of high temperature resistant material reduces the evaporation of the material from the metal housing. All these new technological approaches make it possible to produce gas arresters for current surges of up to 200 kA, with the external dimensions of the gas arrester being smaller than the solutions known so far.
Claims (13)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI201100094A SI23691A (en) | 2011-03-21 | 2011-03-21 | Gas discharge tube with metal body for high current surges |
PCT/SI2012/000016 WO2012128729A1 (en) | 2011-03-21 | 2012-03-16 | Gas discharge tube with a metal body for high-current surges |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI201100094A SI23691A (en) | 2011-03-21 | 2011-03-21 | Gas discharge tube with metal body for high current surges |
Publications (1)
Publication Number | Publication Date |
---|---|
SI23691A true SI23691A (en) | 2012-09-28 |
Family
ID=46208148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SI201100094A SI23691A (en) | 2011-03-21 | 2011-03-21 | Gas discharge tube with metal body for high current surges |
Country Status (2)
Country | Link |
---|---|
SI (1) | SI23691A (en) |
WO (1) | WO2012128729A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017115030A1 (en) * | 2017-07-05 | 2019-01-10 | Tdk Electronics Ag | Arrester for protection against overvoltages |
CN113765083B (en) * | 2021-07-22 | 2022-10-25 | 西安交通大学 | Graphite-metal coating-based controllable multilayer gap overvoltage protector with high weldability |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2834088A1 (en) | 1978-08-03 | 1980-02-14 | Siemens Ag | GAS DISCHARGE PIPES, IN PARTICULAR SURGE PROTECTORS |
FR2636167B1 (en) | 1988-09-08 | 1990-11-16 | Citel Cie Indle Tubes Lampes E | GAS PROTECTOR CONTAINING A MINERAL ADDITIVE |
CH691245A5 (en) | 1996-01-12 | 2001-05-31 | Epcos Ag | Gas-filled discharge path. |
JP2002270329A (en) | 2001-03-09 | 2002-09-20 | Shinko Electric Ind Co Ltd | Gas-enclosed switching discharge tube |
DE102005013499A1 (en) | 2005-03-23 | 2006-10-05 | Epcos Ag | Gas filled discharge line |
DE102005036265A1 (en) * | 2005-08-02 | 2007-02-08 | Epcos Ag | radio link |
SI23042A (en) | 2009-04-24 | 2010-10-29 | Iskra Zaščite d.o.o. | Gas arrester with metal enclosure and conductive layer applied on an insulating element |
-
2011
- 2011-03-21 SI SI201100094A patent/SI23691A/en not_active IP Right Cessation
-
2012
- 2012-03-16 WO PCT/SI2012/000016 patent/WO2012128729A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2012128729A1 (en) | 2012-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6710996B2 (en) | Surge arrestor | |
ES2819508T3 (en) | Electrical switching device for medium and / or high voltage applications | |
US10128028B2 (en) | Varistor device | |
SI23303A (en) | Overvoltage arrester with rotating disk and electronic component for improvement of operation reliability | |
US3898533A (en) | Fail-safe surge protective device | |
SI23462A (en) | Varistor fuse | |
US4002952A (en) | Electric overvoltage arrester with carbon air gap and gas tube | |
ES2369329T3 (en) | OVERVOLTAGE DOWNLOADER. | |
US4204238A (en) | Surge voltage lightning arresters | |
SI23691A (en) | Gas discharge tube with metal body for high current surges | |
CN205900497U (en) | Gas discharge tube | |
KR20180135888A (en) | Surge protection device | |
US4293887A (en) | Surge arrester with improved impulse ratio | |
SI24350A (en) | Flat gas discharger | |
RU2366051C1 (en) | Switching device | |
US2793331A (en) | Semi-conductive devices | |
KR20180136441A (en) | Surge protection device | |
KR101000484B1 (en) | Discharge element with discharge-control electrode and the control apparatus thereof | |
CA2139329A1 (en) | Gas tube vent-safe device | |
JP2013115106A (en) | Chip resistor | |
SI23042A (en) | Gas arrester with metal enclosure and conductive layer applied on an insulating element | |
GB1564224A (en) | Excess voltage arresters | |
US1458611A (en) | Lightning arrester | |
KR100604250B1 (en) | Surge absorber | |
US2859373A (en) | Lightning arrester |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OO00 | Grant of patent |
Effective date: 20121008 |
|
SP73 | Change of data on owner |
Owner name: CRDCE D.O.O.; SI Effective date: 20170223 |
|
SP73 | Change of data on owner |
Owner name: RAYCAP D.O.O.; SI Effective date: 20201217 |
|
NC00 | Annulment, publication of a decision on annulment of right due to court decision or non-fulfilment of conditions for patent protection |
Effective date: 20210611 |