SE537864C2 - A method and apparatus for geometric verification in the additive manufacture of three-dimensional objects - Google Patents
A method and apparatus for geometric verification in the additive manufacture of three-dimensional objects Download PDFInfo
- Publication number
- SE537864C2 SE537864C2 SE1450569A SE1450569A SE537864C2 SE 537864 C2 SE537864 C2 SE 537864C2 SE 1450569 A SE1450569 A SE 1450569A SE 1450569 A SE1450569 A SE 1450569A SE 537864 C2 SE537864 C2 SE 537864C2
- Authority
- SE
- Sweden
- Prior art keywords
- layer
- model
- digital
- images
- copy
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/90—Means for process control, e.g. cameras or sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/40—Radiation means
- B22F12/41—Radiation means characterised by the type, e.g. laser or electron beam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/141—Processes of additive manufacturing using only solid materials
- B29C64/153—Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/386—Data acquisition or data processing for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/386—Data acquisition or data processing for additive manufacturing
- B29C64/393—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
- B33Y50/02—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2203/00—Controlling
- B22F2203/03—Controlling for feed-back
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Analytical Chemistry (AREA)
- Plasma & Fusion (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
Abstract
537 864 Sammanfattning Foreliggande uppfinning avser en apparat och ett forfarande for geometrisk verifiering av tredimensionella objekt under pagaende tillverkning av objekten. Tillverkningsprocessen omfattar successiv addering av pulverlager, och sammansmaltning av vart och ett av lagren efter att det adderats baserat pa en digital 3D-designmodell av objektet. Verifieringsmetoden omfattar att upprepat for varje lager ta en eller flera bilder av det nuvarande lagret, skapa en digital 3D-skivmodell av det nuvarande lagret baserat pa de tagna en eller flera bilderna, skapa en digital 3D-kopia av objektet som tillverkas utifran 3Dskivmodellen av det foreliggande lagret och 3D-skivmodeller av tidigare lager, och verifiering av geometrin hos det objekt som tillverkas baserat pa 3D-kopian av objektet som tillverkas och 3D-designmodellen av objektet. 537 864 Summary The present invention relates to an apparatus and method for geometric verification of three-dimensional objects during ongoing manufacture of the objects. The manufacturing process involves the gradual addition of powder layers, and the fusion of each of the layers after it has been added based on a digital 3D design model of the object. The verification method involves repeatedly taking for each layer one or more images of the current layer, creating a digital 3D disk model of the current layer based on the taken one or more images, creating a digital 3D copy of the object made from the 3D disk model of the existing layer and 3D disk models of previous layers, and verification of the geometry of the object being manufactured based on the 3D copy of the object being manufactured and the 3D design model of the object.
Description
Foreliggande uppfinning avser en apparat och ett forfarande for geometrisk verifiering av tredimensionella objekt under pAg5ende tillverkning av objekten. Tillverkningsprocessen omfattar successiv addering av pulverlager, och sammansmaltning av vart och ett av lagren efter att det adderats baserat p6 en digital 3D-designmodell av objektet. The present invention relates to an apparatus and a method for geometric verification of three-dimensional objects during pending manufacture of the objects. The manufacturing process involves the gradual addition of powder layers, and the fusion of each of the layers after it has been added based on a digital 3D design model of the object.
Verifieringsmetoden omfattar att upprepat for varje lager ta en eller flera bilder av det nuvarande lagret, ska pa en digital 3D-skivmodell av det nuvarande lagret baserat pA de tagna en eller flera bilderna, skapa en digital 3D-kopia av objektet som tillverkas utifra'n 3Dskivmodellen av det foreliggande lagret och 3D-skivmodeller av tidigare lager, och verifiering av geometrin hos det objekt som tillverkas baserat p6 3D-kopian av objektet som tillverkas och 3D-designmodellen av objektet. 1/-sta 3.• S55511,15,ing av5ager 4,5 55:anning a nej! :5-35:51,5:05, As 537 864 Sammanfattning Foreliggande uppfinning avser en apparat och ett forfarande for geometrisk verifiering av tredimensionella objekt under pagaende tillverkning av objekten. Tillverkningsprocessen omfattar successiv addering av pulverlager, och sammansmaltning av vart och ett av lagren efter att det adderats baserat pa en digital 3D-designmodell av objektet. The verification method involves repeatedly for each layer taking one or more images of the current layer, on a digital 3D disk model of the current layer based on the one or more images taken, creating a digital 3D copy of the object made from the The 3D disk model of the present layer and 3D disk models of previous layers, and verification of the geometry of the object being manufactured based on the 3D copy of the object being manufactured and the 3D design model of the object. 1 / -sta 3. • S55511,15, ing av5ager 4,5 55: anning a nej! : 5-35: 51,5: 05, As 537 864 Summary The present invention relates to an apparatus and a method for geometric verification of three-dimensional objects during the ongoing manufacture of the objects. The manufacturing process involves the gradual addition of powder layers, and the fusion of each of the layers after it has been added based on a digital 3D design model of the object.
Verifieringsmetoden omfattar att upprepat for varje lager ta en eller flera bilder av det nuvarande lagret, skapa en digital 3D-skivmodell av det nuvarande lagret baserat pa de tagna en eller flera bilderna, skapa en digital 3D-kopia av objektet som tillverkas utifran 3Dskivmodellen av det foreliggande lagret och 3D-skivmodeller av tidigare lager, och verifiering av geometrin hos det objekt som tillverkas baserat pa 3D-kopian av objektet som tillverkas och 3D-designmodellen av objektet. 537 864 En metod och en apparat for geometrisk verifiering vid additiv tillverkning av tredimensionella objekt. The verification method involves repeatedly taking for each layer one or more images of the current layer, creating a digital 3D disk model of the current layer based on the taken one or more images, creating a digital 3D copy of the object made from the 3D disk model of the existing layer and 3D disk models of previous layers, and verification of the geometry of the object being manufactured based on the 3D copy of the object being manufactured and the 3D design model of the object. 537 864 A method and apparatus for geometric verification in the additive manufacturing of three-dimensional objects.
Omr5de for uppfinningen Foreliggande uppfinning hanfor sig till ett forfarande och en apparat for geometrisk kontroll av tredimensionella objekt under p5g5ende additiv tillverkning av objekten. Additiv tillverkning benamns ocks5 3D-printing. FIELD OF THE INVENTION The present invention relates to a method and an apparatus for geometric control of three-dimensional objects during pending additive manufacture of the objects. Additive manufacturing is also called 3D printing.
Kand teknik Additiv tillverkning av ett objekt innebar att successivt addera lager p5 lager av ett material baserat p5 en digital 3D-designmodell, sAsom en CAD-modell, av objektet, och dar vane lager stelnar for att skapa ett fast objekt. Materialet i lagret Jr exempelvis i pulverform. Dessa lager, som motsvarar virtuella tvarsnitt ur konstruktionsmodellen, smalts ihop for att skapa den slutliga formen. Kand technology Additive manufacturing of an object meant gradually adding layers p5 layers of a material based on a digital 3D design model, such as a CAD model, of the object, and where habit layers solidify to create a solid object. The material in the bearing Jr, for example, in powder form. These layers, which correspond to virtual cross-sections from the construction model, are fused together to create the final shape.
Additiv tillverkning (Additiv Manufacturing (AM) eller 3D-printning är en process for framstallning av ett tre-dimensionell fast objekt, av praktiskt taget vilken form som heist frAn en digital modell. 3D-utskrifter sker med hjalp av en additiv process, dar lager av material successivt laggs p5 varandra i olika former. Additive Manufacturing (AM) or 3D printing is a process for producing a three-dimensional solid object, of virtually any shape heist from a digital model. 3D printing is done using an additive process, where layers of materials are successively laid on each other in different shapes.
Additiv tillverkning innebar stor designfrihet jamfort med konventionella produktionsmetoder, som till storsta delen innebar avlagsnande av material genom metoder s5som skarande bearbetning. Det fysiska objektet är byggt fr5n exempelvis en pulverbadd, lager for lager, till ett komplett objekt. Extremt komplexa yttre och inre geometrier och ytor kan skapas, och darmed kommer behovet att kunna verifiera detta geometriskt. Verifiering av AM-objekt med befintliga metoder Jr tidskravande och kostsamt, och kan ibland inte ens uppn5s med konventionell teknik. Additive manufacturing entailed great design freedom compared with conventional production methods, which for the most part involved removal of material by methods such as cutting processing. The physical object is built from, for example, a powder bath, layer by layer, into a complete object. Extremely complex external and internal geometries and surfaces can be created, and thus the need will be able to verify this geometrically. Verification of AM objects with existing methods is time consuming and costly, and sometimes can not even be achieved with conventional technology.
Komplexa geometrier och i synnerhet de inre geometrierna kan, till viss del, verifieras genom att anvanda datortomografi (Computer Tomography, CT). Analysen Jr dock tidskravande och darmed kostsamt samt begransas av att upplosningen som minskar i takt med behovet av hogre penetrationskraft (Elektrisk spanning). Detta innebar att objekt i hogdensitetsmaterial och/eller storre objekt med medelhog till hog densitet inte kan analyseras med tillracklig noggrannhet. Sjalvklart finns det objekt lampliga for CT-inspektion. Nackdelen ligger cI5 i det faktum att det innebar ett tillkommande separat arbetsmoment, som tillkommer efter det att objektet Jr fardigt, vilket okar den totala ledtiden. Dessutom är antalet objekt som verifieras samtidigt starkt begransad vid anvandning av CT-verifiering. Complex geometries and in particular the internal geometries can, to some extent, be verified using computer tomography (CT). However, the analysis is time consuming and thus costly and is limited by the fact that the resolution decreases in step with the need for higher penetration force (electric voltage). This meant that objects in high density material and / or larger objects with medium high to high density could not be analyzed with sufficient accuracy. Of course, there are objects suitable for CT inspection. The disadvantage lies cI5 in the fact that it involved an additional separate working step, which is added after the object Jr is finished, which increases the total lead time. In addition, the number of objects that are verified at the same time is strongly limited when using CT verification.
W02013/098.054 beskriver en metod for att detektera defekter i tredimensionella objekt. Metoden beskriven i W02013098054 (Al) är konfigurerad for att detektera fel i det sammansmalta skiktet, genom att ta Atminstone en bild av ett smalt skikt (n) och sedan ta 1 537 864 atminstone en bild av nasta smalta skikt (n + 1) och sedan jamfora dessa med en motsvarande plan i 3D-designmodellen. WO2013 / 098.054 describes a method for detecting defects in three-dimensional objects. The method described in WO2013098054 (A1) is configured to detect defects in the fused layer, by taking At least one image of a narrow layer (n) and then taking at least one image of the next narrow layer (n + 1) and then compare these with a corresponding plan in the 3D design model.
Syfte och sammanfattning av uppfinningen Ett syfte med foreliggande uppfinning Jr att astadkomma en 3D-geometrisk verifiering av tredimensionella objekt under pagaende additiv tillverkning av objektet, som 5tminstone delvis overvinner de ovan angivna problemen. OBJECT AND SUMMARY OF THE INVENTION An object of the present invention is to provide a 3D geometric verification of three-dimensional objects during ongoing additive manufacturing of the object, which at least partially overcomes the above problems.
Detta syfte uppnas genom forfarandet som definieras i krav 1. This object is achieved by the method defined in claim 1.
Ett forfarande for geometrisk kontroll av tredimensionella objekt under pagaende tillverkningen av objekten, varvid tillverkningsprocessen innefattar att lager for lager adderas baserade pa en digital CAD modell av objektet, samt att varje lager sammansmalts efter det att lagret har applicerats. Metoden kannetecknas av att den for varje lager upprepar: en eller flera bilder av det nuvarande lagret tas, en digital 3D-skivmodell av det nuvarande lagret skapas baserat p5 de tagna en eller flera bilderna, en digital 3D-kopia av objektet som tillverkas skapas baserat pa 3D- skivmodellen av foreliggande lager och 3D-skivmodeller av tidigare lager, och geometrin hos det objekt som tillverkas verifieras baserad p5 3D-kopian av objektet som tillverkas och 3D-designmodellen av objektet. A method for geometric control of three-dimensional objects during the ongoing manufacture of the objects, the manufacturing process comprising adding layer by layer based on a digital CAD model of the object, and merging each layer after the layer has been applied. The method can be characterized by repeating for each layer: one or more images of the current layer are taken, a digital 3D disc model of the current layer is created based on the one or more images taken, a digital 3D copy of the object being produced is created based on the 3D disk model of the present layer and 3D disk models of previous layers, and the geometry of the object being manufactured is verified based on the 3D copy of the object being manufactured and the 3D design model of the object.
Tanken Jr att utforma ett inbyggt system ftir realtidsverifiering av dimensioner/geometrier i additiva tillverkningsprocesser. Verifieringsprocessen är iterativ, pagar parallellt med produktionen och Jr lamplig for pulverbaddteknologier sa val som for "Blown Powder Technology". Uppfinningen gar det mojligt att i realtid detektera eventuella avvikelser fran 3D-designmodellen/CAD-filen. The idea is to design a built-in system for real-time verification of dimensions / geometries in additive manufacturing processes. The verification process is iterative, pays in parallel with the production and is suitable for powder bath technologies as well as for "Blown Powder Technology". The invention makes it possible to detect in real time any deviations from the 3D design model / CAD file.
Grundtanken Jr att, for varje palagt lager, ta en eller flera bilder och skapa en 3D skivmodell av det aktuella lagret. Skivmodellerna sammanstalls sedan till en volym; en 3D-kopia av det fysiska objektet. 3D-kopian jamfors kontinuerligt med den ursprungliga designmodellen/CADfilen. Systemet kan sedan, baserat p5 tillatna toleranser has den ursprungliga CAD-filen, anyandas for att kontrollera och sakerstalla kvaliteten med avseende pa geometrin has det fysiska objektet. Eftersom jamforelsen av de tva modellerna Jr iterativ sker geometriverifieringen i realtid under pagaende byggprocess. The basic idea is, for each layer laid, to take one or more pictures and create a 3D disc model of the current layer. The disc models are then compiled into a volume; a 3D copy of the physical object. The 3D copy is continuously compared with the original design model / CAD file. The system can then, based on permissible tolerances, have the original CAD file, anyandas to check and ensure the quality with respect to the geometry has the physical object. Since the comparison of the two models Jr iterative, the geometry verification takes place in real time during the ongoing construction process.
Systemet kan verifiera komplexa inre ytor/geometrier aven has objekt av hogdensitetsmaterial som inte kan verifieras med hjalp av andra tillgangliga tekniker. The system can verify complex internal surfaces / geometries even objects of high density material that cannot be verified using other available techniques.
Systemet skulle eliminera den normalt efterfoljande extra ledtiden for geometriverifiering - nar objektet Jr klart, Jr ocks5 verifieringen genomford. Realtidsverifiering Jr inte begransad 2 537 864 av komplexiteten has objektet eller antalet objekt i byggkammaren, en hel batch eller till och med olika objekt kan analyseras samtidigt. Produktion av felaktiga objekt undviks eller reduceras atminstone starkt. Pulvermaterialet Jr exempelvis metall eller polymer. The system would eliminate the normally subsequent extra lead time for geometry verification - when the object is ready, Jr also completes the verification. Real-time verification If the object or the number of objects in the building chamber, an entire batch or even different objects can be analyzed simultaneously, it is not limited to 2,537,864. Production of incorrect objects is at least greatly avoided or reduced. The powder material is, for example, metal or polymer.
Den digitala 3D-skivmodellen av det nuvarande lagret skapas utifran vetskap om lagrets tjocklek. Tjockleken pa lagret Jr, exempelvis, kand i forvag och Jr lika med det avstand som basplattan ror sig neda't efter vane applicerat lager, eller bestams baserat pa' de tagna bilderna. The digital 3D disc model of the current layer is created based on knowledge of the thickness of the layer. The thickness of the layer Jr, for example, can be in advance and Jr equal to the distance that the base plate moves down as usual applied layer, or determined based on the images taken.
Enligt ett utforande av uppfinningen innefattar metoden att detektera en eller flera kanter av lagret baserat pa de tagna bilderna, och skapar namnda digitala 3D-modell av foreliggande lager baserat pa' objektets detekterade kanter. According to an embodiment of the invention, the method comprises detecting one or more edges of the layer based on the captured images, and creates said digital 3D model of the present layer based on the detected edges of the object.
Enligt ett utforande av uppfinningen, visar de tagna bilderna temperaturen has lagret, och kanten av det foreliggande lagret bestams baserat pa' temperaturgradienten i bilden. According to an embodiment of the invention, the images taken show the temperature of the layer, and the edge of the present layer is determined based on the temperature gradient in the image.
Enligt ett utforande av uppfinningen, visar namnda tagna bilder temperaturen has skiktet, och en eller flera kanter av lagret detekteras baserat pa inflektionspunkten av temperaturgradienten i bilden. En fordel med att anvanda inflektionspunkten for att detektera kanten är att inflektionspunkten kommer att fOrbli vid samma position oberoende av kylprocessen under en tidsperiod tillrackligt lang for att ta bilder. According to an embodiment of the invention, said taken images show the temperature of the layer, and one or more edges of the layer are detected based on the inflection point of the temperature gradient in the image. An advantage of using the inflection point to detect the edge is that the inflection point will remain at the same position regardless of the cooling process for a period of time sufficiently long to take pictures.
Enligt ett utforande av uppfinningen Jr en eller flera bilder tagna efter det att foreliggande lagret har smalts och innan nasta lager appliceras for att mojliggiira detektering av temperaturgradienten. According to an embodiment of the invention, one or more images are taken after the present layer has been narrowed and before the next layer is applied to enable detection of the temperature gradient.
Enligt ett utforande av uppfinningen visar namnda tagna bilder temperaturen has skiktet, och ett flertal bilder Jr tagna vid olika tidpunkter under en kylprocess av lagret, och namnda digitala 3D skivmodell av foreliggande lager skapas baserat pa namnda flertal bilder av foreliggande lager. Foljaktligen är bilderna tagna vid olika temperaturer. According to an embodiment of the invention, said taken pictures show the temperature of the layer, and a plurality of pictures taken at different times during a cooling process of the layer, and said digital 3D disk model of the present layer is created based on said plurality of images of the present layer. Consequently, the pictures are taken at different temperatures.
Enligt ett utforande av uppfinningen är namnda en eller flera bilder tagna med hjalp av en IRkamera som mater infrarott ljus. En IR-kamera Or det mojligt att detektera temperaturer och är mindre kansliga for rot( och aerosoler. According to an embodiment of the invention, the one or more images are taken with the aid of an IR camera which feeds infrared light. An IR camera Is it possible to detect temperatures and are less susceptible to root (and aerosols).
Enligt ett utforande av uppfinningen är namnda en eller flera bilder tagna med hjalp av en stereokamera, och forslagsvis en IR-stereokamera. Genom att anvanda en stereokamera är det mojligt att erhalla en mycket exakt matning av det objekt som byggs. Den hoga precisionen i stereokameran anvands for att skapa bilder av varje skikt och sedan med hjalp av avancerad 40 bildanalys och ett stort antal skivor, kan en 3D-modell skapas for rea Itidsja mfore Ise/geo metrive rifle ri ng. 3 537 864 Kontrollen gars ocksa utifran angivna toleranser for CAD-filen/designmodellen. De angivna toleranserna bestams utifran 3D-designmodellen. According to an embodiment of the invention, the one or more images are taken with the aid of a stereo camera, and preferably an IR stereo camera. By using a stereo camera, it is possible to obtain a very accurate feed of the object being built. The high precision of the stereo camera is used to create images of each layer and then with the help of advanced image analysis and a large number of discs, a 3D model can be created for real-time computing / geo metrive rifle ri ng. 3,537,864 The control is also based on the specified tolerances for the CAD file / design model. The specified tolerances are determined on the basis of the 3D design model.
Enligt ett utforande av uppfinningen innefattar forfarandet: - en forsta 3D-toleransmodell med minimimatt definieras baserat p5 3D- konstruktionsmodellen av objektet och tillatna minimitoleranser for objektet, en andra 3D-toleransmodell med maximala dimensioner definieras baserat pa 3D-konstruktionsmodellen av objektet och tillatna maximumtoleranser for objektet, och verifiering av att dimensionerna p5 3D-kopian av objektet som tillverkas ligger inom den forsta och andra toleransmodellen utfors. Geometrin hos objektet som tillverkas verifieras utifran en 3D-toleransmodell med minimumdimensioner och en 3D-toleransmodell med maximumdimensioner. Det verifieras att ytorna av 3D-kopian ligger mellan ytorna pa de tv5 toleransmodellerna. According to an embodiment of the invention, the method comprises: - a first 3D tolerance model with minimum dimensions is defined based on the 3D construction model of the object and allowable minimum tolerances for the object, a second 3D tolerance model with maximum dimensions is defined based on the 3D construction model of the object and allowable maximum tolerances for the object, and verification that the dimensions p5 The 3D copy of the object being manufactured is within the first and second tolerance models is executed. The geometry of the object being manufactured is verified on the basis of a 3D tolerance model with minimum dimensions and a 3D tolerance model with maximum dimensions. It is verified that the surfaces of the 3D copy lie between the surfaces of the tv5 tolerance models.
Enligt ett utforande av uppfinningen, tints tillverkningsprocessen av objektet att fortsatta sa lange som dimensionerna hos objektet som tillverkas Jr inom specificerade toleranser, och tillverkningsprocessen stoppas automatiskt, om de angivna toleranserna inte kan hallas. According to an embodiment of the invention, the manufacturing process of the object is thawed to continue as long as the dimensions of the object manufactured Jr within specified tolerances, and the manufacturing process is stopped automatically, if the specified tolerances cannot be maintained.
Det är latt att inse att metoden i enlighet med uppfinningen, som definieras i den bifogade uppsattningen av metodanspr5k, Jr lamplig for exekvering av ett datorprogram med instruktioner som svarar mot stegen i forfarandet enligt uppfinningen nar den !cars pa en processorenhet. Aven om det inte uttryckligen anges i patentkraven, omfattar uppfinningen en datorprogramprodukt i kombination med forfarandet enligt de bifogade forfarandekraven. It is to be understood that the method in accordance with the invention, which is defined in the appended set of method claims, is suitable for executing a computer program with instructions corresponding to the steps of the method according to the invention when running on a processor unit. Although not explicitly stated in the claims, the invention comprises a computer program product in combination with the method according to the appended method claims.
Detta syfte uppnas ocks5 genom den apparat som definieras i krav 9. This object is also achieved by the apparatus defined in claim 9.
Apparaten innefattar: en eller flera kameror anordnade for att ta en eller flera bilder av vart och ett av lagren hos objektet under tillverkningen av objektet, en bildbehandlingsmodul konfigurerad for att, under tillverkning av objektet, skapa digitala 3D-diskmodeller av lagren i objektet baserade pa de tagna bilderna, och att skapa en digital 3D-kopia av objektet som tillverkas utifran de 3D skivmodeller som hittills har skapats av objektet, och - en verifieringsmodell for att under tillverkningen av objektet kontrollera geometrin hos det objekt som tillverkas baserat pa jamforelser av 3D-kopian av objektet som tillverkas och 3Ddesignmodellen. The apparatus comprises: one or more cameras arranged to take one or more pictures of each of the layers of the object during the manufacture of the object, an image processing module configured to, during the manufacture of the object, create digital 3D disk models of the layers of the object based on the images taken, and to create a digital 3D copy of the object made from the 3D disk models created so far by the object, and - a verification model to check the geometry of the object made during the manufacture of the object based on comparisons of 3D the copy of the object being manufactured and the 3D design model.
Enligt en utforingsform av uppfinningen Jr namnda en eller flera bilder tagna med hjalp av en IR-kamera som mater infrarott ljus. 4 537 864 Enligt ett utforande av uppfinningen Jr namnda en eller flera bilder tagna med hjalp av en stereokamera, och forslagsvis en IR-stereokamera . According to an embodiment of the invention, the one or more images taken with the aid of an IR camera which transmits infrared light. According to an embodiment of the invention, said one or more pictures taken with the aid of a stereo camera, and preferably an IR stereo camera.
Kortfattad beskrivning av ritningarna Uppfinningen kommer nu att forklaras narmare genom beskrivning av olika utforanden av uppfinningen och med hanvisning till de bifogade figurerna. Brief Description of the Drawings The invention will now be explained in more detail by describing various embodiments of the invention and with reference to the accompanying figures.
Fig. 1 visar ett exempel p5 en temperaturgradient och inflexionspunkt i ett lager efter sammansmaltningavlagret. Fig. 1 shows an example p5 a temperature gradient and inflection point in a layer after the fusion layer.
Fig. 2 visar ett flodesschema over ett exempel p5 ett processflode innefattande en metod enligtuppfinningen. Fig. 2 shows a flow chart of an example p5 a process flow comprising a method according to the invention.
Fig. 3 visar ett blockschema over ett exempel pa en apparat enligt uppfinningen. Fig. 3 shows a block diagram of an example of an apparatus according to the invention.
Detaljerad beskrivning av foredragna utforingsformer av uppfinningen Skapa bilder av lager For varje pulverbaddslager utfors en analyscykel. Ett tunt lager av metall- (eller polymer-) pulver appliceras ovanp5 det foreg5ende lagret. Uppvarmning med laser eller elektronstrAle startar och beroende p5 komplexiteten hos det aktuella lagret utfors en eller flera lagerbildsanalyssekvenser. Analyssekvenserna kommer att synkroniseras med uppvarmningssekvensen. Kanten p5 det aktuella lagret kannetecknas av en distinkt temperaturgradient och kan allts5 detekteras, dvs positionen for kanten Jr lika med temperaturgradientens inflexionspunkt. Se figur 1. Inflexionspunkten definieras som den punkt dar andraderivatan av temperaturgradienten byter tecken. Detailed Description of Preferred Embodiments of the Invention Creating Images of Layers For each powder bath layer, an analysis cycle is performed. A thin layer of metal (or polymer) powder is applied on top of the previous layer. Heating with laser or electron beam starts and depending on the complexity of the current layer, one or more layer image analysis sequences are performed. The analysis sequences will be synchronized with the heating sequence. The edge p5 of the current layer can be marked by a distinct temperature gradient and can thus be detected, ie the position of the edge Jr is equal to the inflection point of the temperature gradient. See Figure 1. The inflection point is defined as the point where the second derivative of the temperature gradient changes sign.
Kameran (kamerorna) m5ste placeras inne i sk5pet tillsammans med laser/elektronstr5leutrustning for att f5 en hog bildkvalitet p5 varje lager efter sammansmaltningsprocessen. Darfor kommer linserna att utsattas for metallanga fran sammansmaltningsprocessen. IR-ljus ha r formAgan att penetrera en rokfylld miljo och darmed Jr IR-stereokameror ett lampligt val for den har typen av tillverkningsprocess. The camera (s) must be placed inside the cabinet together with laser / electron beam equipment to obtain a high image quality on each layer after the fusing process. Therefore, the lenses will be exposed to metal vapor from the fusion process. IR light is designed to penetrate a smoky environment and thus IR stereo cameras are a suitable choice for the type of manufacturing process.
For att undvika sublimering p5 kameralinsen spolas den med en inert gas. For att skydda kamerans elektronik irk intensiv varmestrAlning under sammansmaltningsprocessen, Jr den utrustad med en mekanisk slutare. To avoid sublimation of the camera lens, flush it with an inert gas. To protect the camera's electronics from intense heat radiation during the fusing process, it is equipped with a mechanical shutter.
Beroende pa objektets komplexitet, valet av produktionsmetod, pulvermaterial och andra begransningar som kan uppstA under utvecklingen av iden, skulle ett antal alternativ i hoghastighetsbildbaserade metoder kunna bli aktuella inklusive IR-kamera (or), IR stereokamera (or), konventionell (synligt ljus) stereo kamera (or) och laserscanner (rar). 537 864 For att erhAlla en bild av hog kvalitet med hjalp av IR-kameror mAste temperaturgradienten vara distinkt och varmeforlusten till omgivande pulverbadd fAr inte vara for star. And5 Jr det att foredra att hela skiktet Jr fullstandigt sammansmalt (dvs. produktionscykeln for det specifika lagret Jr avslutad). Flera bildbehandlingar kan bli nadvandiga och mAste synkroniseras for att lagga till korta pauser i laser- eller elektronstrAlesammansmaltningsprocessen under produktionen av ett lager (dvs sammansmaltningen mAste stoppa medan bilden skapas) For att uppnA processoptimering, Jr kontroll over smaltpoolen viktigt. Ofta Jr avsaknad av kontroll Over smaltpoolen orsaken till clAlig kvalitet. Under bildbehandlingen dar lagrets kant detekteras, erhAlls ocks5 information am defekter i ytan och smaltpoolkvalitet. Genom att verifiera ytans kvalitet i realtid, kan justeringar goras for att korrigera sammansmaltningssekvensen och undvika alltfor varma eller kalla omraden i nasta lager. Depending on the complexity of the object, the choice of production method, powder material and other limitations that may arise during the development of the idea, a number of options in high-speed image-based methods could be relevant including IR camera (s), IR stereo camera (s), conventional (visible light) stereo camera (s) and laser scanner (s). 537 864 In order to obtain a high quality image with the help of IR cameras, the temperature gradient must be distinct and the heat loss to the surrounding powder bath must not be excessive. And it is preferable that the whole layer be completely fused together (ie the production cycle for the specific layer is completed). Multiple image processing may be necessary and must be synchronized to add short pauses in the laser or electron beam fusion process during the production of a layer (ie the fusion must stop while the image is being created). To achieve process optimization, control of the melt pool is important. Often Jr lack of control Over the narrow pool the reason for clAlig quality. During the image processing where the edge of the layer is detected, information is also obtained regarding defects in the surface and narrow pool quality. By verifying the quality of the surface in real time, adjustments can be made to correct the fusion sequence and avoid overheating or cold areas in the next layer.
Skapa diskmodeller Det finns olika metoder for att bestamma tjocklek p5 lagerbilden. En noggrann 3Dlagermodell, en skivmodell, kan skapas med stereokameror for att fS kunskap am den ovre ytan och kanten av det foregAende lagret samt det nya toppskiktets yta och kant, och kombinera detta med kannedom am avstAndet mellan tvA skikt (produktionsbordet ror sig ned8t med fast steglangd, till exempel 20 p.m). Creating disk models There are different methods for determining the thickness of the layer image. An accurate 3D layer model, a disc model, can be created with stereo cameras to gain knowledge of the upper surface and edge of the previous layer and the surface and edge of the new top layer, and combine this with knowledge of the distance between two layers (the production table moves down with fixed step length, for example 20 pm).
Ett intresseomrAde skulle vara att testa am stereokameror for IR-bilder, inte bara kan upptacka den ovre ytan, utan aven den vertikala ytan av det aktuella lagret nedanfor pulverbaddtoppen och darmed skapa en annu mer exakt kopia. I vilket fall är avancerad bildbehandling nodvandigt for att uppnA en hogkvalitativ digital kopia for exakt och snabb geometriverifiering. One area of interest would be to test stereo cameras for IR images, which can not only detect the upper surface, but also the vertical surface of the current layer below the powder bath top and thus create an even more accurate copy. In any case, advanced image processing is necessary to achieve a high quality digital copy for accurate and fast geometry verification.
For att bestamma utbredningen av det senast applicerade lagret baserat p inflexionspunkten, och att satta detta i relation till designmodellen, skall/bor temperaturgradienterna vara kanda. Atminstone bor/skall den horisontella temperaturgradienten vara kand. Foretradesvis bor/skall aven den vertikala temperaturgradienten vara kand. In order to determine the distribution of the last applied layer based on the point of inflection, and to set this in relation to the design model, the temperature gradients must / should be known. At least the horizontal temperature gradient should be. Preferably, the vertical temperature gradient should also be known.
Skapa 3D-kopia Genom att anvanda hogprecisions IR-stereo kamera for att skapa kopior av varje lager i pulverbadden efter laser- eller elektronstralesammansmaltningen (beroende p5 val av AMteknik), kan ett start antal skivmodeller skapas och sammanstalls i en volym, en 3D-digital modell (en 3D-kopia av det fysiska objektet). Metoden kan ocksA kallas reverse engineering, men fordelen med att anvanda en 3D-bild av varje lager Jr att IA en elektronisk modell som 6 537 864 aterspeglar inte bara yttre utan aven interna geometrier/ytor samt inbyggda fel, porer etc. ParallelIt med att det fysiska objektet byggs skapas en 3D-digital kopia i realtid. Create 3D copy Using a high-precision IR stereo camera to create copies of each layer in the powder bath after laser or electron beam fusion (depending on the choice of AM technology), a starting number of disc models can be created and compiled in one volume, a 3D digital model (a 3D copy of the physical object). The method can also be called reverse engineering, but the advantage of using a 3D image of each layer is that IA an electronic model that 6,537,864 reflects not only external but also internal geometries / surfaces as well as built-in faults, pores, etc. physical object is built creating a 3D digital copy in real time.
Verifiera geometri I viss omfattning kommer naturligtvis alltid det fysiska objektet att avvika frAn den teoretiska. Verify geometry To some extent, of course, the physical object will always deviate from the theoretical one.
Det som är intressant är hur stor avvikelsen är i forhAllande till givna begransningar/toleranser. Darfor mAste designmodellen/original CAD-filen inneh51Ia begransningar/toleranser med hansyn till termisk expansion. Nar det galler de till5tna toleranserna skapas en 3D-toleransmodell med minimumdimensioner, samt en 3D- toleransmodell med maximumdimensioner. Geometrin has den i realtid skapade 3D-kopian av objektet mAste sedan passa in mellan dessa tv5 ytor. Genom att kontinuerligt jamfora den realtidsbyggda 3D-kopian med maximum- och minimumtoleransmodellerna, kan en kontinuerlig kvalitetssakring av byggprocessen sakerstallas. What is interesting is how large the deviation is in relation to given limitations / tolerances. Therefore, the design model / original CAD file must contain 511 limitations / tolerances with regard to thermal expansion. When the permissible tolerances apply, a 3D tolerance model with minimum dimensions is created, as well as a 3D tolerance model with maximum dimensions. The geometry has the real-time 3D copy of the object must then fit between these tv5 surfaces. By continuously comparing the real-time 3D copy with the maximum and minimum tolerance models, a continuous quality assurance of the construction process can be ensured.
Processkontroll Kvalitetssakringsmjukvaran kan styra byggprocessen och 15ta produktionen fortsatta s5 lange som dimensionerna ligger inom angivna toleranser, och tvartom automatiskt stoppa produktionsprocessen am de angivna toleranserna inte kan hallas. Darmed kan produktion av felaktiga objekt undvikas och kassaktionen kraftigt reduceras. Process control The quality assurance software can control the construction process and continue production as long as the dimensions are within specified tolerances, and on the contrary automatically stop the production process if the specified tolerances cannot be maintained. Thus, the production of incorrect objects can be avoided and the cash action greatly reduced.
Ytterligare utveckling skulle kunna vara att addera intelligens till systemet, ett adaptiv beteende som bygger pa vetskap am resultatet i fran foregaende produktionscykler, och darigenom i tid korrigera en byggprocess som är p5 vag att overskrida givna toleranser och darigenom undvika produktionsstopp. Further development could be to add intelligence to the system, an adaptive behavior based on knowledge of the results of previous production cycles, and thereby in time correct a construction process that is about to exceed given tolerances and thereby avoid production stoppages.
Processflocle Figur 2 visar ett flodesschema over ett exempel p5 ett processflode inklusive metoden enligt uppfinningen. Processflodet omfattar foljande steg: 1. Forsta fyllning av en I5da Pulverberedning. Pulver tillsatts. Process flow Figure 2 shows a flow chart of an example p5 a process flow including the method according to the invention. The process flow comprises the following steps: 1. First filling of an I5da Powder Formulation. Powder added.
Beredning av lager. Pulverutjamning. Preparation of stock. Powder leveling.
Kameraslutarna stangs. The camera shutters are closed.
Gasspolning av kameralinser startar. 6. Sammansmaltning av lager startar. Gas flushing of camera lenses starts. 6. Merging of layers starts.
Sammansmaltning av lager stoppar. Merging of layers stops.
Kameraslutarna oppnas. The camera shutters open.
IR-bild (er) skapas. IR image (s) are created.
Bildanalys utfors: Kanten av lagret detekteras genom att spara temperaturgradientens inflexionspunkt. Eventuella kaviteter lokaliseras. Image analysis is performed: The edge of the layer is detected by saving the inflection point of the temperature gradient. Any cavities are located.
En skivmodell skapas baserad p5 lagerbild (er). 7 537 864 Skivmodeller av varje lager sammanstalls till en 3D-kopia av det fysiska objektet. 3D-kopian jamfors med den ursprungliga designfilen med hansyn till givna toleranser. A disc model is created based on p5 layer image (s). 7,537,864 Disc models of each layer are compiled into a 3D copy of the physical object. The 3D copy is compared with the original design file with a view to given tolerances.
Korrigerande feedback frAn bildanalysen. Corrective feedback from the image analysis.
Basplattan i byggkammaren sanks en stracka som är lika med tjockleken av ett lager. 16. Processteg 2-15 upprepas tills objektet Jr fardigbyggt. The base plate in the building chamber sank a distance equal to the thickness of a layer. 16. Process steps 2-15 are repeated until the object Jr is completed.
Kameraslutare stanger. Camera shutter rods.
Ventilering av byggkammaren startar. Ventilation of the building chamber starts.
Gasspolningen av linser stoppar. The gas flushing of lenses stops.
Det fa rdiga objektet avlagsnas. 21. Processen upprepas frAn steg 1. The finished object is removed. 21. The process is repeated from step 1.
Det är att foredra att genomforandet av stegen 10-14 utfors av en berakningsenhet best5ende av mjukvarukoddelar, s5som ett datorprogram, som bestAr av instruktioner for att genomfora stegen i metoden, och hardvara, sasom en processor, minne och input/output enheter, for att utfora instruktionerna i datorprogrammet. It is preferred that the execution of steps 10-14 be performed by a computing unit consisting of software code components, such as a computer program, which consists of instructions for performing the steps in the method, and hardware, such as a processor, memory and input / output devices, for execute the instructions in the computer program.
Figur 3 visar ett exempel p5 en apparat for geometrisk kontroll av tre-dimensionella objekt. Apparaten innefattar en kamera 30 anordnad for att ta en eller flera bilder av objektets respektive lager under tillverkning av objektet. Kameran 30 är till exempel en stereo IR- kamera. En stereokamera är en typ av kamera med tv5 eller flera objektiv med en separat bildsensor eller bildruta for varje lins. Detta gar att kameran kan simulera manskligt binokularseende och ger darfor en mojlighet att fanga tredimensionella bilder, en process som kallas stereofotografering. En IR-kamera, aven kallad en infrarod kamera eller varmekamera eller en termografisk kamera, är en enhet som skapar en bild baserat p5 infrarod str5Ining, likt en vanlig kamera som skapar en bild med synligt ljus. I stallet for 450 till 750 nanometer for en synligt-ljus-kamera, arbetar IR-kameror med vaglangder som Jr sa langa som 14000 nm (14 11m). Figure 3 shows an example p5 of an apparatus for geometric control of three-dimensional objects. The apparatus comprises a camera 30 arranged to take one or more pictures of the respective layers of the object during manufacture of the object. The camera 30 is, for example, a stereo IR camera. A stereo camera is a type of camera with tv5 or multiple lenses with a separate image sensor or frame for each lens. This allows the camera to simulate human binocular vision and therefore provides an opportunity to capture three-dimensional images, a process called stereo photography. An IR camera, also called an infrared camera or thermal camera or a thermographic camera, is a device that creates an image based on infrared radiation, similar to an ordinary camera that creates an image with visible light. Instead of 450 to 750 nanometers for a visible-light camera, IR cameras operate with wavelengths that are as long as 14,000 nm (14 11m).
Apparaten innefattar vidare en bildbehandlingsmodul 32 konfigurerad for att, under tillverkningen av objektet, skapa digitala 3D-skivmodeller av objektets lager baserat pa de tagna bilderna, och att skapa en digital 3D-kopia av objektet som tillverkas baserat p5 de hittills skapade 3D-skivmodellerna av objektet, och en verifieringsmodul 34 konfigurerad for att under tillverkningen av objektet kontrollera geometrin hos det objekt som tillverkas baserat p5 jamforelser av 3D-kopian av objektet som tillverkas och 3D-designmodellen av objektet. Bildbehandlingsmodulen 32 och verifieringsmodulen 34 är exempelvis mjukvarumoduler som Ors p5 en dator 36. Emellertid kan bildbehandlingsmodulen 32 och verifieringsmodulen 34 ocks5 implementeras genom andra processorer s5som programmeringslogik, sasom FPGA, en ASIC eller en enkel mikroprocessor. Utsignalen fran verifieringsmodulen 34 kan vara en styrsignal eller ett kommando till tillverkningsprocessen for att tillAta tillverkningsprocessen att fortsatta s5 lange som dimensionerna hos det objekt 8 537 864 som tillverkas är inom specificerade toleranser, och for att automatiskt stoppa tillverkningsprocessen am de angivna toleranserna kan inte hAllas. The apparatus further comprises an image processing module 32 configured to, during the manufacture of the object, create digital 3D disk models of the object's layer based on the captured images, and to create a digital 3D copy of the object made based on the hitherto created 3D disk models of the object, and a verification module 34 configured to check the geometry of the object being manufactured during the manufacture of the object based on comparisons of the 3D copy of the object being manufactured and the 3D design model of the object. The image processing module 32 and the verification module 34 are, for example, software modules such as a computer 36. However, the image processing module 32 and the verification module 34 can also be implemented by other processors such as programming logic, such as FPGA, an ASIC or a simple microprocessor. The output signal from the verification module 34 may be a control signal or a command to the manufacturing process to allow the manufacturing process to continue as long as the dimensions of the object manufactured are within specified tolerances, and to automatically stop the manufacturing process within the specified tolerances.
Foreliggande uppfinning Jr inte begransad till de visade utforandeformerna utan kan varieras och modifieras inom ramen for de foljande kraven. Till exempel kan en eller fler synlig-ljus- kameror anyandas for att erhAlla bilder p5 ytan av den sammansmalta lagerstrukturen sAval som kringliggande pulverstrukturen, och darefter detekterar bildbehandlingen skillnaden i ytstruktur och darmed kanten. 9 The present invention is not limited to the embodiments shown but may be varied and modified within the scope of the following claims. For example, one or more visible light cameras may be used to obtain all images on the surface of the fused layer structure as the surrounding powder structure, and then the image processing detects the difference in surface structure and thus the edge. 9
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE1450569A SE1450569A1 (en) | 2014-05-14 | 2014-05-14 | A method and apparatus for geometric verification in the additive manufacture of three-dimensional objects |
PCT/SE2015/050548 WO2015174919A1 (en) | 2014-05-14 | 2015-05-13 | A method and an apparatus for geometrical verification during additive manufacturing of three-dimensional objects |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE1450569A SE1450569A1 (en) | 2014-05-14 | 2014-05-14 | A method and apparatus for geometric verification in the additive manufacture of three-dimensional objects |
Publications (2)
Publication Number | Publication Date |
---|---|
SE537864C2 true SE537864C2 (en) | 2015-11-03 |
SE1450569A1 SE1450569A1 (en) | 2015-11-03 |
Family
ID=54357158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SE1450569A SE1450569A1 (en) | 2014-05-14 | 2014-05-14 | A method and apparatus for geometric verification in the additive manufacture of three-dimensional objects |
Country Status (2)
Country | Link |
---|---|
SE (1) | SE1450569A1 (en) |
WO (1) | WO2015174919A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018183003A1 (en) | 2017-03-31 | 2018-10-04 | Konica Minolta Laboratory U.S.A., Inc. | 3d imaging by multiple sensors during 3d printing |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2652507B1 (en) * | 2016-08-01 | 2019-04-01 | Villalobos Fernando Monge | PROCEDURE OF PHOTOGRAPHIC RECONSTRUCTION IN ADDITIVE MANUFACTURING BY METAL POWDER FUSION |
BR112020003302A2 (en) | 2017-08-31 | 2020-08-25 | Hewlett-Packard Development Company, L.P. | printers |
WO2019212492A1 (en) * | 2018-04-30 | 2019-11-07 | Hewlett-Packard Development Company, L.P. | Region of interest monitoring and control for additive manufacturing |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011006941A1 (en) * | 2010-11-26 | 2012-05-31 | Mtu Aero Engines Gmbh | Process for the layered production of a component and device |
JP5956455B2 (en) * | 2010-11-28 | 2016-07-27 | ストラタシス リミテッド | System and method for additive manufacturing of objects |
DE102011009624A1 (en) * | 2011-01-28 | 2012-08-02 | Mtu Aero Engines Gmbh | Method and device for process monitoring |
US10144063B2 (en) * | 2011-12-28 | 2018-12-04 | Arcam Ab | Method and apparatus for detecting defects in freeform fabrication |
EP2666612B1 (en) * | 2012-05-25 | 2018-11-28 | MTU Aero Engines AG | Method and device for imaging at least one three-dimensional component |
US9669584B2 (en) * | 2012-06-08 | 2017-06-06 | Solidscape, Inc. | Imaging monitoring method and apparatus for fabricating three dimensional models |
-
2014
- 2014-05-14 SE SE1450569A patent/SE1450569A1/en unknown
-
2015
- 2015-05-13 WO PCT/SE2015/050548 patent/WO2015174919A1/en active Application Filing
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018183003A1 (en) | 2017-03-31 | 2018-10-04 | Konica Minolta Laboratory U.S.A., Inc. | 3d imaging by multiple sensors during 3d printing |
EP3602125A4 (en) * | 2017-03-31 | 2020-03-18 | Konica Minolta Laboratory U.S.A., Inc. | 3d imaging by multiple sensors during 3d printing |
US11067695B2 (en) | 2017-03-31 | 2021-07-20 | Konica Minolta Laboratory U.S.A., Inc. | 3D imaging by multiple sensors during 3D printing |
Also Published As
Publication number | Publication date |
---|---|
WO2015174919A1 (en) | 2015-11-19 |
SE1450569A1 (en) | 2015-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Holzmond et al. | In situ real time defect detection of 3D printed parts | |
EP3689508B1 (en) | Additive manufacturing system including an imaging device | |
US11305354B2 (en) | Machine control for additive manufacturing process and apparatus | |
US9886015B2 (en) | Additive manufacturing including layer-by-layer imaging | |
EP3433085B1 (en) | 3d printing system | |
CN111168998B (en) | Weld puddle monitoring system and method for detecting errors in a multi-laser additive manufacturing process | |
US20210197275A1 (en) | Three dimensional printing system and method capable of controlling size of molten pool formed during printing process | |
US11354456B2 (en) | Method of providing a dataset for the additive manufacture and corresponding quality control method | |
US20180133840A1 (en) | Three-dimensional laminating and shaping apparatus, control method of three-dimensional laminating and shaping apparatus, and control program of three-dimensional laminating and shaping apparatus | |
CN111168062A (en) | Weld puddle monitoring system and method for detecting errors in an additive manufacturing process | |
SE537864C2 (en) | A method and apparatus for geometric verification in the additive manufacture of three-dimensional objects | |
Yang et al. | International Design Engineering Technical Conferences and Computers and Information in Engineering Conference | |
US11733678B2 (en) | Method for determining building instructions for an additive manufacturing method, method for generating a database with correction measures for controlling the process of an additive manufacturing method | |
WO2019163495A1 (en) | System for manufacturing additive manufactured object and method for manufacturing additive manufactured object | |
US10688560B1 (en) | Method of mapping melt pattern during directed energy fabrication | |
CN113118465A (en) | Method and device for estimating a weld puddle depth during a 3D printing process, and 3D printing system | |
WO2021054127A1 (en) | Lamination molding system | |
US20210339470A1 (en) | Detecting three-dimensional (3d) part drag | |
US20210197282A1 (en) | Method and apparatus for estimating height of 3d printing object formed during 3d printing process, and 3d printing system having the same | |
Inzerillo et al. | From SFM to 3D PRINT: Automated workflow addressed to practitioner aimed at the conservation and restauration | |
US20220161328A1 (en) | Method and apparatus for producing an object by means of additive manufacturing | |
US11858042B2 (en) | Open loop parameter optimization for additive manufacturing | |
Pan | Part height control of laser metal additive manufacturing process | |
Khandpur | Design and development of a system to detect defects in 3D printing through analysis of layer images |