SE537280C2 - Interpretation of measuring point detected by an optical sensor - Google Patents
Interpretation of measuring point detected by an optical sensor Download PDFInfo
- Publication number
- SE537280C2 SE537280C2 SE1350900A SE1350900A SE537280C2 SE 537280 C2 SE537280 C2 SE 537280C2 SE 1350900 A SE1350900 A SE 1350900A SE 1350900 A SE1350900 A SE 1350900A SE 537280 C2 SE537280 C2 SE 537280C2
- Authority
- SE
- Sweden
- Prior art keywords
- sensor
- distance
- measuring point
- angle range
- optical sensor
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C3/00—Measuring distances in line of sight; Optical rangefinders
- G01C3/02—Details
- G01C3/06—Use of electric means to obtain final indication
- G01C3/08—Use of electric radiation detectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
- G01S17/32—Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
- G01S17/36—Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/93—Lidar systems specially adapted for specific applications for anti-collision purposes
- G01S17/931—Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Measurement Of Optical Distance (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
537 280 SAM MAN D RAG Forfarande (400) och berakningsenhet (200) i anslutning till en optisk sensor (110), for tolkning av en matpunkt (120) detekterad av den optiska sensorn (110). Forfarandet (400) innefattar faststallande (401) av ett forsta aystand (Al) inom sensorns (110) siktfaltsomrade (130), rnellan den optiska sensorn (110) och en f6rsta grans (150-1) inom vilken en sensordetektion med den optiska sensorn (110) är entydig. Vidare innefattar forfarandet (400) ett forknippande (403) av ett forsta sensorvinkelintervall (A01) med aystand kortare an det faststallda (401) forsta avstandet (A1) till den fOrsta gransen (150-1) samt av ett andra sensorvinkelin- tervall (A62) med aystand langre an det faststallda (401) fOrsta aystandet (Al) till den fOrsta gransen (150-1). FOrfarandet (400) innefattar aven detektering (404) av matpunkten (120) inom sensorns (110) siktfaltsomrade (130); och tolkning (405) av avstandet till den detekterade (404) matpunkten (120), baserat pa inom vilket sensorvinkelintervall (A01, A02) en ljusreflektion (140-2) fran matpunkten (120) detekterats (404). 537 280 SUMMARY Method (400) and calculation unit (200) adjacent to an optical sensor (110), for interpreting a feed point (120) detected by the optical sensor (110). The method (400) comprises determining (401) a first state (A1) within the field of view (130) of the sensor (110), the optical sensor (110) and a first branch (150-1) within which a sensor detection with the optical sensor (110) is unambiguous. Furthermore, the method (400) comprises an association (403) of a first sensor angle range (A01) with a distance shorter than the determined (401) first distance (A1) to the first boundary (150-1) and of a second sensor angle range (A62). ) with aystand longer than the fixed (401) first aystandet (Al) to the first boundary (150-1). The method (400) also includes detecting (404) the feed point (120) within the field of view (130) of the sensor (110); and interpreting (405) the distance to the detected (404) feed point (120), based on within which sensor angle range (A01, A02) a light reflection (140-2) from the feed point (120) has been detected (404).
Description
537 280 TOLKNING AV MATPUNKT DETEKTERAD AV EN OPTISK SENSOR TEKNISKT OMRADE Uppfinningen hanfor sig till ett forfarande och en berakningsenhet i anslutning till en optisk sensor. Narmare bestamt anger uppfinningen en mekanism for tolkning av en matpunkt detekterad av den optiska sensorn. TECHNICAL FIELD The invention relates to a method and a calculating unit in connection with an optical sensor. More particularly, the invention provides a mechanism for interpreting a food point detected by the optical sensor.
BAKGRUND Vissa optiska sensorer skickar ut en modulerad vagrorelse, som en ljusvag, och 10 faststaller avstandet till ett foremal genom att detektera en reflekterad ljusvag, farknippad med det utskickade ljuset fran den optiska sensorn och mata ljusvagens forskjutning. BACKGROUND Some optical sensors emit a modulated wave motion, like a light wave, and determine the distance to a shape by detecting a reflected light wave, associated with the emitted light from the optical sensor and feeding the light wave offset.
En optisk sensor kan i detta sammanhang utgoras av exempelvis en kamera, en 3D-kamera, en Time of Flight (ToF)- kamera, en stereokamera, en ljusfaltskamera, en radarmatare, en lasermatare, en lidar, en avstandsmatare baserad pa ultraljudvagor eller liknande. An optical sensor can in this context be constituted by, for example, a camera, a 3D camera, a Time of Flight (ToF) camera, a stereo camera, a light field camera, a radar feeder, a laser feeder, a lidar, a distance feeder based on ultrasonic waves or the like. .
Ett problem for en optisk sensor av detta slag är aft entydigt bestamma ett avstand till ett forernal. Detta galler kanske i synnerhet foremal som befinner sig bortom en avstandsgrans, ibland benamnd Non-Ambiguous Range (NAR) pa engelska, inom vilket avstandet entydigt kan faststallas. Denna avstandsgrans eller NAR är belagen pa ett avstand dar vagrorelsens forskjutning i fOrhallande till den utskickade vagrorelsen uppgar till 360 grader. A problem for an optical sensor of this kind is to unambiguously determine a distance to a forernal. This may apply in particular to objects that are beyond a distance limit, sometimes called the Non-Ambiguous Range (NAR) in English, within which the distance can be unambiguously determined. This distance limit or NAR is covered at a distance where the displacement of the motion in relation to the transmitted motion amounts to 360 degrees.
Nal- vagrorelsens forskjutning overskrider 360 grader, kan det vara svart at entydigt faststalla om foremalet befinner sig hitom avstandsgransen eller bortom avstandsgransen. Della problem kallas ibland for vikningseffekt. If the displacement of the nalvagror exceeds 360 degrees, it may be black to unambiguously determine whether the form is located beyond the distance boundary or beyond the distance boundary. Some problems are sometimes called folding effect.
Exempelvis kan en optisk sensor som Mks pa 20 MHz ha en avstandsgrans pa exempelvis 7,5 meter. Ett foremal som i verkligheten befinner sig pa 8 meter kommer da den detekteras av den optiska sensorn pa grund av vikningseffekten 1 537 280 fOrefalla som om den befinner sig pa 0,5 meters avstand, alternativt pa bade 0,5 och 8 meters avstand. For example, an optical sensor such as Mks at 20 MHz can have a distance limit of, for example, 7.5 meters. An object which in reality is at 8 meters comes when it is detected by the optical sensor due to the folding effect 1 537 280 Incident as if it is at a distance of 0.5 meters, alternatively at both 0.5 and 8 meters distance.
F6r att losa detta anvander man i befintlig teknik ofta tva eller fler modulationsfrekvenser pa utskickade ljusvagor, som exempelvis 20 MHz och 30 MHz. Darige- nom erhalls olika avstandsgranser for de olika modulationsfrekvenserna och det blir mojligt aft harigenom ringa in avstandet som forernalet befinner sig pa. Detta kraver dock fler exponeringar, vilket minskar effektiviteten for den optiska sensorn. Med dubbla modulationsfrekvenser sa fordubblas antalet exponeringar, med tre modulationsfrekvenser tredubblas antalet exponeringar, och sa vidare. To solve this, existing technology often uses two or more modulation frequencies on transmitted light waves, such as 20 MHz and 30 MHz. As a result, different distance limits are obtained for the different modulation frequencies, and it becomes possible to thereby narrow down the distance at which the parent is. However, this requires more exposures, which reduces the efficiency of the optical sensor. With double modulation frequencies, the number of exposures doubles, with three modulation frequencies, the number of exposures triples, and so on.
Darmed tar det aven proportionellt langre tid aft faststalla avstandet till foremalet, vilket är ett problem da den optiska sensorn ofta anvands i tidskritiska applikationer exempelvis i fordon for aft detektera exempelvis plotsligt uppdykande hinder i korbanan som gangtrafikant eller vilt; avstand till framforvarande fordon eller liknande anvandningsomraden. Thus, it also takes a proportionately longer time to determine the distance to the form, which is a problem as the optical sensor is often used in time-critical applications, for example in vehicles to detect, for example, suddenly appearing obstacles in the track as a pedestrian or game; distance to vehicles in front or similar areas of use.
Aft reducera tiden det tar for den optiska sensorn aft faststalla avstandet till ett detekterat forernal är darfar en viktig sakerhetsaspekt, da man darigenom exempelvis kan ge foraren en tidigare yarning och en langre reaktionstid, alternativt kan utlosa en automatisk bromsning, utlosning av krockkudde eller liknande. Reducing the time it takes for the optical sensor to determine the distance to a detected forearm is therefore an important safety aspect, as it can, for example, give the driver an earlier yarning and a longer reaction time, or can trigger an automatic braking, airbag release or the like.
Det kan konstateras att mycket annu aterstar aft Ora for aft entydigt och utan onoclig tidsforlust faststalla avstandet fran en optisk sensor till eft foremal. It can be stated that much annu restar aft Ora for aft unambiguously and without insignificant loss of time determine the distance from an optical sensor to eft foremal.
SAMMANFATTNING AV UPPFINNINGEN Det ãr darfor en malsattning med denna uppfinning aft forbattra avstandsmatning med en optisk sensor, f6r att losa atminstone nagot av ovan angivna problem och darmed erhalla en forbattrad optisk sensor. SUMMARY OF THE INVENTION It is therefore an object of this invention to improve distance feeding with an optical sensor, in order to solve at least some of the above problems and thereby obtain an improved optical sensor.
Enligt en forsta aspekt av uppfinningen uppnas denna malsattning av ett forfarande i en berakningsenhet i anslutning till en optisk sensor, fOr tolkning av en matpunkt detekterad av den optiska sensorn. Forfarandet innefattar faststallande av 2 According to a first aspect of the invention, this grinding is achieved by a method in a calculating unit adjacent to an optical sensor, for interpreting a feeding point detected by the optical sensor. The method comprises determining 2
Claims (15)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE1350900A SE537280C2 (en) | 2013-07-18 | 2013-07-18 | Interpretation of measuring point detected by an optical sensor |
DE112014002962.9T DE112014002962B4 (en) | 2013-07-18 | 2014-06-30 | Interpretation of a measurement point recorded by an optical sensor |
PCT/SE2014/050816 WO2015009220A1 (en) | 2013-07-18 | 2014-06-30 | Interpretation of measurement point detected by an optical sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE1350900A SE537280C2 (en) | 2013-07-18 | 2013-07-18 | Interpretation of measuring point detected by an optical sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
SE1350900A1 SE1350900A1 (en) | 2015-01-19 |
SE537280C2 true SE537280C2 (en) | 2015-03-24 |
Family
ID=52346545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SE1350900A SE537280C2 (en) | 2013-07-18 | 2013-07-18 | Interpretation of measuring point detected by an optical sensor |
Country Status (3)
Country | Link |
---|---|
DE (1) | DE112014002962B4 (en) |
SE (1) | SE537280C2 (en) |
WO (1) | WO2015009220A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112601972A (en) * | 2018-08-17 | 2021-04-02 | 感觉光子公司 | Method and system for increasing time-of-flight system range by unambiguous range switching |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1235773A (en) * | 1983-12-23 | 1988-04-26 | Shigeto Nakayama | Device for detecting road surface condition |
DE4016973C1 (en) * | 1990-02-24 | 1991-06-13 | Eltro Gmbh, Gesellschaft Fuer Strahlungstechnik, 6900 Heidelberg, De | |
US5202742A (en) * | 1990-10-03 | 1993-04-13 | Aisin Seiki Kabushiki Kaisha | Laser radar for a vehicle lateral guidance system |
DE4123056A1 (en) * | 1991-07-12 | 1993-01-14 | Bayerische Motoren Werke Ag | DISTANCE MEASURING DEVICE FOR MOTOR VEHICLES |
US7791715B1 (en) | 2006-10-02 | 2010-09-07 | Canesta, Inc. | Method and system for lossless dealiasing in time-of-flight (TOF) systems |
-
2013
- 2013-07-18 SE SE1350900A patent/SE537280C2/en unknown
-
2014
- 2014-06-30 DE DE112014002962.9T patent/DE112014002962B4/en active Active
- 2014-06-30 WO PCT/SE2014/050816 patent/WO2015009220A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
SE1350900A1 (en) | 2015-01-19 |
WO2015009220A1 (en) | 2015-01-22 |
DE112014002962B4 (en) | 2023-05-25 |
DE112014002962T5 (en) | 2016-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9859613B2 (en) | Radar sensor including a radome | |
JP7081046B2 (en) | How to detect angle measurement error in radar sensor | |
JP2015506474A (en) | Method and apparatus for wheel independent speed measurement in a vehicle | |
JP5701083B2 (en) | Radar device and method for calculating received power in the radar device | |
EP2669705A3 (en) | Collision-avoidance system for ground crew using sensors | |
EP3267220A1 (en) | A vehicle radar system | |
CN105717507A (en) | Radar system for vehicle and operating method thereof | |
JP2011117896A (en) | Electronic scanning type radar device and computer program | |
CN101310195A (en) | Method for the detection of surroundings | |
CN106154270A (en) | Radar timesharing detection mesh calibration method | |
WO2018181743A1 (en) | Vehicle-mounted radar device | |
US11047971B2 (en) | Radar system and control method for use in a moving vehicle | |
JP2012185084A (en) | Object detection device for vehicle | |
CN102621553B (en) | Method for positioning obstacle distance and assistant driving system adopting method | |
JP4806949B2 (en) | Laser radar equipment | |
SE537280C2 (en) | Interpretation of measuring point detected by an optical sensor | |
KR20200040404A (en) | Radar apparatus for vehicle and method for controlling thereof | |
EP3779505B1 (en) | Detection of blocked radar sensor | |
KR20150100051A (en) | Apparatus and Methods for The Radar Altimeter System | |
JP5595238B2 (en) | Radar equipment | |
US11808884B2 (en) | Adaptive high point neighborhood range | |
JP2011185719A (en) | Tracking radar device | |
KR20170069636A (en) | Method for improve the resolution of the automotive radar target tracking | |
JP2020535408A (en) | Methods and radar sensors for reducing the effects of interference when evaluating at least one received signal | |
TWI440876B (en) | Radar detectors detect the speed of the method |