SE509567C2 - Sintering cemented carbide body and initially cooling rapidly - Google Patents
Sintering cemented carbide body and initially cooling rapidlyInfo
- Publication number
- SE509567C2 SE509567C2 SE9604777A SE9604777A SE509567C2 SE 509567 C2 SE509567 C2 SE 509567C2 SE 9604777 A SE9604777 A SE 9604777A SE 9604777 A SE9604777 A SE 9604777A SE 509567 C2 SE509567 C2 SE 509567C2
- Authority
- SE
- Sweden
- Prior art keywords
- cemented carbide
- sintering
- carbide body
- cooling rapidly
- layer
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/02—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
- C22C29/06—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
- C22C29/08—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- Powder Metallurgy (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
15 20 25 30 509 567 2 med fina partiklar ger ett jämnt avlägsnande av bindefasskiktet utan att skada den hårda beståndsdelens korn. With fine particles gives an even removal of the binder phase layer without damaging the grains of the hard component.
Kemiska eller elektrolytiska metoder kan användas som alternativ till mekaniska metoder. US Patentet 4,282,289 avslöjar en metod för etsning i gasfas med användning av HCl i en inledande fas av beläggningsprocessen. I EP-A-337 696 föreslås en vàtkemisk metod för etsning i salpetersyra, saltsyra, flourvätesyra, svavelsyra och liknande eller elektrokemiska metoder. Från JP 88-060279 är det känt att använda en alkalisk lösning, NaOH, och från JP 88-060280 att använda en sur lösning. JP 88-053269 beskriver etsning i salpetersyra före diamantbeläggning. Det finns en nackdel med dessa metoder, nämligen, att de är oförmögna att endast avlägsna koboltskiktet. De resulterar även i djupetsning, speciellt i ytor nära eggen. Etsmediet tar inte bara bort kobolt från ytan utan genomtränger även områden mellan den hårda beståndsdelens korn och som resultat erhålls en oönskad porositet mellan skikt och substrat samtidigt som kobolt skiktet delvis kan återstå på andra ytor av skäret. US ' 5,380,408 visar en etsningsmetod enligt vilken elektrolytisk etsning utförs i en blandning av svavelsyra och fosforsyra.Chemical or electrolytic methods can be used as alternatives to mechanical methods. U.S. Patent 4,282,289 discloses a gas phase etching method using HCl in an initial phase of the coating process. EP-A-337 696 proposes a hydrochemical method for etching in nitric acid, hydrochloric acid, hydrofluoric acid, sulfuric acid and similar or electrochemical methods. From JP 88-060279 it is known to use an alkaline solution, NaOH, and from JP 88-060280 to use an acidic solution. JP 88-053269 describes etching in nitric acid before diamond coating. There is a disadvantage of these methods, namely, that they are unable to remove only the cobalt layer. They also result in deep etching, especially in surfaces near the edge. The etching medium not only removes cobalt from the surface but also penetrates areas between the grains of the hard component and as a result an undesired porosity between layers and substrates is obtained while the cobalt layer may partially remain on other surfaces of the insert. US 5,380,408 discloses an etching method according to which electrolytic etching is performed in a mixture of sulfuric acid and phosphoric acid.
Denna metod ger ett jämnt och fullständigt avlägsnande av bindefasskiktet utan djupeffekt, d v s noll Co-halt erhålls på ytan. ß \ A andra sidan är det i vissa fall inte önskvärt att nå noll Co-halt på ytan ur vidhäftningssynpunkt, utan snarare en Co-halt på ytan av nära nominell halt.This method provides an even and complete removal of the binder phase layer without depth effect, i.e. zero Co content is obtained on the surface. On the other hand, in some cases it is not desirable to reach zero Co content on the surface from the point of view of adhesion, but rather a Co content on the surface of near nominal content.
De ovannämnda metoderna kräver ytterligare produktionssteg och är av det skälet mindre attraktiva för produktion i stor skala. Den skulle vara önskvärt att sintringen kunde utföras på ett sådant sätt att inget bindefasskikt bildas eller alternativt kan avlägsnas under kylningen. ll179swe.doc 10 15 20 25 30 3 509 567 Den är därför ett ändamål med föreliggande uppfinning att förelägga en metod för sintring av hàrdmetall på ett sådant sätt att inga bindefasskikt föreligger på ytan efter sintringen men en väldefinierad Co-halt.The above methods require additional production steps and are therefore less attractive for large-scale production. It would be desirable that the sintering could be performed in such a way that no binder phase layer is formed or alternatively can be removed during cooling. It is therefore an object of the present invention to provide a method for sintering cemented carbide in such a way that no binder phase layers are present on the surface after sintering but a well-defined Co content.
Figur l och 3 visar i 4000x förstoring en toppvy av ytan av hàrdmetallskär delvis täckta med ett bindefasskikt. Figur 2 och 4 visar i 4000x förstoring en toppvy av ytan av ett hårdmetallskär sintrat enligt uppfinningen. I dessa figurer är de mörkgrå ytorna är Co-skiktet, de ljusgrå vinkelformiga kornen WC och de grå rundade kornen den så kallade y-fasen som är (Ti,Ta,Nb,W)C.Figures 1 and 3 show in 4000x magnification a top view of the surface of cemented carbide inserts partially covered with a binder phase layer. Figures 2 and 4 show at 4000x magnification a top view of the surface of a cemented carbide insert sintered according to the invention. In these figures, the dark gray surfaces are the Co layer, the light gray angular grains WC and the gray rounded grains the so-called y-phase which is (Ti, Ta, Nb, W) C.
Enligt sättet för föreliggande uppfinning utförs upphettningen och högtemperatursteget för sintringen på konventionellt sätt. Men kylning från sintringstemperatur ökas från normalt omkring 40 minuter från 1450 till under 1250°C till mindre än 10 min, företrädesvis mindre än 5 min, genom samma temperaturintervall d v s en kylhastighet av mer än 20, företrädesvis mer än 40 °C/min. Företrädesvis behålls sagda kylhastighet under stelningsperioden, d v s mellan 1350foch 1250 °C. Kylningen skall emellertid inte överskrida 100 °C/min._ Detta möjliggörs av en speciell ugn. De bästa betingelserna beror pà utformningen av utrustningen som används, på sammansättningen av hårdmetallen och på sintringsbetingelserna.According to the method of the present invention, the heating and high temperature step of the sintering are performed in a conventional manner. But cooling from sintering temperature is increased from normally about 40 minutes from 1450 to below 1250 ° C to less than 10 minutes, preferably less than 5 minutes, through the same temperature range i.e. a cooling rate of more than 20, preferably more than 40 ° C / min. Preferably, said cooling rate is maintained during the solidification period, i.e. between 1350 and 1250 ° C. However, the cooling must not exceed 100 ° C / min. This is made possible by a special oven. The best conditions depend on the design of the equipment used, on the composition of the cemented carbide and on the sintering conditions.
Det är inom fackmannens kompetensomràde att fastställa med experiment den optimala hastighet vid vilken inga bindefasskikt erhålls. Sintringen skall leda till en Co-halt på ytan av nominell halt +6/-4%, företrädesvis +4/-2%. Co-halten kan bestämmas t ex med användning av SEM (Svepelektronmikroskop) utrustat med en EDS (Energidispersiv Spektrometer) och jämförelse av intensiteten av Co från okänd yta och en referens, t ex en polerat yta med samma nominella sammansättning. 1ll79swe.doc 10 15 20 25 30 509 567 4 Metoden enligt uppfinningen kan tillämpas på alla slag av hàrdmetaller företrädesvis hárdmetall med en sammansättning av 4 till 15 vikt-% Co, upp till 20 vikt-% kubiska karbider såsom TiC, TaC, NbC etc.. och rest WC. Företrädesvis har hàrdmetallen en sammansättning av 5 till 12 vikt-% Co, mindre än 12 vikt-% kubiska karbider såsom TiC, TaC, NbC etc.. och rest WC.It is within the competence of the person skilled in the art to determine by experiment the optimum speed at which no binder phase layers are obtained. The sintering should lead to a Co content on the surface of nominal content + 6 / -4%, preferably + 4 / -2%. The Co content can be determined, for example, using a SEM (Scanning Electron Microscope) equipped with an EDS (Energy Dispersive Spectrometer) and a comparison of the intensity of Co from an unknown surface and a reference, such as a polished surface with the same nominal composition. The method according to the invention can be applied to all kinds of cemented carbides, preferably cemented carbide with a composition of 4 to 15% by weight of Co, up to 20% by weight of cubic carbides such as TiC, TaC, NbC etc. .. and erected WC. Preferably the cemented carbide has a composition of 5 to 12% by weight of Co, less than 12% by weight of cubic carbides such as TiC, TaC, NbC etc .. and residual WC.
Genomsnittlig WC-kornstorlek skall vara <8 pm, företrädesvis 0.5-5 pm.Average WC grain size should be <8 μm, preferably 0.5-5 μm.
Skär enligt uppfinningen är efter sintringen försedda med en tunn slitstark beläggning omfattande åtminstone ett skikt med CVD-, MTCVD- eller PVD-teknik känt i tekniken.Inserts according to the invention are after sintering provided with a thin durable coating comprising at least one layer with CVD, MTCVD or PVD technology known in the art.
Exempel 1 Hårdmetallskär av typ CNMG 120408 med 5.5 vikt-% Co, 8.5 vikt-% kubiska karbider och 86 vikt-% WC av 2 pm genomsnittlig WC-kornstorlek sintrades på konventionellt sätt vid 1450°C och kyldes till rumstemperatur i argon. Ytan var upp till 50% täckt med ett Co~skikt, Fig 1.Example 1 CNMG 120408 cemented carbide inserts with 5.5 wt% Co, 8.5 wt% cubic carbides and 86 wt% WC of 2 μm average WC grain size were sintered in a conventional manner at 1450 ° C and cooled to room temperature in argon. The surface was up to 50% covered with a Co ~ layer, Fig. 1.
Skär av samma sammansättning och typ sintrades på samma sätt men kyldes från 1450 till 1250°C temperabur på 5 minuter.Inserts of the same composition and type were sintered in the same manner but cooled from 1450 to 1250 ° C temperature in 5 minutes.
Ytan var till omkring 6% täckt med Co, som motsvarar den nominella Co-halten, Fig 2.The surface was about 6% covered with Co, which corresponds to the nominal Co content, Fig. 2.
Exempel 2 Hàrdmetallskär av typ CNMG 120408 med 10 vikt-% Co och 90 vikt-% WC av 0.9 pm genomsnittlig WC-kornstorlek sintrades på konventionellt sätt vid 1410°C och kyldes till rumstemperatur i argon. Ytan var upp till 50% täckt med ett Co-skikt, Fig 3.Example 2 CNMG 120408 cemented carbide inserts with 10 wt% Co and 90 wt% WC of 0.9 μm average WC grain size were sintered in a conventional manner at 1410 ° C and cooled to room temperature in argon. The surface was up to 50% covered with a Co-layer, Fig. 3.
Skär av samma sammansättning och typ sintrades på samma sätt men kyldes från 1350 till 1250°C temperatur på 2.5 minuter.Cuts of the same composition and type were sintered in the same manner but cooled from 1350 to 1250 ° C temperature in 2.5 minutes.
Ytan var till omkring 10% täckt med kobolt, som motsvarar den nominella Co-halten, Fig 4. 11179swe.docThe surface was about 10% covered with cobalt, which corresponds to the nominal Co content, Fig. 4. 11179en.doc
Claims (1)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9604777A SE509567C2 (en) | 1996-12-20 | 1996-12-20 | Sintering cemented carbide body and initially cooling rapidly |
DE69716738T DE69716738T2 (en) | 1996-07-11 | 1997-06-23 | SINTER PROCESS |
JP10505908A JP2000514393A (en) | 1996-07-11 | 1997-06-23 | Sintering method |
PCT/SE1997/001117 WO1998002395A1 (en) | 1996-07-11 | 1997-06-23 | Sintering method |
US09/214,622 US6207102B1 (en) | 1996-07-11 | 1997-06-23 | Method of sintering cemented carbide bodies |
EP97932067A EP0910557B1 (en) | 1996-07-11 | 1997-06-23 | Sintering method |
AT97932067T ATE226927T1 (en) | 1996-07-11 | 1997-06-23 | SINTERING PROCESS |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9604777A SE509567C2 (en) | 1996-12-20 | 1996-12-20 | Sintering cemented carbide body and initially cooling rapidly |
Publications (3)
Publication Number | Publication Date |
---|---|
SE9604777D0 SE9604777D0 (en) | 1996-12-20 |
SE9604777L SE9604777L (en) | 1998-08-19 |
SE509567C2 true SE509567C2 (en) | 1999-02-08 |
Family
ID=20405130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SE9604777A SE509567C2 (en) | 1996-07-11 | 1996-12-20 | Sintering cemented carbide body and initially cooling rapidly |
Country Status (1)
Country | Link |
---|---|
SE (1) | SE509567C2 (en) |
-
1996
- 1996-12-20 SE SE9604777A patent/SE509567C2/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
SE9604777D0 (en) | 1996-12-20 |
SE9604777L (en) | 1998-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8206829B2 (en) | Plasma resistant coatings for plasma chamber components | |
EP2072636B1 (en) | Method of making a coated cutting tool | |
Shiao et al. | A formation mechanism for the macroparticles in arc ion-plated TiN films | |
JP5590335B2 (en) | Surface coated cutting tool with excellent chipping resistance and chipping resistance with excellent hard coating layer | |
JP2009078351A (en) | Method of manufacturing coated cutting tool | |
JP5469676B2 (en) | Method for producing a diamond composite material | |
CN108677144B (en) | Method for preparing aluminum-nitrogen co-doped diamond-like carbon composite film | |
WO2009099121A1 (en) | Ytterbium sputtering target and method for manufacturing the target | |
JP2004332004A (en) | Alumina protective film, and its production method | |
WO2015080237A1 (en) | Diamond-coated cemented carbide cutting tool, and method for producing same | |
EP3102717B1 (en) | Protective layer for pecvd graphite boats | |
SE509566C2 (en) | sintering Method | |
JP2013096004A (en) | Coated tool having excellent peel resistance and method for manufacturing the same | |
EP0910557B1 (en) | Sintering method | |
US6221493B1 (en) | Post treated diamond coated body | |
SE509567C2 (en) | Sintering cemented carbide body and initially cooling rapidly | |
US6071469A (en) | Sintering method with cooling from sintering temperature to below 1200° C. in a hydrogen and noble gas atmosphere | |
CN105951039B (en) | A kind of cubic boron nitride-based body surface roughening treatment method, modified cubic boron nitride matrix and cubic boron nitride coated cutting tool | |
JP3971337B2 (en) | Method for producing alumina film mainly composed of α-type crystal structure, member coated with alumina film mainly composed of α-type crystal structure, and method for producing the same | |
EP0912458B1 (en) | Sintering method | |
JP2006152423A (en) | Boron-doped diamond film, and diamond-coated cutting tool | |
Peng et al. | Characterization and adhesion strength of diamond films deposited on silicon nitride inserts by dc plasma jet chemical vapour deposition | |
EP2715784B1 (en) | Manufacturing process for a thick cubic boron nitride (cbn) layer | |
SE518013C2 (en) | Sintering cemented carbide body with initial cooling in hydrogen and preferably argon | |
JP2009090398A (en) | Diamond-coated cutting tool having excellent lubricity and machining accuracy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NUG | Patent has lapsed |