SE452854B - Fluidumpermeabel fibermatris samt sett for dess framstellning - Google Patents
Fluidumpermeabel fibermatris samt sett for dess framstellningInfo
- Publication number
- SE452854B SE452854B SE8500208A SE8500208A SE452854B SE 452854 B SE452854 B SE 452854B SE 8500208 A SE8500208 A SE 8500208A SE 8500208 A SE8500208 A SE 8500208A SE 452854 B SE452854 B SE 452854B
- Authority
- SE
- Sweden
- Prior art keywords
- matrix
- membranes
- fiber
- fiber matrix
- main orientation
- Prior art date
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 97
- 239000011159 matrix material Substances 0.000 title claims abstract description 97
- 238000002360 preparation method Methods 0.000 title description 2
- 239000012528 membrane Substances 0.000 claims abstract description 43
- 239000007788 liquid Substances 0.000 claims abstract description 25
- 239000000463 material Substances 0.000 claims abstract description 17
- 102000004190 Enzymes Human genes 0.000 claims abstract description 11
- 108090000790 Enzymes Proteins 0.000 claims abstract description 11
- 239000011149 active material Substances 0.000 claims abstract description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000011490 mineral wool Substances 0.000 claims abstract description 7
- 239000003054 catalyst Substances 0.000 claims abstract description 6
- 239000011521 glass Substances 0.000 claims abstract description 4
- 229910052751 metal Inorganic materials 0.000 claims abstract description 4
- 239000002184 metal Substances 0.000 claims abstract description 4
- 239000003921 oil Substances 0.000 claims abstract description 4
- 239000011368 organic material Substances 0.000 claims abstract description 4
- 239000001993 wax Substances 0.000 claims abstract description 4
- 239000010457 zeolite Substances 0.000 claims abstract description 4
- 239000011942 biocatalyst Substances 0.000 claims abstract description 3
- 239000000919 ceramic Substances 0.000 claims abstract description 3
- 229910010272 inorganic material Inorganic materials 0.000 claims abstract description 3
- 239000011147 inorganic material Substances 0.000 claims abstract description 3
- 150000002739 metals Chemical class 0.000 claims abstract description 3
- 239000003925 fat Substances 0.000 claims abstract 2
- 239000003463 adsorbent Substances 0.000 claims description 17
- 239000000126 substance Substances 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 14
- 239000012530 fluid Substances 0.000 claims description 9
- 238000001179 sorption measurement Methods 0.000 claims description 7
- 230000031018 biological processes and functions Effects 0.000 claims description 5
- 125000000524 functional group Chemical group 0.000 claims description 2
- 239000002904 solvent Substances 0.000 abstract description 7
- 239000011491 glass wool Substances 0.000 abstract description 6
- 108010010803 Gelatin Proteins 0.000 abstract description 5
- 229920000159 gelatin Polymers 0.000 abstract description 5
- 239000008273 gelatin Substances 0.000 abstract description 5
- 235000019322 gelatine Nutrition 0.000 abstract description 5
- 235000011852 gelatine desserts Nutrition 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 239000011148 porous material Substances 0.000 abstract description 4
- 238000001704 evaporation Methods 0.000 abstract description 3
- 230000008020 evaporation Effects 0.000 abstract description 3
- 239000002245 particle Substances 0.000 description 18
- 239000007789 gas Substances 0.000 description 14
- 239000010410 layer Substances 0.000 description 12
- 238000009792 diffusion process Methods 0.000 description 8
- 244000005700 microbiome Species 0.000 description 7
- 239000000758 substrate Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 238000007711 solidification Methods 0.000 description 5
- 230000008023 solidification Effects 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 4
- 238000000889 atomisation Methods 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 235000019353 potassium silicate Nutrition 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000012876 carrier material Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000009790 rate-determining step (RDS) Methods 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 108020002230 Pancreatic Ribonuclease Proteins 0.000 description 1
- 102000005891 Pancreatic ribonuclease Human genes 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 244000077923 Vaccinium vitis idaea Species 0.000 description 1
- 235000017606 Vaccinium vitis idaea Nutrition 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000010028 chemical finishing Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- -1 greases Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28023—Fibres or filaments
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24058—Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in respective layers or components in angular relation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24058—Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in respective layers or components in angular relation
- Y10T428/24124—Fibers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249924—Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
- Y10T428/249928—Fiber embedded in a ceramic, glass, or carbon matrix
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249924—Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
- Y10T428/24994—Fiber embedded in or on the surface of a polymeric matrix
- Y10T428/249941—Fiber is on the surface of a polymeric matrix having no embedded portion
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/30—Self-sustaining carbon mass or layer with impregnant or other layer
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Filtering Materials (AREA)
- Inorganic Fibers (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Epoxy Resins (AREA)
- Reinforced Plastic Materials (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Paper (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Laminated Bodies (AREA)
- Nonwoven Fabrics (AREA)
Description
15 20 25 30 35 452 854 2 Föreliggande uppfinning avser att undanröja dessa problem och åstadkomma en som bärare användbar, fluidum- permeabel fibermatris med stor ytarea, vilken fiber- matris trots sin stora ytarea uppvisar ett lågt tryck- fall vid passage av fluidum genom matrisen.
Innan uppfinningen och dess fördelar diskuteras närmare, skall först den tidigare tekniken och dess problem belysas mera i detalj med hjälp av två stycken exempel.
Det första exemplet hänför sig till adsorption av ett ämne ur en blandning, såsom ur en gas- eller vätskeblandning i renings- eller återvinningssyfte, t ex adsorption av ett lösningsmedel från en lackerings- anläggning, varvid den blandning som skall behandlas leds genom en bädd av ett adsorberande material, såsom aktivt kol, zeolit eller en mikroporös polymerf såsom polystyren tvärbunden med divinylbensen. För att upp- rätthålla bäddens adsorptionsförmåga regenereras den normalt periodiskt, och periodiciteten bestäms av den ur filterbädden utgående maximala halten (genombrotts- halten) av det ifrågavarande ämnet som av renings- eller förlustskäl kan tolereras.
Om adsorptionsmedlet består av en bädd av lika stora, sfäriska partiklar kommer vid ett givet luft- flöde genom bädden och en given lösningsmedelskoncen- tration i den luft som tillföres filterbädden, lös- ningsmedelshalten i partiklarna i bädden att vid genom- brott variera med bäddens djup på ett sätt som princi- piellt illustreras i fig l. I fig l hänför sig kurva l till mycket små partiklar, medan kurvorna 2, 3 och 4 hänför sig till partiklar med gradvis ökande diameter.
Förhållandet mellan ytan under respektive kurva och ytan av rektangeln med hörnen A, B, C, D blir därmed ett mått på den genomsnittliga utnyttjandegraden av det adsorberande materialet. 10 15 20 25 30 35 452 854 3 För att spara adsorptionsmaterial och göra filterhöljet mindre och därmed billigare är en liten partikeldia- meter och därmed hög utnyttjandegrad önskvärd. Små partiklar ger emellertid större tryckfall genom bädden c,h därmed högre energikostnader. Om partikulära för- oreningar finns i den filtrerade gasen eller vätskan, är vidare tendensen till igensättning av bädden större ju mindre partiklarna är.
Ett ekonomiskt optimalt filter blir följaktligen en kompromiss i fråga om partikelstorlek.
Orsaken till den ofullständiga utnyttjandegraden är att det adsorberande ämnet inte hinner diffundera från ytterytan genom porerna in till centrum av samt- liga partiklar innan maximalt tillåten utgångshalt har nåtts, dvs genombrott skett.
Samma förhållande som illustreras i fig l råder om partiklarna inte är sfäriska men av samma geome- triska utformning eller utgör en blandning av i huvud- sak likformiga men olika stora partiklar med en viss medelpartikeldiameter. Det avgörande är den längsta nödvändiga diffusionslängden i mikroporerna, dvs det geometriska avståndet från partikelns ytteryta till dess centrum. Ju mindre detta avstånd är ju fullstän- digare kommer adsorbenten att utnyttjas, dvs ju närmare ansluter sig aktuell koncentrationskurva till linjen ABC.
Ovanstående resonemang är helt korrekt endast under förutsättning att materialtransporten via dif- fusion genom mikroporerna är det hastighetsbestämmande steget och hastigheten för diffusion av adsorberat ämne från bulken av gas- eller vätskefasen till parti- kelns yta samt hastigheten för adsorptionen på den aktiva ytan således saknar betydelse. Sådana förhål- lande råder emellertid vid nästan alla praktiska tillämpningar.
Valet av adsorbentens partikeldimension blir således, vid givet volymflöde och given halt av det 10 15 20 25 30 35 452 854 4 eller de ämnen man vill adsorbera, en kompromiss mellan å ena sidan tryckfallet och därmed energikostnaden för att övervinna detta och å andra sidan utnyttjande- graden av adsorbentbädden och därmed kostnaden för adsorbenten och filterhöljet. En stor partikeldimension och därmed längre diffusionslängd minskar den förra kostnaden men ökar den senare. Till detta kommer även att en bädd av små partiklar har större igensättnings- tendens vid närvaro av fasta föroreningar i gas- eller vâtskeflödet, vilket i praktiken är mycket vanligt.
Detta innebär att det skulle vara av stort praktiskt värde att kunna åstadkomma en adsorbentbädd med liten största diffusionslängd, men med bibehállet lågt tryck- fall och förhållandevis ringa igensättningstendens.
Det andra exemplet för att belysa den tidigare tekniken är odling av mikroorganismer, såsom celler etc, på ytan av ett bärarmaterial. Vid dylika proces- ser är det önskvärt att skiktet av celler på ytan av bärarmaterialet är så tunt som möjligt och helst endast utgöres av ett monoskikt. Därigenom underlättas nämligen diffusionen av näringsämnena och i förekommande fall syret till mikroorganismerna samt diffusionen av meta- boliter bort från mikroorganismerna. Ett exempel på denna teknik är de biologiska bäddar som används vid rening av avloppsvatten. Vid dessa kända förfaranden är det svårt att åstadkomma en optimal effektiv syre- tillförsel till mikroorganismen. För att mikroorganismen skall kunna tillgodogöra sig syret måste detta nämligen diffundera genom den vätskefas av substratlösning som omger mikroorganismen. Denna diffusion genom vätske- fasen är normalt mycket långsam och utgör det hastig- hetsbestämmande steget för hela processen. Man försöker därför att på olika sätt underlätta och påskynda syre- överföringen, t ex genom omröring, finfördelning av luften, finfördelning av.substratlösningen i droppar, etc. Dessa åtgärder åstadkommer en viss förbättring, men är samtidigt relativt energikrävande. 10 15 20 25 30 35 452 854 5 Till exempel utgör kostnaden för syresättning den, näst råmaterial- och utrustningskostnaden, ofta största kostnaden vid industriella biologiska förfaranden.
Dessutom är den finfördelning som göres för öka vätska- gaskontaktytan, i regel inte särskilt effektiv. Även om sålunda substratlösningen finfördelas till droppar, har varje droppe en avsevärd massa eller bulk, som luften endast efter relativt lång tid kan diffundera in i helt och hållet.
Av det sagda framgår att den för aeroba biologiska förfaranden hastighetsavgörande syreöverföringsförmågan hos systemet inte är optimal hos tidigare kända system och detta utgör en allvarlig nackdel, bl a genom att detta sätter en övre gräns för slutlig cellkoncentration eller -produktivitet i substratet. Denna koncentration eller produktivitet önskas nästan undantagslöst så hög som möjligt vid biologiska förfaranden.
Det är mot ovanstående bakgrund och för att undan- röja de beskrivna nackdelarna med den tidigare tekniken som föreliggande uppfinning utvecklats. Uppfinningen avser, såsom nämnts tidigare, en fluidumpermeabel fibermatris med stor ytarea, och den stora ytarean uppnås vid uppfinningen genom att matrisen mellan fibrerna har tunna skivor eller membran, som är anord- nade åtskilda och med membranplanen väsentligen paral- lella med riktningen för det fluidumflöde som är av- sett att passera genom fibermatrisen.
Uppfinningens närmare kännetecken framgår av de efterföljande patentkraven.
Vid uppfinningen utnyttjas företrädesvis en fiber- matris av mineralull, helst glasull. Dylika fibermatriser har alla de egenskaper som erfordras av en matris vid föreliggande uppfinning, såsom inerthet, lågt motstånd mot gas- och vätskeflöde, god formstabilitet, etc, och kan dessutom framställas till låg kostnad. ----.--w1r«--- - 10 15 20 25 30 35 452 854 6 En matris av glasull med densiteten 23 kg/m3, som är ett normalt värde för en byggisoleringsskiva av glasull, består av ca 1 vo1% glas och 99 vol% hålrum.
Matrisens fibrer har en medeldiameter av ca l-500 um, företrädesvis ca l-100 um och mest föredraget ca 1-20 um.
Enligt uppfinningen uppvisar fibrerna i mineral- ullsmatrisen ett huvudorienteringsplan, varvid minst 60 % från huvudorienteringsplanet. Företrädesvis är avvikel- sen högst ZOO hos minst 70 %, och helst minst 80 % av matrisens totala fiberlängd avviker högst 200 av matrisens totala fiberlängd.
Huvudorienteringsplanet för fibrerna hos mineral- ullsmatrisen enligt uppfinningen àstadkommes t ex genom att vid framställningen av matrisen öka rörelse- hastigheten jämfört med den normala rörelsehastigheten hos det underlag varpå fibrerna utlägges, varvid under- lagets plan kommer att motsvara matrisfibrernas huvud- orienteringsplan. Uppfinningen är dock inte begränsad till någon speciell metod för att åstadkomma den domi- nerande fiberorienteringen, utan varje matris som uppvisar det aktuella huvudorienteringsplanet och hos vilken minst 60 % av den totala fiberlängden avviker högst 20° från huvudorienteringsplanet, inbegripes oavsett framställningsmetoden.
Såsom nämnts tidigare, är matrisen vid föreliggande uppfinning tredimensionell, varmed menas att den har en utsträckning i vartdera av tre mot varandra vinkelräta plan av minst 10 ggr fiberdiametern. För att öka den tredimensionella fibermatrisens självbärande förmåga kan matrisens fibrer vid sina korsningspunkter vara sammanbundna genom kemisk eller mekanisk bindning. Som exempel på kemisk bindning kan nämnas sammanbindning av fibrerna vid deras korsningspunkter med hjälp av polymerbindemedel, t ex av fenolhartstyp. Som ytter- ligare exempel på bindning kan nämnas sammansmältning av fibrerna vid deras korsningspunkter med hjälp av 10 15 20 25 30 35 452 854 i _värme eller lösningsmedel. Som ekempel pà mekanisk bindning kan nämnas nålning av fibermaterialet. En på detta sätt bunden, tredimensionell matris är väsent- ligen självbärande, vilket gör att någon speciell ut- rustning för inkapsling av matrisen vanligen inte är nödvändig. Det kan emellertid i vissa fall vara önskvärt eller lämpligt att förse matriselementet med yttre stöd- organ, vilka dock kan utformas som gasgenomsläppliga väggar på ett enkelt och billigt sätt av exempelvis metalltràdnät eller perforerade plåtar.
I sin enklaste utföringsform utgöres matrisen av en homogen fiberkropp, dvs av fibrer med väsentligen samma storlek och egenskaper. För att motverka vätske- genomträngning av den nedátströmmande vätskan vid matrisens vertikala begränsningsväggar kan matrisens vertikala ytterytor göras hydrofoba genom behandling av fibrerna i dessa ytterskikt med hydrofoberande oljor, vaxer eller polymerer på i och för sig känt sätt.
Hos dessa ytterskikt väts således inte fibrerna av vätskan, varför vätskegenomträngningsmotstándet är högt medan gastryckfallet är bibehållet lågt. Detta innebär att ytterskikten utgör en yttre begränsning mot matri- sens inre, vätta skikt och släpper igenom gasen men hindrar genomträngning av vätskan.
Ytterligare alternativa utföringsformer av matrisen enligt uppfinningen inbegriper flerskiktade matriser, vid vilka matriskroppen är uppbyggd av ett flertal distinkta, eller kontinuerligt i varandra övergående, olika fiberskikt, som skiljer sig åt genom fiberdiameter, spridning i fiberdiameter, fiberlängd, densitet, etc.
Dessa fiberskikt är lämpligen anordnade parallellt bred- vid eller koncentriskt omkring varandra i vätskans ström- ningsriktning. När det är fråga om distinkta fiberskikt kan skikten antingen anligga direkt mot varandra eller åtskiljas av mellanskikt som företrädesvis är hydrofoba.
De ytförstorade membran som finns hos fibermatrisen enligt uppfinningen kan variera till struktur och mate- 10 15 20 25 30 35 452 854 8 rial, men har alla det gemensamt att de är bildade in situ i fibermatrisen med hjälp av ett filmbildande mate- rial. Det färdiga membranet kan vara polymert, metalliskt, kristallint, amorft eller glasartat och sträcker sig mel- lan olika fibrer, som dessutom helt eller delvis kan täckas av det membranbildande ämnet. Membranmaterialet ut- göres av organiska eller oorganiska material, som vid normala omgivningsbetingelser är filmbildande eller som kan göras filmbildande genom exempelvis upphettning till membranmaterialets mjuknings- eller smälttemperatur. Som exempel på membranmaterial kan nämnas glas, metaller, keramer, vaxer, fetter, oljor samt filmbildande synte- tiska och naturliga polymermaterial. Membran av orga- niska material kan även karboniseras.
Membranen i fibermatrisen kan antingen vara i huvud- sak impermeabla, dvs väsentligen ogenomträngliga för gaser och vätskor, eller kan de vara porösa, såsom mikroporösa.
Den membranförsedda fibermatrisen enligt uppfinningen kan antingen utnyttjas som sådan, t ex som adsorbent, eller kan den utnyttjas som en bärare för att på membranen fixera ett "aktivt" material, som är avsett att interagera med ett eller flera andra ämnen i en process. Som exempel på aktiva material, som kan fixeras på fibermatrisen en- ligt uppfinningen, kan nämnas funktionella grupper, som genom kemisk efterbehandling kan införas i membranet, eller katalysatorer, varmed förstås såväl konventionella, oorganiska och organiska katalysatorer för påverkan av kemiska reaktioner, som så kallade biologiska katalysa- torer eller biokatalysatorer, varmed förstås bakterier, jäst, svampar, alger, animala celler, humana celler, växt- celler, proteiner och enzymer. Även adsorberande material, såsom aktivt kol, zeoliter och andra porösa material med stor inre yta, kan fixeras på fibermatrisen enligt upp- finningen och ingår bland de ovan nämnda aktiva materialen.
Fixeringen av det aktiva materialet på membranen hos fibermatrisen enligt uppfinningen kan utformas på olika sätt. Sålunda kan det aktiva materialet vara 10 15 20 25 30 35 452 854 9 fixerat ovanpå membranytan med hjälp av fysikaliska adhesionskrafter, kemisk bindning eller med hjälp av bindemedel, eller också kan det aktiva materialet mer eller mindre vara omslutet av membranet och vara fast förankrat i detta. En sådan inneslutning av det aktiva -materialet i membranen kan åstadkommas genom att antingen utforma membranet som ett poröst skikt, varvid det aktiva, materialet är inneslutet i porerna, eller genom att till- föra det aktiva materialet i samband med bildningen av membranen, innan dessa har solidifierats, så att det aktiva materialet till större eller mindre del ingjuts i membranen. _ Såsom angivits tidigare, omfattar uppfinningen även ett sätt att framställa en fluidumpermeabel fiber- matris av det diskuterade slaget, och för att belysa denna aspekt av uppfinningen skall en typisk fram- ställning av en fibermatris enligt uppfinningen be- skrivas i det följande.
En porös, tredimensionell mineralullsmatris av tidigare beskrivet slag, vilken matris har en hög- gradig fiberorientering så att den totala fiberlängden väsentligen är anordnad i ett huvudorienteringsplan, såsom även angivits tidigare, placeras med huvudorien- teringsplanet väsentligen vertikalt. Till den så place- rade fibermatrisens övre ändyta tillsättes en membran- bildande vätska, som får rinna nedåt genom matrisen.
Den membranbildande vätskan väter matrisens fibrer och har en lämplig viskositet och ytspänning för att bilda membraner företrädesvis mellan fibrerna i huvud- orienteringsplanet. Den membranbildande vätskan bringas att stelna genom polymerisation, avdunstning av even- tuellt lösningsmedel från vätskan, avkylning eller på annat sätt. Det genom denna solidifieringsprocess bil- dade fasta membranet kan antingen användas som det är eller kan det vidarebehandlas för att t ex göras mikro- poröst och bilda en mikroporös adsorbent. Eftersom fibermatrisen är porös och lätt genomtränglig för 10 15 20 25 30 35 452 854 10 både gas och vätska kan den användas som en adsorbent- bädd. Denna bädd uppvisar, jämfört med en partikel- bädd, förutom fördelarna lågt tryckfall och ringa igensättningstendens, även självbärighet, vilket min- skar apparatkostnaden betydligt. Vidare kan, genom fibrernas armerande effekt, även adsorbenter med mycket låg mekanisk hållfasthet användas.
Membranens tjocklek kan regleras genom lämpligt val av fiberdiameter, vätskans viskositet, ytspänning och fibervätningsegenskaper, solidifieringsprocessens reaktionshastighet, vätskeflöde, eventuellt förnyat vätskegenomflöde, osv. Adsorbentmängden per volymenhet bestäms av den genomsnittliga membrantjockleken, fiber- orienteringsgraden och fibermatrisens ursprungliga densitet.
För att minska tendensen till bildning av membran, som är väsentligen tvärställda mot den avsedda flödes- riktningen vid senare användning av den fluidumperme- abla fibermatrisen, kan luft eller annan lämplig gas under solidifieringsprocessen blåsas i denna flödes- riktning. Om man önskar påverka solidifieringsproces- sens hastighet med en gasformig katalysator eller med värme, kan man lämpligen använda luft eller annan gas som bärare. Om solidifieringsprocessen innebär avdunst- ning av lösningsmedel, kan vidare luften eller gasen användas för borttransport av avdunstat ämne.
Såsom omtalats tidigare, är den tredimensionella fibermatrisen vid uppfinningen höggradigt orienterad i det att matrisens totala fiberlängd väsentligen är anordnad i ett huvudorienteringsplan. Man har nämligen vid uppfinningen överraskande funnit att man erhåller en oväntad ökning av fibermatrisens tillgängliga yta per viktenhet membranbildande ämnen, dvs en förbättrad membranbildning, vid ökande fiberorientering hos matri- sen. Speciellt märkbar är denna ökning när minst 60 % av den totala fiberlängden avviker högst 20° från huvudorienteringsplanet. Vidare är fibermatrisens 10 15 20 25 30 35 452 854 ll strömningsmotstånd och risken för igensättning av matrisen med partiklar i det tillförda fluidumet, sàsom t ex föroreningar i en näringslösning vid od- ling av mikroorganismer, mindre vid ökad fiberorien- teringsgrad.
Uppfinningen skall i det följande belysas med utföringsexempel.
EXEMPEL 1 Glasullsmatriser med olika orienteríngsgrad förses med gelatinmembran och den relativa yttre ytan be- stämmes. Gelatinpulver löses i varmt vatten till en koncentration av 50 g/liter. Fibermatriser av mineralull med densiteten 40 g/dm3 och fiberdiameter 4 um och med olika grad av fiberorientering vätes med vatten.
Därefter införes l liter gelatinlösning per liter matris. Lösningen får rinna utmed fibrernas huvud- orienteringsplan. Matrisen placeras därefter vid 80°C under 6 h för att få gelatinet att mellan matrisens 'fibrer bilda membran i form av polymera filmer.
Matrisens yttre yta bestämmes genom att uppmäta den adsorberade mängden av enzymet bovint pankreas- ribonukleas (från Sigma Chemical Co). Enzymet dialys- och värmebehandlades (62°C) före användandet. Matrisen -fylldes därefter med en enzymlösning, som innehöll 2 g enzym och 0,05 M KNO3 per liter vatten. Enzym som ej adsorberats tvättades därefter bort och den adsorberade enzymmängden uppmättes och avsattes i form av "relativ yttre yta" ( ökande adsorberad enzym- mängd = ökande relativ yttre yta) som en funktion av matrisens fiberorienteringsgrad, vilken angavs genom hur stor procentandel av den totala fiberlängden som avvek med högst 20° från huvudorienteringsplanet.
Den därvid erhållna kurvan visas i fig 2 och det fram- går av denna figur att en markant ökning av den yttre ytan erhålles när fibrerna i matrisen uppvisar en kraftig orientering i huvudorienteringsplanet, och närmare bestämt när minst 60 % av den totala fiber- l0 15 20 25 30 452 854 12 längden avviker högst 20 % från fibrernas huvudorien- teringsplan i matrisen.
EXEMPEL 2 En glasullsmatris med volymen l dm3, densiteten 60 kg/m3 och fiberdiametern 4 um, i vilken minst 80 % av fibrerna avvek med högst 20 % från huvudorienterings- planet, placerades i ett öppet kärl. Matrisen indränktes med l liter av en 15-procentig (viktsprocent) lösning av natriumsilikat i vatten ("vattenglas"). Efter in- dränkning placerades matrisen i en kolonn med fibrernas huvudorienteringsplan i vertikal riktning. Kolonnen var på undersidan försedd med hål för dränering och på ovan- sidan med hål för ventilering. Till hålet på undersidan anslöts, via en slang, ett uppsamlingskärl, vilket i sin tur anslöts via en slang till en vakuumkälla ("vatten- sug")- När vakuumkällan startades, dränerades huvuddelen av silikatlösningen från matrisen till uppsamlingskärlet.
Ett resultat av fiberns höga orienteringsgrad och lös- ningens ytspänning var att en stor del av den kvarhâllna lösningen i matrisen förelåg i form av tunna, i huvud- sak parallella, skikt, dvs vätskeformiga membran.
Matrisen torkades därefter vid 60°C under 10 h för att överföra vattenglaset från flytande till fast form. Viktökníngen var nu 142 % jämfört med före in- dränkningen.
Den torkade matrisen innehållande membran av vatten- glas dränktes i l liter 13-procentig (viktprocent) lös- ning av kaliumpermanganat i vatten, dränerades utan vakuum och torkades vid 60°C under 12 h. Matrisen ökade härvid i vikt 94 % jämfört med före permanganatbehand- lingen. En fibermatris med membran framställd på ovan- stående sätt kan användas som aktivt filter för att oskadliggöra korrosiva gaser, t ex S02.
Claims (10)
1. l. Fluidumpermeabel fibermatris med stor ytarea, för adsorptionsförfaranden eller liknande kemiska och biologiska förfaranden, vid vilka två eller flera ämnen interagerar med varandra, k ä n n e t e c k n a d därav, att matrisens totala fiberlängd väsentligen är orienterad i ett huvudorienteringsplan, och att det mellan fibrerna finns membran.
2. Fluidumpermeabel fibermatris enligt kravet l, k ä n n e t e c k n a d därav, att minst 60 % av matrisens totala fiberlängd avviker högst ca 20° från huvudorienteringsplanet.
3. Fibermatris enligt kravet 2, k ä n n e - t e c k n a d totala fiberlängd avviker högst ca 20° från huvudorien- därav, att minst 80 % av matrisens teringsplanet.
4. Fibermatris enligt något av de föregående kraven, k ä n n e t e c“k n a d därav, att fibrerna utgöres av mineralull.
5. Fibermatris enligt något av de föregående kraven, k ä n n e t e c k n a d därav, att membranen utgöres av ett filmbildande organiskt eller oorganiskt material, som väljes bland glas, metaller, keramer, vaxer, fetter, oljor, samt syntetiska och naturliga polymermaterial.
6. Fibermatris enligt något av de föregående kraven, k ä n n e t e c k n a d därav, att membranen är väsent- ligen impermeabla.
7. Fibermatris enligt något av kraven l-5, k_ä n n e t e c k n a d därav, att membranen är porösa.
8. Fibermatris enligt något av de föregående kraven, k ä n n e t e c k n a d därav, att den inbegriper ett till membranen fäst, aktivt material, som väljes bland funktionella grupper, oorganiska och organiska katalysa- torer, biokatalysatorer och adsorberande material.
9. Fibermatris enligt kravet 8, k ä n n e - 10 452 8-54 14 t e c k n a d därav, att det adsorberande materialet väljes bland aktivt kol och zeoliter.
10. Sätt att framställa en fluidumpermeabel fiber- matris med stor ytarea, för adsorptionsförfaranden eller liknande kemiska och biologiska förfaranden, vid vilka två eller flera ämnen interagerar med varandra, k ä n n e t e c k n a t därav, att en matris, vars totala fiberlängd väsentligen är orienterad i ett huvudorientringsplan anordnas med huvudorienterings- planet väsentligen vertikalt, att fibermatrisens övre ände tillföres en filmbildande vätska, som får passera fibermatrisen under bildning av membran mellan matrisens fibrer, och att membranen bringas att stelna.
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE8500208A SE452854B (sv) | 1985-01-17 | 1985-01-17 | Fluidumpermeabel fibermatris samt sett for dess framstellning |
AT85850413T ATE40532T1 (de) | 1985-01-17 | 1985-12-23 | Fluid-permeable fibermatrix und verfahren zur herstellung dieser matrix. |
EP85850413A EP0188182B1 (en) | 1985-01-17 | 1985-12-23 | A fluid-permeable fibre matrix and a method of producing said matrix |
DE8585850413T DE3568011D1 (en) | 1985-01-17 | 1985-12-23 | A fluid-permeable fibre matrix and a method of producing said matrix |
FI855179A FI855179A (fi) | 1985-01-17 | 1985-12-30 | Fluidumpermeabel fibermatris och saett att framstaella densamma. |
CA000498757A CA1254548A (en) | 1985-01-17 | 1985-12-30 | Fluid-permeable fibre matrix and a method of producing said matrix |
NO855341A NO855341L (no) | 1985-01-17 | 1985-12-30 | Fluidpermeabel fibermatrise og fremstillingsmetode for samme. |
DK18786A DK18786A (da) | 1985-01-17 | 1986-01-15 | Fluidumpermeabel fibermatrice og fremgangsmaade til fremstilling af samme |
JP61007160A JPS61179354A (ja) | 1985-01-17 | 1986-01-16 | 流体透過性の繊維質マトリツクスおよびその製法 |
US07/074,267 US4777069A (en) | 1985-01-17 | 1987-07-16 | Fluid-permeable fibre matrix and a method of producing said matrix |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE8500208A SE452854B (sv) | 1985-01-17 | 1985-01-17 | Fluidumpermeabel fibermatris samt sett for dess framstellning |
Publications (3)
Publication Number | Publication Date |
---|---|
SE8500208D0 SE8500208D0 (sv) | 1985-01-17 |
SE8500208L SE8500208L (sv) | 1986-07-18 |
SE452854B true SE452854B (sv) | 1987-12-21 |
Family
ID=20358790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SE8500208A SE452854B (sv) | 1985-01-17 | 1985-01-17 | Fluidumpermeabel fibermatris samt sett for dess framstellning |
Country Status (10)
Country | Link |
---|---|
US (1) | US4777069A (sv) |
EP (1) | EP0188182B1 (sv) |
JP (1) | JPS61179354A (sv) |
AT (1) | ATE40532T1 (sv) |
CA (1) | CA1254548A (sv) |
DE (1) | DE3568011D1 (sv) |
DK (1) | DK18786A (sv) |
FI (1) | FI855179A (sv) |
NO (1) | NO855341L (sv) |
SE (1) | SE452854B (sv) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3741539A1 (de) * | 1987-12-08 | 1989-06-22 | Bayer Ag | Leichtverbundwerkstoff, verbundwerkstoff, der in diesen leichtverbundwerkstoff uebergehen kann, verfahren zur herstellung des leichtverbundwerkstoffs und des verbundwerkstoffs und formteile, die den leichtverbundwerkstoff enthalten oder daraus bestehen |
US5672388A (en) * | 1994-07-08 | 1997-09-30 | Exxon Research & Engineering Company | Membrane reparation and poer size reduction using interfacial ozone assisted chemical vapor deposition |
US5871650A (en) * | 1994-07-08 | 1999-02-16 | Exxon Research And Engineering Company | Supported zeolite membranes with controlled crystal width and preferred orientation grown on a growth enhancing layer |
US5824617A (en) * | 1994-07-08 | 1998-10-20 | Exxon Research & Engineering Company | Low alkaline inverted in-situ crystallized zeolite membrane |
US20010018179A1 (en) | 1998-01-06 | 2001-08-30 | Derek J. Hei | Batch devices for the reduction of compounds from biological compositions containing cells and methods of use |
US20010009756A1 (en) | 1998-01-06 | 2001-07-26 | Derek Hei | Flow devices for the reduction of compounds from biological compositions and methods of use |
JP2001507984A (ja) * | 1997-01-09 | 2001-06-19 | ボンデッド ファイバー ファブリック リミテッド | フィルター媒体 |
US7611831B2 (en) * | 1998-01-06 | 2009-11-03 | Cerus Corporation | Adsorbing pathogen-inactivating compounds with porous particles immobilized in a matrix |
US6099734A (en) * | 1998-07-08 | 2000-08-08 | Baxter International Inc. | Apparatus, membranes and methods for removing organic compounds from a biological fluid |
US6908553B1 (en) | 1998-07-08 | 2005-06-21 | Baxter International Inc. | Composite membrane with particulate matter substantially immobilized therein |
AU7939400A (en) * | 1999-06-16 | 2001-03-13 | Giantcode A/S | Composite structures with fracture-tough matrix and methods for designing and producing the structures |
DE102004024676A1 (de) * | 2004-05-18 | 2005-12-15 | Süd-Chemie AG | Filmförmige sorbenshaltige Zusammensetzungen |
JP2013121556A (ja) * | 2011-12-09 | 2013-06-20 | Toray Ind Inc | 濾材 |
DE102014223271B4 (de) * | 2014-11-14 | 2021-07-29 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zur Herstellung eines Faserverbundformteils, Faserverbundformteil und Verwendung fotografischer Gelatine |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3455818A (en) * | 1966-06-15 | 1969-07-15 | Mallinckrodt Chemical Works | Chromatographic process |
SE413178B (sv) * | 1976-09-02 | 1980-04-28 | Vnii Teploizolyatsionnykhi Aku | Forfarande for framstellning av fiberskivor med mot skivornas plan vinkelret fiberriktning |
US4384957A (en) * | 1980-09-08 | 1983-05-24 | Amf Incorporated | Molecular separation column and use thereof |
US4464192A (en) * | 1982-05-25 | 1984-08-07 | United Technologies Corporation | Molding process for fiber reinforced glass matrix composite articles |
US4428763A (en) * | 1982-05-25 | 1984-01-31 | United Technologies Corporation | Transfer molding method of producing fiber reinforced glass matrix composite articles |
SE451848B (sv) * | 1983-10-19 | 1987-11-02 | Gullfiber Ab | Aerobt forfarande varvid en mikroorganism immobiliseras i en fibermatris |
-
1985
- 1985-01-17 SE SE8500208A patent/SE452854B/sv not_active IP Right Cessation
- 1985-12-23 DE DE8585850413T patent/DE3568011D1/de not_active Expired
- 1985-12-23 EP EP85850413A patent/EP0188182B1/en not_active Expired
- 1985-12-23 AT AT85850413T patent/ATE40532T1/de not_active IP Right Cessation
- 1985-12-30 CA CA000498757A patent/CA1254548A/en not_active Expired
- 1985-12-30 FI FI855179A patent/FI855179A/fi not_active IP Right Cessation
- 1985-12-30 NO NO855341A patent/NO855341L/no unknown
-
1986
- 1986-01-15 DK DK18786A patent/DK18786A/da not_active Application Discontinuation
- 1986-01-16 JP JP61007160A patent/JPS61179354A/ja active Pending
-
1987
- 1987-07-16 US US07/074,267 patent/US4777069A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
SE8500208L (sv) | 1986-07-18 |
EP0188182A1 (en) | 1986-07-23 |
DE3568011D1 (en) | 1989-03-09 |
DK18786D0 (da) | 1986-01-15 |
NO855341L (no) | 1986-07-18 |
FI855179A0 (fi) | 1985-12-30 |
US4777069A (en) | 1988-10-11 |
EP0188182B1 (en) | 1989-02-01 |
FI855179A (fi) | 1986-07-18 |
DK18786A (da) | 1986-07-18 |
CA1254548A (en) | 1989-05-23 |
JPS61179354A (ja) | 1986-08-12 |
SE8500208D0 (sv) | 1985-01-17 |
ATE40532T1 (de) | 1989-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
SE452854B (sv) | Fluidumpermeabel fibermatris samt sett for dess framstellning | |
US5127925A (en) | Separation of gases by means of mixed matrix membranes | |
US4740219A (en) | Separation of fluids by means of mixed matrix membranes | |
US4689255A (en) | Mat structure | |
EP0888809A1 (en) | Hollow fiber contactor and process | |
CA1083057A (en) | Pressure driven enzyme coupled membranes | |
CN100363482C (zh) | 利用亲水/疏水复合膜中的微结构固定化脂肪酶的方法 | |
JPS62501678A (ja) | 生物学的に活性の有機材料を固定化するための担体 | |
CA1258436A (en) | Mat structure for use in filtration devices | |
WO1993007952A1 (en) | Biological filter | |
US4690760A (en) | Novel cartridge with stress relieving member | |
EP0160681B1 (en) | Aerobic microbiological method | |
EP0605173A2 (en) | Hollow fibre reactor | |
Paolucci-Jeanjean et al. | Biomolecule applications for membrane-based phase contacting systems: distribution, separation and reaction—a first state of the art | |
KR101041505B1 (ko) | 적층형 세라믹 필터의 제조방법 및 이에 의해 제조되는적층형 세라믹 필터 | |
CN114950388A (zh) | 一种使用聚合物/二氧化硅负载的胺中空纤维吸附剂制备方法 | |
SE444322B (sv) | Forfarande for immobilisering av biologisk katalysator i matris av mineralull samt fluidpermeabel mineralullsmatris | |
JPH01171643A (ja) | 微生物固定化担体 | |
CN110917865A (zh) | 一种pdms板状填料及其制备方法 | |
EP0231158B1 (en) | Method for the destruction of foam | |
CN108358301B (zh) | 一种具有脱氮功能的复合型悬浮滤料 | |
JPH0373277B2 (sv) | ||
JPS6328498A (ja) | 液処理装置用モジユ−ル | |
JPH0247929B2 (sv) | ||
Feng et al. | Hollow fiber and spiral wound contactors for fluid/particle contact and interaction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NUG | Patent has lapsed |
Ref document number: 8500208-7 Effective date: 19910805 Format of ref document f/p: F |