RU2809295C1 - Холоднокатаный и подвергнутый двойному отжигу стальной лист - Google Patents
Холоднокатаный и подвергнутый двойному отжигу стальной лист Download PDFInfo
- Publication number
- RU2809295C1 RU2809295C1 RU2023103862A RU2023103862A RU2809295C1 RU 2809295 C1 RU2809295 C1 RU 2809295C1 RU 2023103862 A RU2023103862 A RU 2023103862A RU 2023103862 A RU2023103862 A RU 2023103862A RU 2809295 C1 RU2809295 C1 RU 2809295C1
- Authority
- RU
- Russia
- Prior art keywords
- steel sheet
- steel
- sheet according
- rolled
- annealed
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 106
- 239000010959 steel Substances 0.000 title claims abstract description 106
- 239000011572 manganese Substances 0.000 claims abstract description 62
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 44
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 38
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 38
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 37
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 32
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 19
- 239000000203 mixture Substances 0.000 claims abstract description 12
- 230000000717 retained effect Effects 0.000 claims abstract description 11
- 238000003466 welding Methods 0.000 claims abstract description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 238000003723 Smelting Methods 0.000 claims abstract description 3
- 229910052742 iron Inorganic materials 0.000 claims abstract description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 8
- 229910001338 liquidmetal Inorganic materials 0.000 claims description 4
- 230000000694 effects Effects 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 3
- -1 wt.%: C 0.03 – 0.18 Substances 0.000 abstract description 2
- 238000005272 metallurgy Methods 0.000 abstract 1
- 238000000137 annealing Methods 0.000 description 31
- 239000010960 cold rolled steel Substances 0.000 description 13
- 150000001247 metal acetylides Chemical class 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000001816 cooling Methods 0.000 description 8
- 229910052796 boron Inorganic materials 0.000 description 7
- 239000012071 phase Substances 0.000 description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 230000009466 transformation Effects 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 238000005098 hot rolling Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 4
- 238000005266 casting Methods 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 239000011733 molybdenum Substances 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 239000011651 chromium Substances 0.000 description 3
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000001226 reprecipitation Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 241000359496 Kaistibacter Species 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
Abstract
Изобретение относится к металлургии, а именно к высокопрочному стальному листу, имеющему хорошие характеристики свариваемости. Холоднокатаный и подвергнутый двойному отжигу стальной лист, выполненный из стали, имеющей состав, в мас.%: C 0,03 – 0,18, Mn 6,0 – 11,0, 0,2 ≤Al < 3, Mo 0,05 – 0,5, B 0,0005 – 0,005, S ≤ 0,010, P ≤ 0,020, N≤ 0,008, и, необязательно, включающий один или несколько из следующих элементов: Si ≤ 1,20, Nb ≤ 0,050, Ti ≤ 0,050, Cr ≤ 0,5, V ≤ 0,2, железо и неизбежные примеси, образующиеся при плавке, - остальное. Лист обладает микроструктурой, заключающей в себе, в долях поверхности: от 0 до 45% феррита, от 20 до 50% остаточного аустенита, от 5 до 80% отожженного мартенсита, от 0 до 5% свежего мартенсита, плотность карбидов ниже 4×106/мм2. При этом выполнено отношение ([C]A 2 x [Mn]A) / (C%2 x Mn%), составляющее от 4,5 до 11,0, где [C]A и [Mn]A - содержание углерода и марганца в аустените, выраженное в массовых процентах, C% и Mn% - номинальные значения содержания С и Mn в стали, в масс.%. Шов контактной точечной сварки двух стальных деталей, изготовленных из холоднокатаного и подвергнутого двойному отжигу стального листа указанного состава, характеризуется значением α, которое составляет по меньшей мере 30 даН/мм2, где α - отношение предела прочности на растяжение, представляющего собой силу, приложенную для разрушения сварной точки, полученной при сварке двух частей, к произведению диаметра сварной точки и толщины основы шва. Листы имеют высокие значения предела текучести и прочностью на разрыв, а также хорошо формуются. 2 н. и 9 з.п. ф-лы, 6 табл., 3 пр.
Description
Настоящее изобретение относится к высокопрочному стальному листу, имеющему хорошие характеристики свариваемости, и к способу получения такого стального листа.
Для производства различных изделий, таких как детали структурных элементов и панелей кузова автомобильных транспортных средств, известно применение листов, изготовленных из DP- (двухфазных) сталей или TRIP-сталей (с пластичностью, обусловленной превращением.
Одна из главных проблем автомобильной промышленности заключается в уменьшении массы транспортных средств для повышения эффективности использования в них топлива, без пренебрежения требованиями безопасности и в свете охраны глобальной окружающей среды. С целью достижения соответствия указанным требованиям в сталелитейной промышленности постоянно разрабатываются новые высокопрочные стали для того, чтобы иметь листы с повышенным пределом текучести и прочностью на разрыв, а также хорошей тягучестью и формуемостью.
Сущность одной из разработок, выполненных для улучшения механических свойств, состоит в увеличении содержания марганца в сталях. Присутствие марганца способствует повышению тягучести сталей благодаря стабилизации аустенита. Однако указанные стали демонстрируют ухудшение свойств, обусловленное хрупкостью. Для преодоления упомянутой проблемы добавляют такие элементы, как бор. Указанные химические композиции с добавлением бора являются очень вязкими на стадии горячей прокатки, а горячая полоса является слишком твёрдой для дальнейшей переработки. Наиболее эффективным способом смягчения данной горячей полосы является периодический отжиг, но он приводит к потере вязкости.
В дополнение к упомянутым требованиям в отношении механических свойств, такие стальные листы должны показывать хорошую стойкость к жидкометаллическому охрупчиванию (LME). Стальные листы, покрытые цинком или цинковым сплавом, являются очень эффективными в отношении коррозионной стойкости и, следовательно, широко применяются в автомобильной промышленности. Однако на практике было обнаружено, что дуговая сварка или сварка электросопротивлением определённых сталей может вызывать возникновение конкретных трещин вследствие явления, называемого жидкометаллическим охрупчиванием («LME»), или образованием трещин, обусловленным воздействием жидкого металла («LMAC»). Данное явление характеризуется проникновением жидкого Zn по границам зёрен нижележащей стальной основы под действием прилагаемых напряжений или внутренних напряжений, возникающих в результате жёсткого закрепления, теплового расширения или превращений фаз. Известно, что добавление элементов, подобных углероду или кремнию, оказывает вредное воздействие на стойкость к LME.
В автомобильной промышленности обычно определяют такую стойкость путём введения верхнего предельного значения так называемого показателя склонности к LME, рассчитываемого по следующему уравнению:
Показатель склонности к LME = C% + Si%/4,
где % C и % Si обозначают, соответственно, массовые проценты углерода и кремния в стали.
Публикация WO2020011638 касается способа получения холоднокатаной стали с содержанием марганца от среднего до промежуточного (Mn от 3,5 до 12%) и пониженным содержанием углерода. Описаны два технологических маршрута. Первый маршрут включает однократный межкритический отжиг холоднокатаного стального листа. Второй маршрут включает двойной отжиг холоднокатаного стального листа, причём первый маршрут является полностью аустенитным, а второй маршрут является межкритическим. Благодаря выбору температуры отжига достигается оптимальное соотношение между прочностью на разрыв и удлинением. Путём снижения температуры отжига достигается обогащение аустенитом, что подразумевает наличие высокого значения величины напряжения излома по толщине. Однако малое количество углерода и марганца, используемое в изобретении, ограничивает прочность стального листа на разрыв величинами не выше 980 МПа.
С учётом вышесказанного, цель настоящего изобретения заключается в решении вышеупомянутой проблемы и получении стального листа, обладающего сочетанием очень хороших механических свойств, включающих прочность на разрыв TS, равную 900 МПа или выше, однородное удлинение UE, равное 11% или больше, предел текучести, равный 700 МПа или выше, и удовлетворяющих условию [(YS-200) x UE + (TS-300) x TE]/(C% x Mn%) выше 29 000, при этом TE представляет общее удлинение листа, выраженное в %, прочность на разрыв TS выражена в МПа, предел текучести YS выражен в МПа, однородное удлинение UE выражено в %, C% и Mn% представляют номинальные мас. % C и Mn в стали.
Предпочтительно, стальной лист характеризуется общим удлинением TE, равным 15,0% или больше.
Предпочтительно, стальной лист, соответствующий изобретению, характеризуется показателем склонности к LME, составляющим меньше 0,36.
Предпочтительно, стальной лист, соответствующий изобретению, характеризуется углеродным эквивалентом Cэкв ниже 0,4%, причём углеродный эквивалент определяют следующим образом:
Cэкв = C%+Si%/55+Cr%/20+Mn%/19-Al%/18+2,2P%-3,24B%-0,133*Mn%*Mo%
при этом количества элементов выражены в массовых процентах.
Предпочтительно, шов контактной точечной сварки двух стальных деталей из стального листа, соответствующего изобретению, характеризуется значением α, равным, по меньшей мере, 30 даН/мм2.
Задача настоящего изобретения достигается получением стального листа по п. 1. Стальной лист также может включать любые характеристики любого из пп. 2 - 10, взятые по отдельности или в сочетании.
Другой задачей данного изобретения является шов контактной точечной сварки двух стальных деталей по п. 11.
Далее изобретение будет подробно описано и проиллюстрировано примерами без введения ограничений.
Согласно изобретению, содержание углерода составляет от 0,03% до 0,18% для обеспечения характеристик удовлетворительной прочности и хорошей свариваемости. При содержании углерода выше 0,18% могут снижаться свариваемость стального листа и стойкость к LME. От содержания углерода зависит температура томления: чем выше содержание углерода, тем ниже температура томления для стабилизации аустенита. Если содержание углерода ниже 0,03%, прочность отожжённого мартенсита является недостаточной для достижения показателя TS выше 900 МПа. В предпочтительном варианте осуществления изобретения содержание углерода составляет от 0,05% до 0,15%. В другом предпочтительном варианте осуществления изобретения содержание углерода составляет от 0,08 до 0,12% или ещё лучше, от 0,08 до 0,10%.
Содержание марганца составляет от 6,0% до 11,0%. При добавлении свыше 11,0% может снижаться свариваемость стального листа и продуктивность сборки деталей. Кроме того, повышается риск возникновения осевой сегрегации до уровня оказания вредного воздействия на механические свойства. Поскольку температура томления в значительной степени зависит от содержания марганца, определяется минимальное количество марганца для стабилизации аустенита, с целью получения после томления заданной микроструктуры и прочности. Предпочтительно, содержание марганца составляет от 6,0% до 9%.
Согласно изобретению, содержание алюминия составляет от 0,2% до 3% для уменьшения сегрегации марганца при разливке. Алюминий является очень эффективным элементом для раскисления стали при обработке в жидкой фазе. При добавлении свыше 3% может снижаться свариваемость стального листа, в состоянии непосредственно после литья. К тому же, трудно достигать прочности на разрыв выше 900 МПа. Кроме того, чем выше содержание алюминия, тем выше температура томления для стабилизации аустенита. Алюминий добавляют в количестве, по меньшей мере, вплоть до 0,2% для повышения устойчивости продукта к изменениям путём увеличения межкритического диапазона, а также для улучшения свариваемости. Кроме того, алюминий можно добавлять во избежание возникновения проблем, связанных с образованием включений и окислением. В предпочтительном варианте осуществления изобретения содержание алюминия составляет от 0,2% до 2,2%, а более предпочтительно, от 0,7 до 2,2%.
Содержание молибдена составляет от 0,05% до 0,5% в целях уменьшения сегрегации марганца при разливке. Кроме того, добавление, по меньшей мере, 0,05% молибдена обеспечивает стойкость к охрупчиванию. При введении свыше 0,5% добавление молибдена является дорогостоящим и неэффективным с точки зрения требуемых свойств. В предпочтительном варианте осуществления изобретения содержание молибдена составляет от 0,15% до 0,35%.
Согласно изобретению, содержание бора составляет от 0,0005% до 0,005% для улучшения жёсткости горячекатаного стального листа и свариваемости холоднокатаного стального листа при точечной сварке. При содержании выше 0,005% активируется образование карбидов бора на предшествующих границах зёрен аустенита, что делает сталь более хрупкой. В предпочтительном варианте осуществления изобретения содержание бора составляет от 0,001% до 0,003%.
К композиции стали, соответствующей изобретению, необязательно, можно добавлять некоторые элементы.
Максимальная добавка кремниевого содержимого в целях повышения стойкости к LME ограничивается величиной 1,20%. В дополнение к этому, указанное низкое содержание кремния обеспечивает возможность упрощения процесса за счёт исключения стадии травления горячекатаного стального листа перед отжигом горячекатаного листа. Предпочтительно, максимальное добавляемое содержание кремния составляет 0,8%.
Титан можно добавлять до достижения концентрации 0,050% для обеспечения дисперсионного упрочнения. Предпочтительно, добавляют минимум 0,010% титана в дополнение к бору, для предотвращения образования бором соединения BN.
Ниобий, необязательно, можно добавлять до достижения концентрации 0,050% для утончения зёрен аустенита в ходе горячей прокатки и обеспечения дисперсионного упрочнения. Предпочтительно, минимальное количество добавляемого ниобия составляет 0,010%.
Хром и ванадий, необязательно, можно добавлять до достижения концентрации, соответственно, 0,5% и 0,2% для обеспечения повышенной прочности.
Остальная часть состава стали представляет собой железо и примеси, образующиеся в результате выплавки. В этом отношении, по меньшей мере, P, S и N считаются остаточными элементами, которые являются неизбежными примесями. Их содержание равно 0,010% или меньше для S; 0,020% или меньше для P и 0,008% или меньше для N.
Далее будет описана микроструктура стального листа согласно изобретению. Она включает, в долях поверхности:
- от 0% до 45% феррита,
- от 20% до 50% остаточного аустенита,
- от 5 до 80% отожжённого мартенсита,
- меньше 5% свежего мартенсита,
- содержание углерода [C]A и марганца [Mn]A в аустените, выраженное в масс. %, таково, что отношение ([C]A² x [Mn]A) / (C%² x Mn%) составляет от 4,5 до 11,0, при этом C% и Mn% представляют номинальные значения содержания углерода и марганца в массовых процентах в стали и
- плотность карбидов составляет ниже 4x106/мм².
Микроструктура стального листа, соответствующего изобретению, заключает в себе от 20% до 50% остаточного аустенита. При концентрациях аустенита ниже 20% величина однородного удлинения UE не может достигать минимального значения, равного 11,0%. При концентрациях выше 50% предел текучести составляет ниже 700 МПа.
Такой аустенит может образоваться в ходе межкритического отжига горячекатаного стального листа, а также в течение первого отжига холоднокатаного стального листа или второго отжига в результате превращения части мартенсита при высокой температуре.
Концентрации углерода [C]A и марганца [Mn]A в аустените, выраженные в массовых процентах, являются такими, что отношение ([C]A² x [Mn]A) / (C%² x Mn%) составляет от 4,5 до 11,0, при этом C% и Mn% представляют номинальные значения содержания C и Mn в стали в массовых процентах. Данная формула показывает уровень выделения углерода и марганца в остаточный аустенит. Когда указанное отношение меньше 4,5, предел текучести не может достигать минимального уровня, равного 700 МПа. Когда указанное отношение больше 11,0, остаточный аустенит является слишком стабильным для проявления адекватного TRIP-TWIP-эффекта при деформации. Такой TWIP-TRIP-эффект поясняется, в частности, в работе «Observation-of-the-TWIP-TRIP-Plasticity-Enhancement-Mechanism-in-Al-Added-6-Wt-Pct-Medium-Mn-Steel», DOI: 10.1007/s11661-015-2854-z, The Minerals, Metals & Materials Society and ASM International 2015, p. 2356Volume 46A, June 2015 (S. LEE, K. LEE, and B. C. DE COOMAN).
Микроструктура стального листа, соответствующего изобретению, заключает в себе от 0 до 45% феррита. Такой феррит может образоваться в ходе первого отжига холоднокатаного стального листа, когда он имеет место при температуре ниже температуры Ac3 холоднокатаного стального листа. Когда первый отжиг холоднокатаного стального листа проводится при температуре выше значения Ac3 для холоднокатаного стального листа, феррит не присутствует. В предпочтительном варианте осуществления такой феррит рекристаллизуется и демонстрирует равноосные зёрна с коэффициентом формы меньше 2.
Микроструктура стального листа, соответствующего изобретению, заключает в себе от 5 до 80% отожжённого мартенсита. Такой мартенсит может образовываться при охлаждении горячекатаного стального листа после межкритического отжига за счёт превращения части аустенита, менее обогащённой углеродом и марганцем по сравнению с номинальными значениями. Однако в основном он образуется при охлаждении холоднокатаного стального листа после первого отжига, а затем отжигается в ходе второго отжига холоднокатаного стального листа. Такой отожжённый мартенсит может являться отпущенным мартенситом и/или регенерированным и/или рекристаллизованным мартенситом. Когда второй отжиг осуществляют в диапазоне более низких температур, мартенсит, предпочтительно, может являться отпущенным мартенситом и регенерированным мартенситом. Когда второй отжиг осуществляют в диапазоне более высоких температур, мартенсит, предпочтительно, может являться регенерированным и рекристаллизованным мартенситом.
Свежий мартенсит может присутствовать в количестве меньше 5% в долях поверхности, но он не является фазой, желаемой в микроструктуре стального листа, соответствующего изобретению. Он может образовываться на конечной стадии охлаждения до комнатной температуры в результате превращения нестабильного аустенита, обеднённого марганцем и углеродом. Действительно, упомянутый нестабильный аустенит с низким содержанием углерода и марганца приводит к тому, что начальная температура образования мартенсита, Ms, составляет выше 20°C. Для достижения конечных механических свойств содержание свежего мартенсита должно составлять меньше 5%, а предпочтительно, меньше 3%, или, ещё лучше, сокращаться до 0%.
Наконец, плотность карбидов должна сохраняться ниже 4x106/мм² для обеспечения того, чтобы значение выражения [(YS-200)xUE+(TS-300)xTE]/(C%xMn%) оставалось больше 29 000.
В первом варианте осуществления микроструктура включает от 5% до 25% феррита, от 25% до 50% остаточного аустенита и от 25% до 70% отожжённого мартенсита.
В другом варианте осуществления микроструктура не содержит феррита и включает от 25% до 45% остаточного аустенита и от 55% до 75% отожжённого мартенсита.
Стальной лист, соответствующий изобретению, характеризуется прочностью на разрыв, TS, равной 900 МПа или выше, однородным удлинением UE, равным 11% или больше, пределом текучести, равным 700 МПа или выше, и соответствует выражению [(YS-200)xUE+(TS-300)xTE]/(C%xMn%), составляющему больше 29 000, при этом TE представляет общее удлинение листа.
Предпочтительно, стальной лист характеризуется общим удлинением TE, равным 15,0% или больше.
Предпочтительно, стальной лист, соответствующий изобретению, характеризуется показателем склонности к LME ниже 0,36.
Предпочтительно, стальной лист, соответствующий изобретению, характеризуется углеродным эквивалентом Cэкв ниже 0,4%, причём углеродный эквивалент определяется следующим образом:
Cэкв = C%+Si%/55+Cr%/20+Mn%/19-Al%/18+2,2P%-3,24B%-0,133*Mn%*Mo%,
при этом концентрации элементов выражены в массовых процентах.
Сварную конструкцию можно изготовлять путём получения двух деталей из листов стали, соответствующих изобретению, а затем осуществления контактной точечной сварки двух стальных деталей.
Швы контактной точечной сварки, соединяющие первый лист со вторым, отличаются высокой стойкостью в испытании на растяжение крестообразного образца, определяемой величиной α, равной, по меньшей мере, 30 даН/мм2.
Стальной лист, соответствующий изобретению, можно получать любым подходящим способом изготовления, и его может определять специалист в данной области техники. Однако предпочтительно использовать способ согласно изобретению, включающий следующие стадии:
Получают полупродукт, способный подвергаться дальнейшей горячей прокатке, с составом стали, описанным выше. Данный полупродукт нагревают до температуры от 1150°C до 1300°C для возможности облегчения горячей прокатки с конечной температурой горячей прокатки, КТП, составляющей от 800°C до 1000°C. Предпочтительно, температура КТП составляет от 850°C до 950°C.
Затем горячекатаный стальной лист охлаждают и сматывают в рулон при температуре Трулон, составляющей от 20°C до 650°C, а предпочтительно от 300 до 500°C.
После этого горячекатаный стальной лист охлаждают до комнатной температуры, и его можно подвергать травлению.
Затем горячекатаный стальной лист нагревают до температуры отжига ТОГЛ, находящейся в диапазоне от температуры Tc до 680°C. Значение Tc соответствует температуре, при которой полностью растворяются карбиды, и их можно определять при помощи исследований методом FEG-SEM после термообработки. Отжиг в указанном диапазоне позволит сводить к минимуму долю поверхности, занимаемую выделившимися карбидами, и активировать повторное выделение марганца в аустенит. Кроме того, при температуре ниже 680°C микроструктура не укрупняется. Температура Tc выше температуры Ac1, так как Tc является пограничной линией между трёхфазной областью феррит/аустенит/карбиды и двухфазной областью феррит/аустенит, находящейся выше температуры Ac1, поскольку Ac1 является пограничной линией между областью феррит/карбид и областью феррит/аустенит/карбиды. Предпочтительно, температура ТОГЛ составляет от 600°C до 680°C.
Стальной лист выдерживают при указанной температуре ТОГЛ в течение периода времени выдержки, tОГЛ, составляющего от 0,1 до 120 ч, для активирования диффузии марганца. Кроме того, указанная термообработка горячекатаного стального листа позволяет снижать твёрдость при одновременном сохранении его вязкости.
Затем горячекатаный и термообработанный стальной лист охлаждают до комнатной температуры, и его можно подвергать травлению для устранения окисления.
После этого осуществляют холодную прокатку горячекатаного и термообработанного стального листа со степенью обжатия от 20% до 80%.
Далее холоднокатаный стальной лист подвергают первому отжигу при температуре T1, составляющей от значения (Ac1+Ac3)/2 до (Ac3+80), в течение периода времени выдержки, t1, составляющего от 10 с до 1800 с. Если T1 выше указанного предела, при комнатной температуре может стабилизироваться недостаточное количество аустенита. Предпочтительно, T1 составляет от 720 до 900°C и более предпочтительно, от 720°C до 870°C, а время t1 составляет от 100 до 1000 с. Такой отжиг можно выполнять в режиме непрерывного отжига.
Затем холоднокатаный и отожжённый стальной лист охлаждают до температуры ниже 80°C, предпочтительно, со средней скоростью охлаждения, по меньшей мере, 0,1°C/с, а предпочтительно, по меньшей мере, 1°C/с. После этого микроструктура листа состоит из аустенита и мартенсита, а также может содержать феррит, если температура отжига составляла ниже значения Ac3. Такой феррит не будет присутствовать, если отжиг выполняют при температуре выше Ac3.
После охлаждения далее осуществляют стадию второго отжига стального листа при температуре T2, составляющей от 350 до 650°C, в течение периода времени t2 от 1 до 100 ч. Предпочтительно, T2 составляет от 400 до 650°C, а t2 составляет от 1 до 50 ч. Указанную стадию можно осуществлять в режиме периодического отжига.
Основная цель второго отжига заключается в отпуске мартенсита в начале отжига, когда температура всё ещё низкая. Затем, когда температура повышается, продолжается повторное выделение углерода и марганца в аустенит из соседнего мартенсита. Наконец, когда температура достигает значения T2, часть мартенсита превращается в аустенит.
Температура T2 второго отжига зависит от химического состава, условий промежуточного периодического отжига и первого отжига. Она должна быть достаточно низкой для ограничения образования нестабильного аустенита, который далее превращался бы в свежий мартенсит с небольшой деформацией, что приводит и к снижению предела текучести, и сокращению удлинения. Она должна быть достаточно низкой во избежание образования нестабильного аустенита, который превращался бы в свежий мартенсит при конечном охлаждении, что приводит к сокращению удлинения. Она должна быть достаточно высокой во избежание образования слишком большого количества карбидов, которые потребляют углерод и марганец и приводят к снижению прочности. Упомянутое образование карбидов может происходить в особенности, когда температура T2 второго отжига составляет ниже значения Tc для стального листа.
Температура T2 второго отжига должна быть также достаточно высокой во избежание образования слишком стабильного аустенита, что приводит к уменьшению удлинения вследствие отсутствия TRIP-TWIP-эффекта.
Затем холоднокатаный и подвергнутый двойному отжигу стальной лист охлаждают до комнатной температуры, и в ходе такого охлаждения может образовываться небольшая доля свежего мартенсита в результате превращения части аустенита, обеднённого марганцем и углеродом.
После этого на лист можно наносить покрытие любым подходящим способом, включая нанесение покрытия погружением в расплав, электроосаждение или вакуумное напыление цинка или сплавов на его основе, либо алюминия или сплавов на его основе.
Далее изобретение будет проиллюстрировано следующими ниже примерами, которые никоим образом не являются ограничительными.
Примеры
Стали трёх марок, составы которых приведены в таблице 1, отливали в виде полупродуктов и перерабатывали в стальные листы.
Таблица 1. Составы
Испытанные составы сведены в следующей ниже таблице, в которой содержания элементов выражены в массовых процентах.
Температуры Ac1 и Ac3 холоднокатаных листов определены при помощи дилатометрических испытаний и металлографического анализа.
Таблица 2. Параметры процесса получения горячекатаных и термообработанных стальных листов
Непосредственно после отливки стальные полупродукты повторно нагревали при 1200°C, осуществляли горячую прокатку, а затем сматывали в рулоны. После этого горячекатаные и смотанные в рулоны стальные листы подвергают термообработке при температуре ТОГЛ и поддерживают при указанной температуре в течение времени выдержки, tОГЛ. Для получения горячекатаных и термообработанных стальных листов применяли следующие конкретные условия:
Подчёркнутые значения: параметры, которые не позволяют достигать заданных свойств
Таблица 3. Параметры процесса получения холоднокатаных, подвергнутых двойному отжигу стальных листов
Затем осуществляют холодную прокатку полученного горячекатаного и термообработанного стального листа. После этого холоднокатаный стальной лист вначале подвергают отжигу при температуре T1 и выдерживают при указанной температуре в течение периода времени выдержки, t1, перед охлаждением со скоростью охлаждения 2°C/с. Далее стальной лист нагревают второй раз при температуре T2 и выдерживают при указанной температуре в течение периода времени выдержки, t2, перед охлаждением до комнатной температуры. Для получения холоднокатаных и отожжённых стальных листов применяли следующие конкретные условия:
Подчёркнутые значения: параметры, которые не позволяют достигать заданных свойств
Затем выполняли анализ холоднокатаных и отожжённых листов, и соответствующие данные, касающиеся элементов микроструктуры, механических свойств и характеристик свариваемости, приведены, соответственно, в таблицах 4, 5 и 6.
Таблица 4. Микроструктура холоднокатаного и подвергнутого двойному отжигу стального листа
Были определены процентные содержания фаз микроструктур полученных холоднокатаных и подвергнутых двойному отжигу стальных листов.
Величины [C]A и [Mn]A соответствуют количествам углерода и марганца в аустените, выраженным в массовых процентах. Их измеряют методом дифракции рентгеновских лучей в случае углерода, C%, и при использовании электронно-зондового микроанализатора с полевой эмиссионной пушкой в случае марганца, Mn%.
Доли фаз на поверхности микроструктуры определяют следующим способом: для выявления микроструктуры из холоднокатаного и подвергнутого двойному отжигу стального листа вырезают образец для испытаний, полируют и подвергают травлению реагентом, известным в таковом качестве. После этого вырезанный образец исследуют при помощи сканирующего электронного микроскопа, например, сканирующего электронного микроскопа с полевой эмиссионной пушкой («FEG-SEM») при увеличении больше 5000x, в режиме регистрации вторичных электронов.
Отожжённый мартенсит может отличаться от свежего мартенсита по морфологии: отожжённый мартенсит имеет гладкую поверхность, иногда с карбидами внутри, в отличие от свежего мартенсита, который имеет шероховатую поверхность и не содержит карбидов.
Определение доли феррита на поверхности осуществляют при помощи исследований методом СЭМ после травления реагентами ниталь или пикраль/ниталь.
Определение объёмной доли остаточного аустенита выполняют методом дифракции рентгеновских лучей.
Плотность выделившихся карбидов определяют через посредство вырезанного из листа образца, исследуемого при помощи сканирующего электронного микроскопа с полевой эмиссионной пушкой («FEG-SEM») и анализа изображений c увеличением больше 15000x.
Таблица 5. Механические свойства холоднокатаного, подвергнутого двойному отжигу стального листа
Механические свойства полученных холоднокатаных, подвергнутых двойному отжигу стальных листов определены и приведены в следующей ниже таблице.
Предел текучести, YS, прочность на разрыв, TS, а также однородное и общее удлинение UE, TE, измеряли в соответствии со стандартом ISO 6892-1, опубликованным в октябре 2009 г.
Подчёркнутые значения: не соответствуют заданным величинам
В испытаниях 1, 2, 3, 4, 8, 19, 26, 27 и 28 листы подвергались воздействию температур T2, которые являлись слишком низкими. Образовавшийся аустенит является слишком стабильным, как демонстрируется значением показателя ([C]A² x [Mn]A) / (%C² x %Mn), которое является слишком высоким, что приводит к уменьшению однородного удлинения.
В противоположность этому, в испытаниях 5, 9, 18, 24 листы подвергались воздействию температуры T2, которая являлась достаточно высокой для обеспечения того, чтобы стабильность аустенита соответствовала заданной величине, что в результате приводит к очень хорошим значениям однородного и общего удлинений.
Кроме того, в испытаниях 19, 25, 26, 27 и 28 листы подвергались воздействию температур T2, которые были ниже Tc, и включали слишком большое количество карбидов, выходящее за пределы максимально допустимой величины, равной 4x106/мм².
В испытаниях 10, 11, 12, 20 и 21 листы подвергались воздействию температур T2, которые являлись слишком высокими. Образовавшийся аустенит является слишком нестабильным, как демонстрируется значением показателя ([C]A² x [Mn]A) / (%C² x %Mn), которое является слишком низким, что приводит к снижению предела текучести. Кроме того, все указанные испытания демонстрировали образование некоторого количества свежего мартенсита, при этом в испытаниях 10, 11 и 20 превышалась максимально допустимая величина, равная 5%. В отличие от этого, в испытаниях 13 и 22 листы подвергались воздействию температуры T2, которая являлась достаточно низкой для обеспечения того, чтобы стабильность аустенита соответствовала заданной величине, приводящей к достижению очень хороших характеристик, без образования свежего мартенсита.
Таблица 6. Характеристики свариваемости холоднокатаного, подвергнутого двойному отжигу стального листа
На холоднокатаных, подвергнутых двойному отжигу стальных листах была выполнена точечная сварка в условиях стандарта ISO 18278-2.
В применяемом испытании образцы состоят из двух листов стали в форме сваренного вкрест эквивалента. Для разрушения сварной точки прилагается сила. Указанная сила, известная как прочность на растяжение крестообразного образца (CTS), выражается в единицах даН. Она зависит от диаметра сварной точки и толщины металла, то есть толщины стали и металлического покрытия. Это обеспечивает возможность вычисления коэффициента α, который представляет собой отношение величины CTS к произведению диаметра сварной точки и толщины основы. Указанный коэффициент выражается в единицах даН/мм².
Характеристики свариваемости холоднокатаных и подвергнутых двойному отжигу стальных листов определены и сведены в следующей таблице :
Испытания | α (даН/мм²) | Показатель склонности к LME |
1 | 60 | 0,068 |
2 | 60 | 0,068 |
3 | 60 | 0,068 |
4 | 60 | 0,068 |
5 | 60 | 0,068 |
6 | 63 | 0,090 |
7 | 63 | 0,090 |
8 | 63 | 0,090 |
9 | 63 | 0,090 |
10 | 40 | 0,157 |
11 | 40 | 0,157 |
12 | 40 | 0,157 |
13 | 40 | 0,157 |
14 | 40 | 0,157 |
15 | 40 | 0,157 |
16 | 40 | 0,157 |
17 | 40 | 0,157 |
18 | 40 | 0,157 |
19 | 40 | 0,157 |
20 | 40 | 0,157 |
21 | 40 | 0,157 |
22 | 40 | 0,157 |
23 | 40 | 0,157 |
24 | 40 | 0,157 |
25 | 40 | 0,157 |
26 | 40 | 0,157 |
27 | 40 | 0,157 |
28 | 40 | 0,157 |
Показатель склонности к LME = C% + Si%/4, в масс. %.
Claims (38)
1. Холоднокатаный и подвергнутый двойному отжигу стальной лист, выполненный из стали, имеющей состав, в мас.%:
C: 0,03- 0,18
Mn: 6,0 – 11,0
0,2 ≤ Al < 3
Mo: 0,05 – 0,5
B: 0,0005 – 0,005
S ≤ 0,010
P ≤ 0,020
N ≤ 0,008
и, необязательно, включающий один или несколько из следующих элементов:
Si ≤ 1,20
Nb ≤ 0,050
Ti ≤ 0,050
Cr ≤ 0,5
V ≤ 0,2,
при этом остальную часть состава представляет железо и неизбежные примеси, образующиеся при плавке,
упомянутый стальной лист обладает микроструктурой, заключающей в себе, в долях поверхности:
от 0 до 45% феррита,
от 20 до 50% остаточного аустенита,
от 5 до 80% отожженного мартенсита,
от 0 до 5% свежего мартенсита,
плотность карбидов ниже 4×106/мм2,
при этом выполнено отношение ([C]A 2 x [Mn]A) / (C%2 x Mn%), составляющее от 4,5 до 11,0,
где [C]A и [Mn]A - содержание углерода и марганца в аустените, выраженное в массовых процентах,
C% и Mn% - номинальные значения содержания С и Mn в стали, в мас.%.
2. Стальной лист по п. 1, отличающийся тем, что содержание углерода составляет от 0,05 до 0,15 мас.%.
3. Стальной лист по п. 1 или 2, отличающийся тем, что содержание марганца составляет от 6,0 до 9 мас.%.
4. Стальной лист по любому из пп. 1 – 3, отличающийся тем, что содержание алюминия составляет от 0,2 до 2,2 мас.%.
5. Стальной лист по любому из пп. 1 – 4, отличающийся тем, что микроструктура содержит от 5 до 25% феррита, от 25 до 50% остаточного аустенита и от 25 до 70% отожженного мартенсита.
6. Стальной лист по любому из пп. 1 – 5, отличающийся тем, что феррит присутствует и является равноосным.
7. Стальной лист по любому из пп. 1 – 5, отличающийся тем, что микроструктура не содержит феррита и содержит от 25 до 45% остаточного аустенита и от 55 до 75% отожженного мартенсита.
8. Стальной лист по любому из пп. 1 – 7, отличающийся тем, что прочность на разрыв составляет 900 МПа или более, относительное удлинение UE составляет 11% или более, предел текучести YS составляет 700 МПа или более, а общее удлинение TE, YS, UE, TS являются такими, что значение отношения [(YS-200)xUE+(TS-300)xTE]/(C%xMn%) составляет более 29 000.
9. Стальной лист по любому из пп. 1 – 8, отличающийся тем, что показатель склонности к жидкометаллическому охрупчиванию (LME) менее 0,36.
10. Стальной лист по любому из пп. 1 – 9, отличающийся тем, что сталь характеризуется углеродным эквивалентом Cэкв, который составляет менее 0,4%, причем углеродный эквивалент определяется следующим образом:
Cэкв = C%+Si%/55+Cr%/20+Mn%/19-Al%/18+2,2P%-3,24B%-0,133xMn%xMo%,
при этом количества элементов выражены в массовых процентах.
11. Шов контактной точечной сварки двух стальных деталей, изготовленных из холоднокатаного и подвергнутого двойному отжигу стального листа по любому из пп. 1 – 10, характеризующийся значением α, которое составляет по меньшей мере 30 даН/мм2,
где α - отношение предела прочности на растяжение, представляющего собой силу, приложенную для разрушения сварной точки, полученной при сварке двух частей, к произведению диаметра сварной точки и толщины основы шва.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IBPCT/IB2020/056999 | 2020-07-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2809295C1 true RU2809295C1 (ru) | 2023-12-11 |
Family
ID=
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2606361C2 (ru) * | 2011-05-10 | 2017-01-10 | Арселормитталь Инвестигасьон И Десарролло Сл | Стальной лист с высокой механической прочностью, пластичностью и формуемостью, способ изготовления и применение таких листов |
RU2683785C2 (ru) * | 2014-07-03 | 2019-04-02 | Арселормиттал | Способ изготовления высокопрочного стального листа и полученный лист |
WO2019122961A1 (en) * | 2017-12-19 | 2019-06-27 | Arcelormittal | High strength and high formability steel sheet and manufacturing method |
WO2020011638A1 (de) * | 2018-07-13 | 2020-01-16 | Voestalpine Stahl Gmbh | Medium-mangan-kaltband-stahlzwischenprodukt mit reduziertem kohlenstoff-anteil und verfahren zum bereitstellen eines solchen stahlzwischenproduktes |
WO2020050573A1 (ko) * | 2018-09-04 | 2020-03-12 | 주식회사 포스코 | 항복강도비가 우수한 초고강도 고연성 강판 및 그 제조방법 |
RU2716920C2 (ru) * | 2015-12-21 | 2020-03-17 | Арселормиттал | Способ производства листовой стали, характеризующейся улучшенными прочностью, тягучестью и формуемостью |
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2606361C2 (ru) * | 2011-05-10 | 2017-01-10 | Арселормитталь Инвестигасьон И Десарролло Сл | Стальной лист с высокой механической прочностью, пластичностью и формуемостью, способ изготовления и применение таких листов |
RU2683785C2 (ru) * | 2014-07-03 | 2019-04-02 | Арселормиттал | Способ изготовления высокопрочного стального листа и полученный лист |
RU2716920C2 (ru) * | 2015-12-21 | 2020-03-17 | Арселормиттал | Способ производства листовой стали, характеризующейся улучшенными прочностью, тягучестью и формуемостью |
WO2019122961A1 (en) * | 2017-12-19 | 2019-06-27 | Arcelormittal | High strength and high formability steel sheet and manufacturing method |
WO2020011638A1 (de) * | 2018-07-13 | 2020-01-16 | Voestalpine Stahl Gmbh | Medium-mangan-kaltband-stahlzwischenprodukt mit reduziertem kohlenstoff-anteil und verfahren zum bereitstellen eines solchen stahlzwischenproduktes |
WO2020050573A1 (ko) * | 2018-09-04 | 2020-03-12 | 주식회사 포스코 | 항복강도비가 우수한 초고강도 고연성 강판 및 그 제조방법 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20210072070A (ko) | 냉간 압연 및 열 처리된 강판 및 냉간 압연 및 열 처리된 강판의 제조 방법 | |
RU2809295C1 (ru) | Холоднокатаный и подвергнутый двойному отжигу стальной лист | |
KR20230004795A (ko) | 냉간압연, 어닐링 및 파티셔닝된 강 시트 및 그 제조 방법 | |
KR20230004796A (ko) | 열간압연 및 열처리된 강 시트 및 그 제조 방법 | |
RU2804512C1 (ru) | Холоднокатаный отожжённый стальной лист и способ его изготовления | |
RU2804576C1 (ru) | Холоднокатаный и отожжённый стальной лист и способ его изготовления | |
RU2809296C1 (ru) | Холоднокатаный отожжённый стальной лист и способ его изготовления | |
RU2804574C1 (ru) | Холоднокатаный отожжённый стальной лист и способ его изготовления | |
RU2810466C1 (ru) | Холоднокатаный, отожжённый стальной лист или горячепрессованная, отожжённая стальная деталь | |
RU2812256C1 (ru) | Холоднокатаный, отожжённый и подвергнутый перераспределению стальной лист и способ его изготовления | |
CN115605626B (zh) | 经冷轧和退火的钢板及其制造方法 | |
JP7541122B2 (ja) | 冷間圧延焼鈍鋼板及びその製造方法 | |
CN115698364B (zh) | 冷轧退火钢板及其制造方法 | |
CN115552050B (zh) | 经冷轧和退火的钢板及其制造方法 | |
US20230295757A1 (en) | Cold rolled and double annealed steel sheet |