[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

RU2733395C1 - Электрофизическое устройство для очистки газов от экологически вредных примесей, обеззараживания воздуха и стерилизации - Google Patents

Электрофизическое устройство для очистки газов от экологически вредных примесей, обеззараживания воздуха и стерилизации Download PDF

Info

Publication number
RU2733395C1
RU2733395C1 RU2020120395A RU2020120395A RU2733395C1 RU 2733395 C1 RU2733395 C1 RU 2733395C1 RU 2020120395 A RU2020120395 A RU 2020120395A RU 2020120395 A RU2020120395 A RU 2020120395A RU 2733395 C1 RU2733395 C1 RU 2733395C1
Authority
RU
Russia
Prior art keywords
voltage
grounded
streamer corona
initiators
electrodes
Prior art date
Application number
RU2020120395A
Other languages
English (en)
Inventor
Александр Залманович Понизовский
Александр Васильевич Плохов
Игорь Евгеньевич Рындин
Максим Константинович Жданов
Олег Станиславович Кужель
Original Assignee
Александр Залманович Понизовский
Александр Васильевич Плохов
Игорь Евгеньевич Рындин
Максим Константинович Жданов
Олег Станиславович Кужель
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Залманович Понизовский, Александр Васильевич Плохов, Игорь Евгеньевич Рындин, Максим Константинович Жданов, Олег Станиславович Кужель filed Critical Александр Залманович Понизовский
Priority to RU2020120395A priority Critical patent/RU2733395C1/ru
Application granted granted Critical
Publication of RU2733395C1 publication Critical patent/RU2733395C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/22Ionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/16Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by purification, e.g. by filtering; by sterilisation; by ozonisation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Изобретение относится к технике высоких напряжений и может быть использовано для очистки газов от экологически вредных примесей, обеззараживания воздуха и стерилизации при помощи низкотемпературной плазмы, создаваемой импульсными стримерными коронными разрядами. Для этого предлагается электрофизическое устройство, содержащее по меньшей мере один заземленный электрод и по меньшей мере один высоковольтный электрод, содержащий инициаторы импульсных стримерных коронных разрядов по меньшей мере с одной из его сторон, с образованием между соседними заземленным и высоковольтным электродами реакторной камеры, в которой расположены инициаторы импульсных стримерных коронных разрядов, а также генератор импульсного напряжения, к которому подключен высоковольтный электрод. При этом инициаторы импульсных стримерных коронных разрядов, расположенные на высоковольтном электроде, выполнены в форме полуэллипсоидов вращения. Изобретение обеспечивает повышение КПД устройства. 6 з.п. ф-лы, 7 ил.

Description

Изобретение относится к технике высоких напряжений, в частности – к электрофизическому устройству для очистки газов от экологически вредных примесей (газообразных примесей, а также пылевых и мелкодисперсных аэрозольных частиц), для обеззараживания воздуха (снижения обсемененности воздуха патогенными микроогранизмами и вирусами до безопасного уровня), стерилизации как воздуха, так и диэлектрических и металлических предметов при помощи низкотемпературной плазмы, создаваемой импульсными стримерными коронными разрядами.
Известны устройства [Masuda S., Nakao H. Removal of NOx in the exhaust gas from a diesel engine using pulsed plasma. //IEEE-IAS Annual Conference. 1986. Denver. P. 1173.3., А. З. Понизовский, С. Г. Гостеев, О. С. Кужель, А. С. Смирнов. Промышленные установки для очистки воздуха с помощью низкотемпературной неравновесной плазмы газового разряда. Химическая безопасность 2018г. Том 2 №2, с:212-228.], в которых с помощью импульсного стримерного коронного разряда осуществляется очистка воздуха от экологически вредных газообразных примесей, пылевых и мелкодисперсных аэрозольных частиц. Эти устройства состоят из реакторных камер, через которые проходит поток воздуха, ограниченных коаксиально или плоско расположенными высоковольтными и заземленными электродами. Высоковольтные электроды подключаются к высоковольтному импульсному генератору, который генерирует импульсы напряжения наносекундной длительности. Под действием импульсов в пространстве между высоковольтным и заземленным электродом возникает стримерный коронный разряд, создающий низкотемпературную плазму. Низкотемпературная плазма характеризуется значительными плотностями и энергиями электронов, способных создать в разрядном промежутке высокие концентрации активных промежуточных частиц (атомарного кислорода, ионов и радикалов), которые вступают в радиационно-химические реакции с молекулами-загрязнителями. В результате реакций происходит конверсия газообразных примесей в экологически безвредные газы или аэрозоли [Понизовский А.З. Очистка вент выбросов с помощью импульсного и постоянного коронных разрядов. Экологические системы и приборы. 2007г. №11 с.9-14]. Мелкодисперсный аэрозоль, пыль и продукты, образующиеся под действием коронного разряда, за счет постоянного коронного разряда, имеющего место в паузе между импульсами, оседают на заземленном электроде, откуда смываются водой. Кроме того, в генерируемой импульсным стримерным коронным разрядом низкотемпературной плазме за счет большой плотности энергии электронов, радикалов, атомарного кислорода, озона и ультрафиолетового излучения происходит обеззараживание воздуха от микроорганизмов и вирусов [T.Xia1, A.Kleinhekse, E.M. Lee, Z.Qiao, K.R.Wigginton H.L.Clack. Inactivation of airborne viruses using a packed bed non-thermal plasma reactor. J. Phys. D: Appl. Phys. 52 (2019) 255201 (12pp)]. Аналогично в зоне действия низкотемпературной плазмы имеет место и стерилизация объектов [J Ehlbeck, U Schnabe, M Polak, J Winter, Th von Woedtke, R Brandenburg, T von dem Hagen, K-D Weltmann Low temperature atmospheric pressure plasma sources for microbial decontamination. J. Phys. D: Appl. Phys. 44 (2011) 013002 (18pp)].
Наиболее близким к предлагаемому изобретению является устройство, описанное в патенте США № 6224653, содержащее реакторную камеру, образованную между цилиндрическим заземленным электродом и концентрично установленным внутри него цилиндрическим высоковольтным электродом, содержащим большое количество острий. Острия на этом электроде предназначены для точечного усиления поля, позволяющего создать условия для возникновения стримерного коронного разряда. Высоковольтный электрод подключается к многоступенчатому генератору Фитча, который создает высокое импульсное напряжение. В результате между остриями и заземленным электродом возникают многоточечные стримерные коронные разряды.
Недостатком описанного устройства является его низкий КПД ввиду того, что конструкция высоковольтного электрода не учитывает специфику его работы при генерации наносекундного импульсного стримерного коронного разряда.
Задачей заявляемого изобретения является создание электрофизического устройства для очистки газов от экологически вредных примесей, обеззараживания воздуха и стерилизации при помощи низкотемпературной плазмы, создаваемой импульсными стримерными коронными разрядами, конструктивное исполнение которого обеспечило бы достижение технического результата, заключающегося в повышении КПД устройства.
Поставленная задача решается тем, что разработано электрофизическое устройство для очистки газов от экологически вредных примесей, обеззараживания воздуха и стерилизации при помощи низкотемпературной плазмы, создаваемой импульсными стримерными коронными разрядами, содержащее по меньшей мере один заземленный электрод и по меньшей мере один высоковольтный электрод, содержащий инициаторы импульсных стримерных коронных разрядов по меньшей мере с одной из его сторон, с образованием между соседними заземленным и высоковольтным электродами реакторной камеры, в которой расположены инициаторы импульсных стримерных коронных разрядов, а также генератор импульсного напряжения, к которому подключен высоковольтный электрод, при этом инициаторы импульсных стримерных коронных разрядов выполнены в форме полуэллипсоидов вращения.
Под соседними высоковольтным и заземленным электродами в контексте данного описания подразумеваются высоковольтный и заземленный электроды, между которыми отсутствуют любые другие электроды, при этом реакторную камеру может образовать только та пара соседних заземленного и высоковольтного электродов, в которой высоковольтный электрод содержит инициаторы импульсного стримерного коронного разряда со стороны соответствующего ему заземленного электрода (обращенной к соответствующему заземленному электроду).
Под полуэллипсоидами вращения в контексте данного описания следует понимать часть поверхности эллипсоида вращения, отсеченную плоскостью, проходящей через малые полуоси (одной длины) указанного эллипсоида вращения. При этом ось указанного полуэллипсоида вращения проходит через большую полуось эллипсоида вращения, которым он образован. Указанная ось полуэллипсоида вращения является перпендикулярной поверхности высоковольтного электрода.
Известно, что КПД работы электрофизических устройств для очистки газов от экологически вредных примесей, обеззараживания воздуха и стерилизации определяется внедряемой в газ энергией, которая, в свою очередь, прямо пропорциональна заряду, внедренному в межэлектродный промежуток стримерами, стартующими от инициаторов импульсного стримерного коронного разряда (острий) [А. З. Понизовский, С. Г. Гостеев, О. С. Кужель, А. С. Смирнов. Промышленные установки для очистки воздуха с помощью низкотемпературной неравновесной плазмы газового разряда. Химическая безопасность 2018г. Том 2 №2, стр: 212-228.]. Там же показано, что в существующих установках по очистке воздуха наносекундным имульсным стримерным коронным разрядом из-за излишней остроты коронирующих точек на инициаторах импульсного стримерного коронного разряда стримеры стартуют задолго до амплитудного значения импульса. Базируясь на экспериментальных данных о стримерном коронном разряде [Базелян Э.М., Райзер Ю.П. Искровой разряд М.Изд-во МФТИ 1997, 320 с., Б.Пек Моделирование лавинно-стримерного перехода в пакете Comsol 17.с. https://tehnick.github.io/seminar/streamers3/streamer_in_Air.pdf Понизовский А.З., Гостеев С.Г. Зондовые измерения параметров стримеров частотного наносекундного коронного разряда. Ядерная физика и инжиниринг. 2016 7(5):462-470, Д.В.Разевиг, М.В. Соколова Расчет начальных и разрядных напряжений газовых промежутков М.-Энергия,1970 200 с.] и рассчитанных характеристиках электрических полей, авторами данного изобретения было установлено, что увеличить величину начального напряжения стримера и, тем самым, повысить КПД устройства, можно за счет уменьшения остроты коронирующих точек, в частности – за счет выполнения инициаторов импульсного стримерного коронного разряда в форме эллипсоидов.
Очевидно, что распределение коронирующих точек инициаторов импульсных стримерных коронных разрядов, выполненных в форме эллипсоидов вращения, по поверхности высоковольтного электрода, а, соответственно, и размеры указанных инициаторов в каждом конкретном исполнении устройства должны быть различными и могут быть расчитаны.
Так, для генерации наносекундного импульсного стримерного коронного разряда с максимально возможной внедряемой в газ энергией необходимо выполнение следующих условий.
Во-первых, импульсная напряженность электрического поля Емах на расстоянии не менее 0,5 мм от высоковольтного электрода должна быть больше 30 кВ/см (Емах > 30 кВ/см).
Во-вторых, среднее значение импульсного электрического поля Еср, которое рассчитывается по формуле
Еср=Up/d, (1)
где Up – амплитуда импульсного напряжения,
d – межэлектродное расстояние,
должно находиться в пределах между 5кВ/см и 10кВ/см (5кВ/см < Еср < 10кВ/см) (нижний предел Еср соответствует минимальному значению для развития стримера, верхний предел Еср соответствует электрическому пробою разрядного промежутка).
В-третьих, в момент старта стримеров потенциал высоковольтного электрода Ust должен быть близок к Up (Ust ≈ Up), т.к. заряд, внедряемый стримером в межэлектродное простарнство, рассчитывается по формуле
Q=4πε0rhUst (2),
где rh - радиус головки стримера.
В-червертых, объемный заряд, внедряемый от каждого коронирующего инициатора импульсного стримерного коронного разряда (острия), не должен резко снижать электрическое поле на соседнем коронирующем острие, тем самым препятствуя возникновению стримера.
Эти условия можно выполнить, если инициаторы импульсного стримерного коронного разряда, расположенные на высоковольтном электроде такого радиуса, при котором при заданных параметрах импульса напряжения на его поверхности Емах < 25 кВ/см, имеют форму полуэллипсоидов вращения.
Опираясь на вышеперечисленные условия, были рассчитаны наиболее предпочтительные геометрические параметры инициаторов стримерного коронного разряда, в частности при радиусе кривизны высоковольтного электрода больше 3 см инициаторы импульсных стримерных коронных разрядов размещены на расстоянии больше 3 мм между их вершинами, длина большой полуоси эллипсоида вращения, образующего полуэллипсоид вращения, в форме которого выполнен инициатор импульсного стримерного коронного разряда, больше 1 см, а сотношение малой и большой полуосей эллипсоида вращения, образующего полуэллипсоид вращения, в форме которого выполнен инициатор импульсного стримерного коронного разряда, составляет от 0,2 до 0,6. Расчет указанных оптимальных геометрических параметров инициаторов стримерного коронного разряда приведен ниже со ссылками на прилагаемые фигуры.
Заявляемое устойство может характеризоваться различными конкретными вариантами реализации, отличиющимися количеством заземленных и высоковольтных электродов, их формой и расположением.
В одном из вариантов осуществления заявляемого изобретения заземленный и высоковольтный электроды выполнены в виде плоских пластин.
В другом варианте осуществления заявляемого изобретения заземленный и высоковольтный электроды выполнены в виде изогнутых пластин, в частности – образованных частью боковой поверхности цилиндра.
В еще одном предпочтительном варианте осуществления заявляемого изобретения заземленный и высоковольтный электроды выполнены цилиндрическими и установлены коаксиально.
Помимо варианта реализации устройства с двумя электродами (одним заземленным и одним высоковольтным), устройство может содержать установленные поочередно n заземленных электродов и n высоковольтных электродов, содержащих инициаторы импульсных стримерных коронных разрядов с одной стороны, где n≥2. При этом очевидно, что инициаторы импульсных стримерных коронных разрядов на каждом из высоковольтных электродов расположены со стороны соответствующего ему заземленного электрода. Такое исполнение подразумевает наличие в устройстве двух и более реакторных камер, каждая из которых ограничена отдельной парой электродов, включающей заземленный и высоковольтный электрод.
Заземленные и высоковольтные электроды могут быть установлены и непоочередно, однако в любом случае попарно (например, заземленный-высоковольтный-высоковольтный-заземленный), при этом инициаторы импульсных стримерных коронных разрядов на высоковольтных электродах расположены со стороны соответствующих заземленных электродов.
В еще одном предпочтительном варианте осуществления устройство содержит установленные поочередно (начиная с заземленного электрода) n заземленных электродов и n-1 высоковольтных электродов, содержащих инициаторы импульсных стримерных коронных разрядов с двух сторон, где n≥2. Такое исполнение устройства также подразумевает наличие в устройстве двух и более реакторных камер, однако в данном варианте каждая из камер ограничена отдельным заземленным электродом и одним общим на две смежные камеры высоковольтным электродом.
Альтернативно устройство может содержать установленные поочередно (начиная с высоковольтного электрода) n высоковольтных электродов и n-1 заземленных электродов, где n≥2. В таком варианте реализации заземленные электроды установлены между парами высоковольтных электродов, при этом крайние высоковольтные электроды содержат инициаторы импульсных стримерных коронных разрядов с одной стороны, в частности – со стороны соответствующих им заземленных электродов, а внутренние высоковольтные электроды (в случае их наличия, т.е. если n>2) содержат инициаторы импульсных стримерных коронных разрядов с двух сторон.
Два последних вышеописанных варианта исполнения заявляемого устройства являются менее металлоемкими, если сравнивать с металлоемкостью устройств с одной реакторной камерой, необходимых для обеспечения той же производительности, а, следовательно, более экономичными.
В вариантах исполнения, где заявляемое устройство содержит две и более реакторные камеры, последние могут быть соединены между собой последовательно или же, наоборот, воздух или другой газ проходит по ним параллельно. Первый вариант исполнения целесообразен, например, при работе устройства с потоком воздуха или другого газа, подлежащим максимальной степени обработки (очистки, обеззараживания), когда в последующей по потоку камере поток воздуха или другого газа дообрабатывается. Второй вариант исполнения целесообразен, например, при необходимости повышения производительности устройства, т.е. обработки большего объема воздуха или другого газа за единицу времени, или при выполнении заявляемым устройством функции стерилизации предметов, когда прохождение их через несколько реакторных камер исключается.
Как правило, генератор импульсного напряжения содержит регулятор зарядного напряжения. При этом высоковольтный электрод подключен к генератору импульсного напряжения посредством проходного изолятора через заземленную часть устройства, обеспечивающего изоляцию токопроводящих элементов от корпуса устройства, через который они проходят.
В случае если крайними наружными электродами являются заземленные электроды, они могут также выполнять функцию корпуса устройства. Такой вариант исполнения является наиболее оптимальным с точки зрения металлоемкости, а, следовательно, экономичности.
Также следует отметить, что крайний внутренний электрод в случае выполнения электродов цилиндрическими вне зависимости от его типа (заземленный или высоковольтный) может быть выполнен как полым (т.е. трубчатым или, другими словами, в форме полого цилиндра, как и все остальные электроды), так и сплошным, т.е. без осевого отверстия.
Осадок, который может образовываться на соответствующей стенке заземленного электрода, может быть удален, например, посредством оснащения заявляемого устройства устройством подвода воды к верхней части рабочей поверхности заземленного электрода для смыва осадка, а также отверстием для слива, выполненным в заземленной части корпуса, или любым другим подходящим образом, известным из уровня техники.
Таким образом, существуют различные варианты исполнения заявляемого утсройства, отличающиеся количеством реакторных камер, количеством электродов, которые их образуют, месторасположением указанных электродов, а также их исполнением. Более того, возможны также варианты осуществления устройства, например в случае, когда электроды выполнены цилиндрическими, где заявляемое устройство будет представлять собой батарею, содержащую несколько некоаксиальных реакторных камер или же несколько групп коаксиальных реакторных камер, реакторные камеры каждой из которых являются некоаксиальными реакторным камерам другой группы или групп. Все реакторные камеры при необходимости могут быть объединены в одном корпусе, а все высоковольтные электроды батареи могут быть подключены к одному генератору импульсного напряжения. Однако в любом вышеописанном варианте исполнения или любом другом подпадающим под независимый пункт формулы заявляемого изобретения варианте исполнения инициаторы стримерных коронных разрядов на высоковольтном электроде будут иметь форму полуэллипсоидов вращения, а их геометрические параметры, в свою очередь, будут зависеть от конкретного исполнения устройства.
Заявляемое изобретение будет более детально раскрыто со ссылками на следующие графические материалы:
фиг. 1 – схематический вид в разрезе одного из предпочтительных вариантов осуществления заявляемого изобретения;
фиг. 2 – схематический увеличенный вид в разрезе одного инициатора импульсного стримерного коронного разряда, расположенного между высоковольтным и заземленным электродами;
фиг. 3 – зависимость напряженности поля в точке расчета поля при средней напряженности электрического поля 9 кВ/см в межэлектродном промежутке в зависимости от соотношения полуосей эллипсоида вращения, образующего полуэллипсоид вращения, в форме которого выполнен инициатор импульсного стримерного коронного разряда;
фиг.4 – зависимость напряженности поля в точке расчета поля при средней напряженности электрического поля 7 кВ/см в межэлектродном промежутке в зависимости от соотношения полуосей эллипсоида вращения, образующего полуэллипсоид вращения, в форме которого выполнен инициатор импульсного стримерного коронного разряда;
фиг.5 – зависимость напряженности поля в точке расчета поля при средней напряженности электрического поля 6 кВ/см в межэлектродном промежутке в зависимости от соотношения полуосей эллипсоида вращения, образующего полуэллипсоид вращения, в форме которого выполнен инициатор импульсного стримерного коронного разряда;
фиг. 6 – зависимость напряженности поля в точке расчета поля при средней напряженности электрического поля 5 кВ/см в межэлектродном промежутке в зависимости от соотношения полуосей эллипсоида вращения, образующего полуэллипсоид вращения, в форме которого выполнен инициатор импульсного стримерного коронного разряда;
фиг.7 – зависимость напряженности электрического поля заряда головки стримера от расстояния до нее.
На фиг. 1 проиллюстрирован схематический вид электрофизического устройства для очистки газов от экологически вредных примесей, обеззараживания воздуха и стерилизации при помощи низкотемпературной плазмы, создаваемой импульсными стримерными коронными разрядами. Указанное устройство содержит установленные коаксиально один цилиндрический заземленный электрод 1 и один цилиндрический высоковольтный электрод 2, содержащий инициаторы 3 импульсных стримерных коронных разрядов с одной его стороны, обращенной к заземленному электроду 1. Указанные инициаторы 3 выполнены в форме полуэллипсоидов вращения. На фиг. 1 видно, что указанные электроды 1 и 2 установлены коаксиально, при этом между ними образована реакторная камера 4. Высоковольтный электрод 2 подключен к генератору 5 импульсного напряжения через проходной изолятор 6. На фиг. 1 видно, что заземленный электрод 1 является корпусом устройства. Позициями 7 и 8 обозначены вход и выход газа/воздуха в и из реакторной камеры 4 соответственно. Альтернативно или совместно с указанными входом и выходом устройство может быть оборудовано отверстием для помещения в реакторную камеру 4 предмета для его стерилизации. Заземленный 1 и высоковольтный 2 электроды расположены на расстоянии d друг от друга. Стрелками на фиг. 1 показано направление движения подаваемого в устройство газа/воздуха. Инициаторы 3 стримерного коронного разряда расположены на расстоянии S между их вершинами.
На фиг. 2 представлен схематический увеличенный вид в разрезе одного инициатора 3 импульсного стримерного коронного разряда, расположенного между высоковольтным 2 и заземленным 1 электродами. Как c обозначен один из фокусов эллипсоида вращения, в форме которого, в свою очередь, выполнен инициатор 3 импульсного стримерного коронного разряда; указанный фокус c находится на указанном инициаторе 3. На фиг. 2 с целью приведения дальнейшего расчета оптимальных геометрических параметров инициаторов 3 обозначена длина 2q малой оси эллипсоида вращения, образующего полуэллипсоид вращения, в форме которого выполнен инициатор 3 импульсного стримерного коронного разряда, а также длина q соответственно малой полуоси и длина t большой полуоси указанного эллипсоида вращения. Как Δx обозначено расстояние от вершины 9 полуэллипсоида вращения до точки 10 расчета поля.
Ниже приведен пример расчета оптимальных геометрических параметров конструктивных элементов заявляемого устройства (в частности – инициаторов 3 в форме полуэллипсоидов вращения), которое согласно одному из предпочтительных вариантов осуществления содержит цилиндрический заземленный 1 и высоковольтный 2 электроды больших радиусов кривизны (т.е. таких радиусов, при которых при заданных параметрах импульса напряжения на поверхности высоковольтного электрода Емах < 25 кВ/см). Рассматривается крайний случай, когда электрическое поле между плоскими высоковольтным 2 и заземленным 1 электродами, которые изображены на фиг. 2 как прямые линии, однородное.
Поскольку длина t инициатора 3 импульсного стримерного коронного разряда намного меньше, чем расстояние d между заземленным 1 и высоковольтным 2 электродами, то для расчетов оптимальных параметров инициатора 3 можно использовать формулу для распределения электрического поля в промежутке полуэллипсоид вращения между двух плоскостей, как изображено на фиг. 2. На фиг. 2 инициатор 3 в форме полуэллипсоида вращения с большой полуосью t, малой полуосью q и фокусом c эллипсоида вращения, образующего указанный полуэллипсоид вращения, находится между плоскими заземленным 1 и высоковольтным 2 электродами, отдаленными друг от друга на расстояние d.
Выражение (1) позволяет рассчитать напряженность электрического поля E(t) в точке, удаленной на расстояние Δх для данной геометрии в зависимости от значений t, q, Up, d:
E(t) =
Figure 00000001
, (3)
где
c =
Figure 00000002
A(t) =
Figure 00000003
b(t) =
Figure 00000004
c(t) =
Figure 00000005
a(t) = t + Δx
B(t) = 0,5
Figure 00000006
ln
Figure 00000007
η = t/c.
Поскольку для возникновения импульсного стримерного коронного разряда необходима зона с полем Емах > 30 кВ/см протяженностью Δх ≥ 1 мм, то на фиг. 3-6 представлен расчет поля по (3) при Δx = 0,1 см для полуэллипсоидов различной высоты c соотношением полуосей для значений Еср 5, 6, 7, 9 кВ/см. Результаты расчетов показывают, что первое условие Емах > 30 кВ/см для Δх = 0,1 см и 5 кВ/см≤Еср<10 кВ/см выполняются для t > 1 см и 0,2 < q/t.
Из фиг. 2 следует, что третье условие Ust ≈ Up будет выполняться при t > 1 см и 0,6 < q/t.
Таким образом, оптимальными параметрами эллипсоида вращения являются t > 1 см и 0,2 < q/t < 0,6.
Если устройства проектируются под определенные значения Up и d в диапазоне 5 кВ/см ≤ Еср < 10 кВ/см, то результаты расчета позволяют определить оптимальные значения параметров полуэллипсоида вращения t = 150/(Up/d)2.5, q = 3dt/Up/d для электродов с радиусом кривизны R > 3 см.
Для выполнения условия 4 необходимо, чтобы внедряемый объемный заряд Q от одной коронирующей точки не экранировал соседнюю коронирующую точку. Исходя из имеющихся экспериментальных данных, с каждой коронирующей точки стартуют стримеры с суммарным зарядом ∑Q ≈
10-8 Кл. Расчет электрического поля (фиг. 7) от такого заряда показывает, что экранировка практически отсутствует при расстоянии 3 мм от этого заряда до вершины соседнего полуэллипсоида. Таким образом, можно распологать инициаторы 3 импульсных стримерных коронных разрядов в форме полуэллипсоидов вращения на расстоянии S > 3 мм между их вершинами.
Анализ экспериментальных данных показывает, что за счет выполнения инициаторов 3 в форме полуэллипсоидов вращения и правильного выбора значений t, q и S КПД работы существующих устройств импульсного стримерного коронного разряда можно поднять более чем на 20%.
Работа заявляемого устройства описана ниже на примере реализации им функции очистки газов от экологически вредных газообразных примесей или обеззараживания воздуха.
Загрязненный газ подают в реакторную камеру 4 устройства, после чего при помощи генератора 5 импульсного напряжения генерируют импульсы напряжения наносекундной длительности. При помощи указанных импульсов в пространстве между заземленным электродом 1 и инициаторами 3 импульсного стримерного коронного разряда, расположенными на высоковольтном электроде 2, создают импульсный стримерный коронный разряд, создающий, в свою очередь, низкотемпературную плазму, в результате чего происходит конверсия газообразных примесей в экологически безвредные газы или аэрозоли или обеззараживание воздуха при наличии в нем биологических объектов.
Таким образом, разработано электрофизическое устройство для очистки газов от экологически вредных примесей, обеззараживания воздуха и стерилизации при помощи низкотемпературной плазмы, создаваемой импульсными стримерными коронными разрядами, конструктивное исполнение которого обеспечивает достижение технического результата, заключающегося в повышении КПД устройства.
Должно быть понятно, что заявляемое электрофизическое устройство, как оно определено в прилагаемой формуле изобретения, не обязательно ограничено конкретными признаками и вариантами осуществления, описанными выше. Напротив, конкретные признаки и варианты осуществления, описанные выше, раскрыты в качестве примеров, реализующих формулу, и другие эквивалентные признаки могут быть охвачены формулой данного изобретения.

Claims (7)

1. Электрофизическое устройство для очистки газов от экологически вредных примесей, обеззараживания воздуха и стерилизации при помощи низкотемпературной плазмы, создаваемой импульсными стримерными коронными разрядами, содержащее по меньшей мере один заземленный электрод и по меньшей мере один высоковольтный электрод, содержащий инициаторы импульсных стримерных коронных разрядов по меньшей мере с одной из его сторон, с образованием между соседними заземленным и высоковольтным электродами реакторной камеры, в которой расположены инициаторы импульсных стримерных коронных разрядов, а также генератор импульсного напряжения, к которому подключен высоковольтный электрод, отличающееся тем, что инициаторы импульсных стримерных коронных разрядов, расположенные на высоковольтном электроде, выполнены в форме полуэллипсоидов вращения.
2. Устройство по п. 1, отличающееся тем, что при радиусе кривизны высоковольтного электрода больше 3 см инициаторы импульсных стримерных коронных разрядов размещены на расстоянии больше 3 мм между их вершинами, длина большой полуоси эллипсоида вращения, образующего полуэллипсоид вращения, больше 1 см, а сотношение малой и большой полуосей эллипсоида вращения, образующего полуэллипсоид вращения, составляет от 0,2 до 0,6.
3. Устройство по п. 1, отличающееся тем, что заземленный и высоковольтный электроды выполнены в виде плоских пластин.
4. Устройство по п. 1, отличающееся тем, что заземленный и высоковольтный электроды выполнены в виде пластин, образованных частью боковой поверхности цилиндра.
5. Устройство по п. 1, отличающееся тем, что заземленный и высоковольтный электроды выполнены цилиндрическими и установлены коаксиально.
6. Устройство по п. 1, отличающееся тем, что содержит установленные поочередно n заземленных электродов и n высоковольтных электродов, содержащих инициаторы импульсных стримерных коронных разрядов с одной стороны, где n≥2.
7. Устройство по п. 1, отличающееся тем, что содержит установленные поочередно n заземленных электродов и n-1 высоковольтных электродов, содержащих инициаторы импульсных стримерных коронных разрядов с двух сторон, где n≥2.
RU2020120395A 2020-06-19 2020-06-19 Электрофизическое устройство для очистки газов от экологически вредных примесей, обеззараживания воздуха и стерилизации RU2733395C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020120395A RU2733395C1 (ru) 2020-06-19 2020-06-19 Электрофизическое устройство для очистки газов от экологически вредных примесей, обеззараживания воздуха и стерилизации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020120395A RU2733395C1 (ru) 2020-06-19 2020-06-19 Электрофизическое устройство для очистки газов от экологически вредных примесей, обеззараживания воздуха и стерилизации

Publications (1)

Publication Number Publication Date
RU2733395C1 true RU2733395C1 (ru) 2020-10-01

Family

ID=72926875

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020120395A RU2733395C1 (ru) 2020-06-19 2020-06-19 Электрофизическое устройство для очистки газов от экологически вредных примесей, обеззараживания воздуха и стерилизации

Country Status (1)

Country Link
RU (1) RU2733395C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2792874C1 (ru) * 2023-01-30 2023-03-28 Михаил Александрович Мещанинов Устройство для очистки воздуха
WO2023178392A1 (en) * 2022-03-21 2023-09-28 Stoimenov Kiril Method for purification of gas medium under atmospheric pressure, device for implementation of the method and ultrasonic emitter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4375364A (en) * 1980-08-21 1983-03-01 Research-Cottrell, Inc. Rigid discharge electrode for electrical precipitators
US6224653B1 (en) * 1998-12-29 2001-05-01 Pulsatron Technology Corporation Electrostatic method and means for removing contaminants from gases
JP2002343535A (ja) * 2001-05-21 2002-11-29 Daikin Ind Ltd ガス処理装置
RU2320422C1 (ru) * 2006-08-02 2008-03-27 Федеральное государственное унитарное предприятие "Московское машиностроительное производственное предприятие "САЛЮТ" (ФГУП "ММПП "САЛЮТ") Способ отделения частиц и/или капель вещества микронного и субмикронного размера от потока газа
RU2398614C1 (ru) * 2006-07-05 2010-09-10 Дайкин Индастриз, Лтд. Воздухоочиститель

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4375364A (en) * 1980-08-21 1983-03-01 Research-Cottrell, Inc. Rigid discharge electrode for electrical precipitators
US6224653B1 (en) * 1998-12-29 2001-05-01 Pulsatron Technology Corporation Electrostatic method and means for removing contaminants from gases
JP2002343535A (ja) * 2001-05-21 2002-11-29 Daikin Ind Ltd ガス処理装置
RU2398614C1 (ru) * 2006-07-05 2010-09-10 Дайкин Индастриз, Лтд. Воздухоочиститель
RU2320422C1 (ru) * 2006-08-02 2008-03-27 Федеральное государственное унитарное предприятие "Московское машиностроительное производственное предприятие "САЛЮТ" (ФГУП "ММПП "САЛЮТ") Способ отделения частиц и/или капель вещества микронного и субмикронного размера от потока газа

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ПОНИЗОВСКИЙ А.З. и др. Промышленные установки для очистки воздуха с помощью низкотемпературной неравновесной плазмы газового разряда. Химическая безопасность, 2018, т.2, N2, с.212-228. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023178392A1 (en) * 2022-03-21 2023-09-28 Stoimenov Kiril Method for purification of gas medium under atmospheric pressure, device for implementation of the method and ultrasonic emitter
RU2792874C1 (ru) * 2023-01-30 2023-03-28 Михаил Александрович Мещанинов Устройство для очистки воздуха

Similar Documents

Publication Publication Date Title
US5603893A (en) Pollution treatment cells energized by short pulses
US8221689B2 (en) Decomposition of natural gas or methane using cold arc discharge
JP2008194670A (ja) ガス処理装置
WO2010033048A1 (ru) Устройство для инактивации и тонкой фильтрации вирусов и микроорганизмов в воздушном потоке
Malik Ozone synthesis using shielded sliding discharge: effect of oxygen content and positive versus negative streamer mode
WO2001052910A1 (en) Odor removal system and method having ozone and non-thermal plasma treatment
RU2733395C1 (ru) Электрофизическое устройство для очистки газов от экологически вредных примесей, обеззараживания воздуха и стерилизации
WO2007035182A2 (en) Field enhanced electrodes for additive-injection non-thermal plasma (ntp) processor
CN2405398Y (zh) 正高压直流流光放电等离子体源装置
KR100762818B1 (ko) 공기 정화 시스템
US9381267B2 (en) Apparatus for air purification and disinfection
Abdel-Salam et al. Ozone generation as influenced by gas flow in corona reactors
US10577261B2 (en) Water treatment apparatus and water treatment method
Skariah et al. Energy Yield and Removal Efficiency of NO x Curtailment Process With High Voltage Pulse Powered DBD Electrode Configurations
Pekárek et al. Ozone generation by hollow-needle to plate electrical discharge in an ultrasound field
US20080289494A1 (en) Decomposition of natural gas or methane using cold arc discharge
EP4257242A1 (en) Air purification device
Zanini et al. Scalable non-thermal plasma trielectrode reactor: A theoretical and experimental study on carbon monoxide removal in a nitrogen atmosphere
US11890398B2 (en) Air cleaning device
JP2019198573A (ja) ガス処理装置
Ponizovskiy et al. The study of low temperature plasma of pulse discharge in relation to air cleaning units.
Potturi et al. Low cost, multi-kilohertz pulse generator for non-equilibrium plasma-based air purification
Dong et al. The influence of interface phenomenon on removal of NO and SO 2 in corona discharge reactor with water film
Ponizovskiy Investigation of the parameters of low temperature plasma of frequency pulse discharge in relation to air cleaning units
RU2555659C2 (ru) Устройство для озонирования воздуха