RU2711226C1 - Способ получения треххлористого титана - Google Patents
Способ получения треххлористого титана Download PDFInfo
- Publication number
- RU2711226C1 RU2711226C1 RU2019110172A RU2019110172A RU2711226C1 RU 2711226 C1 RU2711226 C1 RU 2711226C1 RU 2019110172 A RU2019110172 A RU 2019110172A RU 2019110172 A RU2019110172 A RU 2019110172A RU 2711226 C1 RU2711226 C1 RU 2711226C1
- Authority
- RU
- Russia
- Prior art keywords
- titanium
- metal
- titanium trichloride
- titanium tetrachloride
- content
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B9/00—General methods of preparing halides
- C01B9/02—Chlorides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/02—Halides of titanium
- C01G23/026—Titanium trichloride
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Изобретение относится к получению треххлористого титана, используемого в качестве компонента активного покрытия анодов, катализатора в органическом синтезе, а также в процессах очистки воды. Для получения треххлористого титана проводят восстановление тетрахлорида титана металлом при нагревании. Процесс восстановления ведут анодным растворением металлического электрода в водном растворе тетрахлорида титана с концентрацией 1-60 мас. % при напряжении 2-10 вольт в течение 5-180 минут. В качестве металла используют алюминий, или титан, или железо. Обеспечивается снижение энергозатрат, упрощение технологии при повышении экологической и производственной безопасности. 6 пр.
Description
Изобретение относится к получению треххлористого титана, используемого в качестве компонента активного покрытия анодов, катализатора в органическом синтезе, а также в процессах очистки воды.
Известны способы получения треххлористого титана, включающие взаимодействие металлического титана с водным раствором соляной кислоты концентрацией при нагревании [Пат. РФ 2316475 02.02.2008; JP 080208227, опубл. 13.08.1996].
Недостатками известных способов являются технологические затруднения ведения процесса, сложность и дороговизна аппаратурного оформления, дорогостоящее сырье.
Известны способы получения хлоридов титана (II и III) (ст. Низшие хлориды титана, их свойства, получение и применение (обзор литературы и патентов). - В.Г. Гопиенко, Г.Н. Гопиенко. - Ж. Цветная металлургия. - 1964. - №4, стр. 26-29; ст. Разработка технологии получения и очистки титансодержащих расплавов с применением механического перемешивания. - Р.А. Сандлер, А.И. Гулякин, Д.С. Абрамов, Е.Н. Пинаев, Э.И. Яскеляйнен, Л.М. Бердникова, Г.С. Лукашенко, Б.А. Карпов. - Труды ВАМИ Производство магния и титана, №83, Ленинград, 1972, стр. 94-98; ст. Разработка технологических основ процесса получения низших хлоридов титана. - С.В. Александровский, Л.М. Бердникова, А.И. Гулякин, Е.Н. Пинаев, Д.С. Абрамов. - Ж. Цветная металлургия, №12, 1977, - стр. 29-31; Пат РФ №: 2370445 от 20.10.2009), включающий подачу в герметичный реактор расплава хлоридов металлов, металлического титана (отход) и подачу тетрахлорида титана в реактор. Процесс ведут в инертной атмосфере хлориды титана извлекают из реактора отстаиванием или фильтрованием.
Недостатком данных способов является высокая стоимость сырья, сложность аппаратурной схемы, высокие энергетические затраты (расплав
солей) и значительные количества трудноутилизируемого остатка (сброс в отвал).
Известны способы получения катализатора на основе треххлористого титана (Патент СССР 504496, кл. C08F 10/14, 1972; Патент США 4235745, кл. C08F 4/64, 1980; Патент США 4199474, кл. C08F 4/64, 1980; Патент РФ 2053841, кл. B01J 37/00, 1993), включающие восстановление тетрахлорида титана органическими соединениями.
Недостатками данных способов являются: большая длительность процесса синтеза; низкая стабильность катализатора при его хранении (температура хранения), высокая стоимость исходных реагентов.
Наиболее близким по технической сущности (прототип) и достигаемому результату является способ получения треххлористого титана, включающий обработку концентрированного тетрахлорида титана металлом (алюминий, магний, титан) при температуре от 200 до 900°С (Лучинский Г.П. Химия титана. - М.: Издательство "Химия", 1971. - 471 с.):
Недостатками данного способа являются сложное аппаратурное оформление процесса и высокие энергозатраты на нагрев реакционной смеси. Помимо этого концентрированный тетрахлорид титана не реагирует с металлическим железом даже при температуре каления.
Существенным недостатком прототипа является работа с концентрированным безводным тетрахлоридом титана, который при контакте с воздухом гидролизируются с образованием паров соляной кислоты (белый дым). Образование летучих ядовитых паров, обладающих высокой коррозионной активностью требует применения герметичных реакторов, а также дополнительных мер безопасности персонала.
Задачей данного изобретения является разработка технологии получения треххлористого титана со сниженными энергозатратами, упрощенной аппаратурной схемой и повышенной экологической и производственной безопасностью, который может быть использован в процессах очистки сточных вод.
Поставленная задача решается способом получения треххлористого титана, включающим восстановление тетрахлорида титана металлом, при котором процесс восстановления ведут анодным растворением металлического электрода, в водном растворе тетрахлорида титана с концентрацией 1-60 масс. %., при этом в качестве металла используют алюминий или титан или железо и процесс анодного растворения ведут при напряжении 2-10 вольт в течение 5-180 минут.
К основным достоинствам предлагаемого способа следует отнести снижение энергозатрат (за счет отсутствия нагрева реакционной смеси до высоких температур), а также значительное упрощение аппаратурной схемы процесса, за счет отказа от герметичных сосудов, работающих под высоким давлением и при высокой температуре. Помимо этого становится возможным использование металлических отходов процессов сжигания твердых бытовых отходов. Водные растворы тетрахлорида титана подвержены гидролизу в меньшей степени, а количество выделяемых паров соляной кислоты снижается в 100 и более раз.
Сущность предлагаемого способа и достигаемые результаты более наглядно могут быть проиллюстрированы следующими примерами
Содержание треххлористого титана определяют по данным титрования полученного раствора сульфатом аммония-железа в присутствии индикатора роданида или метиленовой сини (Лучинский Г.П. Химия титана. - М.: Издательство "Химия", 1971. - 471 с; стр. 397)
ПРИМЕР №1
В водный раствор тетрахлорида титана (3 масс. %) массой 250 грамм, погружают железные (Сталь 3) электроды и проводят анодное растворение металла при напряжении 2 В. Реакционную смесь постоянно перешивают в течение 180 минут. Содержание треххлористого титана в полученном растворе 0,025%. Содержание хлорида железа 0,078%. Реагент может быть использован в процессах очистки сточных вод от соединений хрома.
В промывные сточные воды процесса нанесения гальванических покрытий объемом 1 литр и содержанием соединений хрома (VI) - 2,2 мг/л вводят 1,5 мл полученного раствора. Эффективность удаления соединений хрома (VI)составляет 99,9%.
ПРИМЕР №2
В водный раствор тетрахлорида титана (60 масс. %) массой 100 грамм, погружают титановые (ВТ 1-0) электроды и проводят анодное растворение металла при напряжении 10 В. Реакционную смесь постоянно перешивают в течение 90 минут. Содержание треххлористого титана в полученном растворе 48,8%. Содержание примесей других металлов в полученном реагенте не превышает 0,1% (х.ч.). Реагент пригоден для применения в качестве катализатора в органическом синтезе, а также в аналитических целях.
ПРИМЕР №3
В водный раствор тетрахлорида титана (1 масс. %) массой 500 грамм, погружают железные электроды и проводят анодное растворение металла при напряжении 3 В. Реакционную смесь постоянно перешивают в течение 180 минут. Содержание треххлористого титана в полученном растворе 0,008
%. Содержание хлорида железа 1,01%. Реагент может быть использован в процессах очистки сточных вод от соединений хрома.
В промывные сточные воды процесса нанесения гальванических покрытий объемом 1 литр и содержанием соединений хрома (VI) - 0,9 мг/л вводят 1,1 мл полученного раствора. Эффективность удаления соединений хрома (VI) составляет 99,85%.
ПРИМЕР №4
В водный раствор тетрахлорида титана (25 масс. %) массой 150 грамм, погружают алюминиевые электроды и проводят анодное растворение металла при напряжении 4 В. Реакционную смесь постоянно перешивают в течение 120 минут. Содержание треххлористого титана в полученном растворе 20,3%. Содержание хлорида алюминия 12,1%.
В промывные сточные воды процесса нанесения гальванических покрытий объемом 1 литр и содержанием соединений хрома (VI) - 5,4 мг/л вводят 0,25 мл полученного раствора. Эффективность удаления соединений хрома (VI) составляет 99,9%.
ПРИМЕР №5
В водный раствор тетрахлорида титана (15 масс. %) массой 150 грамм, погружают алюминиевые гранулы, разменные в полимерной сетке (анод) размешенные и проводят анодное растворение металла при напряжении 2 В. Реакционную смесь постоянно перешивают в течение 5 минут. Содержание треххлористого титана в полученном растворе 1,3%. Содержание хлорида алюминия 0,6%.
В промывные сточные воды процесса нанесения гальванических покрытий объемом 1 литр и содержанием соединений хрома (VI) - 3,2 мг/л вводят 0,8 мл полученного раствора. Эффективность удаления соединений хрома (VI)составляет 99,9%.
ПРИМЕР №6
В водный раствор тетрахлорида титана (40 масс. %) массой 150 грамм, погружают алюминиевую проволоку (анод) и проводят анодное растворение металла при напряжении 6 В. Реакционную смесь постоянно перешивают в течение 45 минут. Содержание треххлористого титана в полученном растворе 28,3%. Содержание хлорида алюминия 17,1%.
В промывные сточные воды процесса нанесения гальванических покрытий объемом 1 литр и содержанием соединений хрома (VI) - 3,2 мг/л вводят 0,8 мл полученного раствора. Эффективность удаления соединений хрома (VI)составляет 99,9%.
Как видно из примеров технический результат от вышеперечисленного снижение температуры проведения процесса, упрощение аппаратурной схемы (отказ от высоких температур и сосудов, работающих под давлением), а также повышение экологической и производственной безопасности, за счет использования разбавленных растворов. При использовании предлагаемого изобретения возможно получение широкой линейки реагентов для процессов органического синтеза и процессов очистки сточных вод различного происхождения (в т.ч. гальваники).
Помимо этого была установлена возможность использования железа для восстановления тетрахлорида титана, что также отличает предполагаемый способ от прототипа.
Claims (1)
- Способ получения треххлористого титана, включающий восстановление тетрахлорида титана металлом, отличающийся тем, что процесс восстановления ведут анодным растворением металлического электрода в водном растворе тетрахлорида титана с концентрацией 1-60 мас. %, в качестве металла используют алюминий, или титан, или железо, а процесс анодного растворения ведут при напряжении 2-10 вольт в течение 5-180 минут.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019110172A RU2711226C1 (ru) | 2019-04-05 | 2019-04-05 | Способ получения треххлористого титана |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019110172A RU2711226C1 (ru) | 2019-04-05 | 2019-04-05 | Способ получения треххлористого титана |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2711226C1 true RU2711226C1 (ru) | 2020-01-15 |
Family
ID=69171666
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2019110172A RU2711226C1 (ru) | 2019-04-05 | 2019-04-05 | Способ получения треххлористого титана |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2711226C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2799644C1 (ru) * | 2022-10-20 | 2023-07-07 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) | Способ конверсии соли цветного металла |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3979372A (en) * | 1974-01-03 | 1976-09-07 | Shell Oil Company | Preparation of titanium trichloride polymerization catalyst component |
US4195069A (en) * | 1976-07-12 | 1980-03-25 | Shell Oil Company | Preparation of violet TiCl3 |
-
2019
- 2019-04-05 RU RU2019110172A patent/RU2711226C1/ru active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3979372A (en) * | 1974-01-03 | 1976-09-07 | Shell Oil Company | Preparation of titanium trichloride polymerization catalyst component |
US4195069A (en) * | 1976-07-12 | 1980-03-25 | Shell Oil Company | Preparation of violet TiCl3 |
Non-Patent Citations (2)
Title |
---|
ГОРОЩЕНКО Я.Г. Химия титана, Киев, Наукова думка, 1970, сс. 254-255. * |
ЛУЧИНСКИЙ Г.П. Химия титана, Москва, Химия, 1971, с. 471. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2799644C1 (ru) * | 2022-10-20 | 2023-07-07 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) | Способ конверсии соли цветного металла |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102656287A (zh) | 钛矿的处理 | |
JPS58110435A (ja) | 鉄酸カリウムの製法 | |
CN101182137A (zh) | 氯化炉渣的水洗处理方法及处理液的应用 | |
Yan et al. | An efficient Two-Chamber Electrodeposition-Electrodialysis combination craft for nickel recovery and phosphorus removal from spent electroless nickel plating bath | |
RU2711226C1 (ru) | Способ получения треххлористого титана | |
RU2707362C1 (ru) | Способ получения треххлористого титана | |
US2737298A (en) | Waste disposal process | |
Raju et al. | Electrochemical recovery of silver from waste aqueous Ag (I)/Ag (II) redox mediator solution used in mediated electro oxidation process | |
Zhu et al. | Treatment of catalyst wastewater through an environmentally friendly electrodeposition-precipitation-electrooxidation coupling process: Recovery of copper and silicate, and removal of COD | |
CN115490353A (zh) | 一种去除含铁盐溶液中重金属离子杂质的方法及其设备 | |
CN113697905B (zh) | 一种同步处理综合废水的方法 | |
US4024037A (en) | Oxidation of cyanides | |
RU2371391C1 (ru) | Способ получения элементного мышьяка из водных и водно-органических растворов мышьяксодержащих соединений | |
KR20040052844A (ko) | 니켈폐액 및 수산니켈슬러지에서 니켈 회수방법 | |
RU2784031C1 (ru) | Способ получения комплексного железосодержащего коагулянта | |
RU2588976C1 (ru) | Способ переработки титанового лома | |
HU226466B1 (en) | Procedure for increasing the ph-value of acidic waters | |
Iztleuov et al. | SYNTHESIS OF TITANIUM (III) SULFATE BY ELECTROCHEMICAL METHOD | |
Bayeshova et al. | Iron sulphates production being polarized by the direct and alternating currents | |
RU2818198C1 (ru) | Способ получения коагулянта | |
Bayeshov et al. | Direct reduction of selenite-ionsfrom a hydrochloric acid solution of copper (II) chloride withselenium powder formationon | |
SU1691424A1 (ru) | Способ получени оксида ванади (У) | |
CN116657162B (zh) | 一种高纯度过硫酸铵的制备方法 | |
JPS63277781A (ja) | 脂肪族ニトロ化合物の電解還元方法 | |
DK142049B (da) | Fremgangsmaade til elektrokemisk rensning af spildevand indeholdende tungmetalforbindelser |