[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

RU2703786C1 - Устройство для съемки рельефа дна акватории - Google Patents

Устройство для съемки рельефа дна акватории Download PDF

Info

Publication number
RU2703786C1
RU2703786C1 RU2018139243A RU2018139243A RU2703786C1 RU 2703786 C1 RU2703786 C1 RU 2703786C1 RU 2018139243 A RU2018139243 A RU 2018139243A RU 2018139243 A RU2018139243 A RU 2018139243A RU 2703786 C1 RU2703786 C1 RU 2703786C1
Authority
RU
Russia
Prior art keywords
unit
receiving
antennas
radiating
channel
Prior art date
Application number
RU2018139243A
Other languages
English (en)
Inventor
Михаил Анатольевич Бородин
Original Assignee
Акционерное Общество "Концерн "Океанприбор"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное Общество "Концерн "Океанприбор" filed Critical Акционерное Общество "Концерн "Океанприбор"
Priority to RU2018139243A priority Critical patent/RU2703786C1/ru
Application granted granted Critical
Publication of RU2703786C1 publication Critical patent/RU2703786C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

Настоящее изобретение относится к области гидроакустики и может быть использовано в гидрографических исследованиях. Технический результат заключается в повышении скорости съемки рельефа дна акватории при снижении массогабаритных характеристик заявленного устройства. Заявленное устройство состоит из двух пар Т-образно расположенных первой и второй приемных антенн первой и второй излучающих антенн четырехканального приемного блока, 2N-канального генераторного устройства, четырехканального блока цифровой обработки сигналов, блока управления, блока вычисления поправок, блока хранения, индикатора, блока расчета временных задержек. Входы излучающих антенн соединены с выходами 2N-канального генераторного устройства, блок расчета временных задержек имеет двухстороннюю связь генераторным устройством, выходы приемных антенн соединены с входами четырехканального приемного блока, выходы которого соединены с соответствующими входами блока цифровой обработки сигналов. Выход блока цифровой обработки сигналов соединен с входами блока хранения и индикатора, выход блока вычисления поправок соединен с входом блока цифровой обработки сигналов. Выход блока управления соединен с входами четырехканального приемного блока и 2N-канального генераторного устройства, блока вычисления поправок, четырехканального блока цифровой обработки сигналов, блока хранения, индикатора. Такое выполнение устройства для съемки дна позволяет повысить скорость съемки. 2 ил.

Description

Настоящее изобретение относится к области гидроакустики и может быть использовано в гидрографических исследованиях.
Повышение скорости хода судна при съемке рельефа дна акватории, позволяющее снизить стоимость промера, является актуальной задачей.
Известно устройство для съемки рельефа дна акватории (Патент РФ №2340916 С1, МПК G01S 15/06, 2007), содержащее приемоизлучающую антенну, передающий блок, приемоизмерительный блок, блок управления, блок сбора, обработки информации и картирования рельефа дна, а также блок определения средней скорости распространения звука в воде в направлении излучения гидроакустического сигнала.
Недостатком данного устройства является использование для съемки рельефа дна акватории однолучевого эхолота с гидроакустической приемоизлучающей антенной, имеющей узкую характеристику направленности. В результате за один цикл зондирования получается только одно значение глубины, что ограничивает производительность съемки рельефа и увеличивает ее стоимость.
Известно устройство (многолучевой эхолот, далее по тексту МЛЭ, Sonic 2026 фирмы R2Sonic, адрес сайта в интернете http://www.r2sonic.com/), содержащее излучающую и приемную гидроакустические антенны, которые размещаются в днище судна, причем излучающая антенна расположена в диаметральной плоскости, а приемная - в траверзной плоскости на заданном горизонтальном расстоянии, генераторное устройство, приемный блок, блок цифровой обработки сигналов, блок управления, блок хранения, блок вычисления поправок, индикатор.
Недостатком данного устройства является относительно небольшая скорость выполнения съемки рельефа дна, особенно при малой глубине дна, что существенно увеличивает себестоимость ее выполнения, что обусловлено относительно небольшим размером ширины полосы обзора МЛЭ в диаметральной плоскости судна.
Наиболее близким аналогом к предлагаемому устройству является устройство для съемки рельефа дна акватории (Патент РФ на полезную модель №136899 U1), содержащее первую, вторую и третью излучающие антенны, расположенные в днище судна в диаметральной плоскости, а также первую, вторую и третью приемные антенны, расположенные в днище судна в траверзной плоскости, первая излучающая и первая приемная антенны, вторая излучающая и вторая приемная антенны, третья излучающая и третья приемная антенны образуют пары, в каждой из которых излучающая и приемная антенны расположены Т-образно, три пары приемных и излучающих антенн расположены в один ряд на заданном горизонтальном расстоянии друг от друга, так, что оси продольной симметрии излучающих антенн лежат на линии пересечения днища судна его диаметральной плоскостью, также содержащее трехканальное генераторное устройство, трехканальный приемный блок, блок цифровой обработки сигналов, блок управления, блок хранения, блок вычисления поправок, индикатор.
При этом выход блока управления соединен с входами генераторного устройства и приемного блока, блока цифровой обработки сигналов, блока вычисления поправок, индикатора и блока хранения, первый выход генераторного устройства соединен с входом первой излучающей антенны, второй выход генераторного устройства соединен с входом второй излучающей антенны, третий выход генераторного устройства соединен с входом третьей излучающей антенны, выход первой приемной антенны соединен с первым входом приемного блока, выход второй приемной антенны соединен со вторым входом приемного блока, выход третьей приемной антенны соединен с третьим входом приемного блока, выход которого соединен с входом блока цифровой обработки сигналов, выход которого соединен с входами блока хранения и индикатора, выход блока вычисления поправок соединен с входом блока цифровой обработки сигналов.
Устройство-прототип обладает существенным недостатком, заключающимся в относительно небольшой скорости выполнения съемки рельефа дна и обусловленным небольшим размером ширины полосы обзора МЛЭ в диаметральной плоскости судна, что увеличивает себестоимость ее выполнения. Также недостатком устройства-прототипа является наличие трех излучающих и трех приемных антенн, используемых для расширения полосы обзора в диаметральной плоскости судна, что снижает надежность работы устройства и увеличивает стоимость его изготовления и эксплуатации, а также накладывает ограничения по размещению на судах из-за относительно больших габаритов.
Для выполнения беспропускной съемки рельефа дна необходимо, чтобы полосы обзора на соседних циклах зондирования перекрывались, при этом максимальная скорость движения судна при съемке рельефа дна определяется по формуле (Фирсов Ю.Г. Основы гидроакустики и использования гидрографических сонаров. - СПб.: Нестор-История, 2010. - с. 185):
Figure 00000001
Где D - глубина дна, Fz - частота зондирований, определяемая установленной шкалой дальности, Δα - ширина характеристики направленности в диаметральной плоскости при излучении.
Например, для устройства-прототипа максимальная скорость съемки ограничена значением 20.8 узлов при установленной шкале дальности 10 м, частоте зондирований равной 40 Гц, глубине дна 8 м и Δα=1.5°, что является недостаточным при использовании быстроходных судов.
Задачей изобретения является разработка устройства для съемки рельефа дна акватории повышенной эффективности, позволяющего снизить себестоимость съемки.
Технический результат заключается в повышении скорости съемки рельефа дна акватории при снижении массо-габаритных характеристик заявленного устройства.
Для достижения указанного технического результата в известное устройство для съемки рельефа дна, содержащее первую и вторую излучающие антенны, расположенные в днище судна в диаметральной плоскости, а также первую и вторую приемные антенны, расположенные в днище судна в траверзной плоскости, первая излучающая и первая приемная антенны, вторая излучающая и вторая приемная антенны образуют пары, в каждой из которых излучающая и приемная антенны расположены Т-образно, две пары приемных и излучающих антенн расположены в один ряд на заданном горизонтальном расстоянии друг от друга, так, что оси продольной симметрии излучающих антенн лежат на линии пересечения днища судна его диаметральной плоскостью, также содержащее генераторное устройство, приемный блок, блок цифровой обработки сигналов, блок управления, блок хранения, блок вычисления поправок, индикатор, при этом выход блока управления соединен с входами генераторного устройства, приемного блока, блока цифровой обработки сигналов, блока вычисления поправок, индикатора и блока хранения, первый выход генераторного устройства соединен с входом первой излучающей антенны, второй выход генераторного устройства соединен с входом второй излучающей антенны, выход первой приемной антенны соединен с первым входом приемного блока, выход второй приемной антенны соединен со вторым входом приемного блока, выход которого соединен с входом блока цифровой обработки сигналов, выход которого соединен с входами блока хранения и индикатора, выход блока вычисления поправок соединен с входом блока цифровой обработки сигналов, введены следующие новые признаки:
первая излучающая и первая приемная антенны, а также вторая излучающей и вторая приемная антенны, имеют неперекрывающиеся полосы рабочих частот; первая и вторая излучающие антенны выполнены N-канальными, где N>10; дополнительно введен блок расчета временных задержек для обеспечения возможности поворота оси характеристик направленности в диаметральной плоскости первой и второй излучающих антенн путем ввода временных задержек при излучении для каждого из импульсов формируемых импульсных последовательностей, при этом блок расчета временных задержек имеет двухстороннюю связь с третьим входом генераторного устройства, генераторное устройство выполнено 2N-канальным с возможностью генерации первой и второй импульсных последовательностей, каждая из которых состоит из двух неперекрекрывающихся по времени и частоте сигналов, поступающих на входы первой и второй излучающих антенн, соответственно, с учетом временных задержек, приемный блок выполнен четырехканальным с возможностью раздельного приема путем полосовой фильтрации отраженных от дна сигналов, составляющих две импульсные последовательности, принятых первой и второй антенной каждой в своем частотном диапазоне, при этом блок цифровой обработки выполнен четырехканальным с возможностью формирования четырех профилей рельефа дна за один цикл зондирования.
Поясним достижение технического результата.
Использование в предлагаемом устройстве рельефа дна акватории 2N-канального генераторного устройства в сочетании с блоком расчета временных задержек позволяет излучать две импульсных последовательности, каждая из которых состоит из двух импульсов, в сторону дна в заданные угловые направления в диаметральной плоскости, что обеспечивает формирование четырех полос обзора за один цикл зондирования. В результате приема и обработки сигналов от четырех полос обзора за один цикл зондирования формируют четыре профиля рельефа дна. Поскольку указанные профили получены от перекрывающихся участков дна, это гарантирует отсутствие пропусков при съемке и позволяет выполнять съемку рельефа дна акватории при большей скорости.
Ширина полосы обзора в диаметральной плоскости, образованной одной парой Т-образно соединенных излучающей и приемной антенн МЛЭ определяется по формуле:
Figure 00000002
где α - угол наклона оси ХН в диаметральной плоскости при излучении, D - глубина, Δα - ширина ХН в диаметральной плоскости при излучении.
Размер участка дна, образованного четырьмя полосами обзора, в диаметральной плоскости с учетом их перекрытия вычисляется по формуле:
Figure 00000003
где Kp - коэффициент перекрытия, значения Li определяются по формуле:
Figure 00000004
Углы наклона осей ХН в диаметральной плоскости при излучении равны α1=0, α2=0.8Δα, α3=1.6Δα, α4=2.4Δα, что обеспечивает перекрытие соседних полос обзора на 20%, при этом Kp=0.8.
Максимальную скорость съемки рельефа дна для традиционного МЛЭ, формирующего одну полосу обзора за один цикл зондирования определяют по формуле:
Figure 00000005
Где T - период зондирования, L0 - ширина полосы обзора при нулевом угле наклона оси ХН в диаметральной плоскости.
Значение L0 с учетом условия Δα<<1, рассчитывается по формуле:
Figure 00000006
Максимальная скорость съемки рельефа дна для предлагаемого устройства, формирующего четыре полосы обзора за один цикл зондирования, рассчитывается по формуле:
Figure 00000007
Оценим увеличение скорости съемки, достигаемое предлагаемым устройством съемки рельефа дна с помощью соответствующего коэффициента KV:
Figure 00000008
При Δα<<1 и αi<<1, ширина полосы обзора в диаметральной плоскости вычисляется по следующей формуле:
Figure 00000009
Учитывая, что L1=L0, получаем
Figure 00000010
Для традиционных МЛЭ Δα лежит в пределах 1° до 3°, поэтому членом 0.64Δα4 можно пренебречь в силу его малости.
Окончательно коэффициент увеличения скорости съемки определяется по формуле:
Figure 00000011
В устройстве-прототипе коэффициент увеличения скорости съемки составляет 2.6 раза (Патент РФ на полезную модель №136899 U1).
Таким образом, скорость съемки при использовании предлагаемого устройства повышается в 1.3 раза по сравнению со скоростью съемки устройства-прототипа. Например, скорость съемки для устройства-прототипа - 20.8 узла, а для предлагаемого устройства - 27.2 узла.
Такое увеличение скорости достигается при уменьшении числа антенн, т.е. снижении массо-габаритных характеристик заявленного устройства.
Увеличение количества излучаемых импульсов в каждой из импульсных последовательностей для одновременного формирования большего числа полос обзора с целью повышения скорости съемки рельефа дна нецелесообразно, поскольку увеличение длительности излучаемой импульсной последовательности приводит к увеличению «мертвой» зоны МЛЭ, в-третьих, при дальнейшем увеличении скорости носителя МЛЭ значительно увеличиваются гидроакустические помехи, создаваемые движителями судна, препятствующие обнаружению отраженных от дна сигналов.
Сущность изобретения поясняется фиг. 1-2.
На фиг. 1 представлена структурная блок-схема устройства съемки рельефа дна акватории.
На фиг. 2 показано взаимное расположение частотных диапазонов, в каждом из которых работает заданная пара излучающей и приемной антенн.
Устройство (фиг. 1) состоит из двух пар Т-образно расположенных приемных антенн 1,3 и излучающих антенн 2,4, четырехканального приемного блока 5, 2N-канального генераторного устройства 6, четырехканального блока 7 цифровой обработки сигналов, блока 8 управления, блока 9 вычисления поправок, блока 10 хранения, индикатора 11, блока 12 расчета временных задержек.
Входы излучающих антенн 2, 4 соединены с выходами 2N-канального генераторного устройства 6, при этом входы первой излучающей антенны 2 соединены с первыми N выходами 2N-канального генераторного устройства 6, а входы второй излучающей антенны 4 соединены со вторыми его входами. Выходы приемных антенн 1, 3 соединены с входами четырехканального приемного блока 5, выходы которого соединены с входами блока 7 цифровой обработки эхосигналов, выход блока 7 соединен с входами блока 10 хранения и индикатора 11, выход блока 9 вычисления поправок соединен с входом блока 7. Выход блока 8 управления соединен с входами 2N-канального генераторного устройства 6 и четырехканального приемного блока 5, блока 9, блока 10, индикатора 11. Блок 12 расчета временных задержек имеет двухстороннюю связь с 2N-канальным генераторным устройством 6.
Для обеспечения гидроакустической совместимости излучение и прием каждой парой антенн, состоящей из излучающей и приемной антенны, производят в частотных диапазонах, не перекрывающихся между собой (фиг. 2).
2N-канальное генераторное устройство 6, четырехканальный приемный блок 5, четырехканальный блок 7 цифровой обработки сигналов, блок 8 управления, блок 9 вычисления поправок, блок 10 хранения, индикатор 11 являются устройствами, известными из уровня техники.
Блок 12 расчета временных задержек состоит из микроконтроллера.
Устройство работает следующим образом.
По командным импульсам, вырабатываемым блоком 8 управления, в 2N-канальном генераторном устройстве 6 осуществляется формирование в каждом из каналов с номерами от 1 до N первой импульсной последовательности, состоящей из первого импульса с несущей частотой ƒ1 и второго импульса с несущей частотой ƒ2, не перекрывающихся во времени и частоте.
Также в 2N-канальном генераторном устройстве 6 осуществляется формирование в каждом из каналов с номерами от N+1 до 2N второй импульсной последовательности, состоящей из третьего импульса с несущей частотой ƒ3 и четвертого импульса с несущей частотой ƒ4, не перекрывающихся во времени и частоте.
От блока 12 расчета временных задержек в 2N-канальное генераторное устройство 6 поступают значения временных задержек, которые используют для временного смещения в каждом из каналов с номерами от 1 до N импульсов первой импульсной последовательности с целью излучения первой излучающей антенной 2 первого импульса с несущей частотой ƒ1 в угловое направление α1 в диаметральной плоскости, а второго импульса с несущей частотой ƒ2 - в угловое направление α2 диаметральной плоскости в сторону дна.
Также от блока 12 расчета временных задержек в 2N-канальное генераторное устройство 6 поступают значения временных задержек, которые используют для временного смещения в каждом из каналов с номерами от N+1 до 2N импульсов второй импульсной последовательности с целью излучения второй излучающей антенной 4 третьего импульса с несущей частотой ƒ3 в угловое направление α3 в диаметральной плоскости, а четвертого импульса с несущей частотой ƒ4 - в угловое направление α4 в диаметральной плоскости в сторону дна.
Далее первая приемная антенна 1 принимает первый и второй импульсы первой импульсной последовательности, отраженные поверхности дна, которые последовательно поступают на первый вход четырехканального приемного блока 5, в котором путем полосовой фильтрации выполняют разделения первого и второго импульсов первой импульсной последовательности.
Вторая приемная антенна 4 принимает третий и четвертый импульсы второй импульсной последовательности, отраженные поверхности дна, которые последовательно поступают на второй вход четырехканального приемного блока 5, в котором путем полосовой фильтрации выполняют разделения третьего и четвертого импульсов второй импульсной последовательности.
В четырехканальном приемном блоке 5 производят усиление и аналого-цифровое преобразование. Затем оцифрованные данные от четырех выходов четырехканального приемного блока 5 поступают на соответствующие входы в четырехканальный блок 7 цифровой обработки сигналов, где выполняется согласованная фильтрация, формирование четырех вееров приемных характеристик направленности электронным способом, расчет наклонных дальностей, пересчет их в истинные глубины с учетом поправок, рассчитанных в блоке 9 вычисления поправок. С выхода блока 7 данные (истинные глубины и их геодезические координаты) поступают в блок 10 хранения и на индикатор 11 для отображения. Одновременно по командным импульсам блока 8 управления осуществляется прием информации от судовой радионавигационной системы, гидроакустического лага, курсоуказателя, измерителей составляющих качки, измерителя скорости звука для расчета соответствующих поправок в блоке 9 и выдачи их в блок 7.
Поясним работу блока 12 расчета временных задержек, дополнительно введенного в предлагаемое устройство, а также работу 2N-канального генераторного устройства 6.
Работа блока 12 расчета временных задержек осуществляется следующим образом.
Блок 12 расчета временных задержек по команде, передаваемой от блока 8 управления через 2N-канальное генераторное устройство 6, выполняет расчет временных задержек по формуле:
Figure 00000012
где
d0 - расстояние между соседними каналами первой и второй излучающих антенн;
cz - скорость звука в месте установки первой и второй излучающих антенн;
i - порядковый номер излучаемого импульса;
n- порядковый номер канала в первой и второй излучающих антеннах;
αi - угловое направление в диаметральной плоскости, в которое выполняют излучение сформированных импульсов;
N - число каналов в первой и второй излучающих антеннах.
Далее рассчитанные четыре массива значений временных задержек передаются в 2N-канальное генераторное устройство 6 для временного смещения формируемых импульсов.
Предложенное устройство съемки рельефа дна акватории, позволяет за один цикл зондирования получить сразу четыре профиля рельефа дна от перекрывающихся участков дна, что гарантирует отсутствие пропусков при съемке и позволяет повысить скорость съемки рельефа дна акватории, и тем самым снизить затраты на ее выполнение, таким образом технический результат изобретения достигнут.

Claims (1)

  1. Устройство для съемки рельефа дна, содержащее первую и вторую излучающие антенны, расположенные в днище судна в диаметральной плоскости, а также первую и вторую приемные антенны, расположенные в днище судна в траверзной плоскости, первая излучающая и первая приемная антенны, вторая излучающая и вторая приемная антенны образуют пары, в каждой из которых излучающая и приемная антенны расположены Т-образно, две пары приемных и излучающих антенн расположены в один ряд на заданном горизонтальном расстоянии друг от друга так, что оси продольной симметрии излучающих антенн лежат на линии пересечения днища судна его диаметральной плоскостью, также содержащее генераторное устройство, приемный блок, блок цифровой обработки сигналов, блок управления, блок хранения, блок вычисления поправок, индикатор, при этом выход блока управления соединен с входами генераторного устройства, приемного блока, блока цифровой обработки сигналов, блока вычисления поправок, индикатора и блока хранения, первый выход генераторного устройства соединен с входом первой излучающей антенны, второй выход генераторного устройства соединен с входом второй излучающей антенны, выход первой приемной антенны соединен с первым входом приемного блока, выход второй приемной антенны соединен со вторым входом приемного блока, выход которого соединен с входом блока цифровой обработки сигналов, выход которого соединен с входами блока хранения и индикатора, выход блока вычисления поправок соединен с входом блока цифровой обработки сигналов; отличающееся тем, что первая излучающая и первая приемная антенны, а также вторая излучающей и вторая приемная антенны, имеют неперекрывающиеся полосы рабочих частот; первая и вторая излучающие антенны выполнены N-канальными, где N>10; дополнительно введен блок расчета временных задержек для обеспечения возможности поворота оси характеристик направленности в диаметральной плоскости первой и второй излучающих антенн путем ввода временных задержек при излучении для каждого из импульсов формируемых импульсных последовательностей, при этом блок расчета временных задержек имеет двухстороннюю связь с третьим входом генераторного устройства, генераторное устройство выполнено 2N-канальным с возможностью генерации первой и второй импульсных последовательностей, каждая из которых состоит из двух неперекрекрывающихся по времени и частоте сигналов, поступающих на входы первой и второй излучающих антенн соответственно с учетом временных задержек, приемный блок выполнен четырехканальным с возможностью раздельного приема путем полосовой фильтрации отраженных от дна сигналов, составляющих две импульсные последовательности, принятых первой и второй антенной каждой в своем частотном диапазоне, при этом блок цифровой обработки выполнен четырехканальным с возможностью формирования четырех профилей рельефа дна за один цикл зондирования.
RU2018139243A 2018-11-06 2018-11-06 Устройство для съемки рельефа дна акватории RU2703786C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018139243A RU2703786C1 (ru) 2018-11-06 2018-11-06 Устройство для съемки рельефа дна акватории

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018139243A RU2703786C1 (ru) 2018-11-06 2018-11-06 Устройство для съемки рельефа дна акватории

Publications (1)

Publication Number Publication Date
RU2703786C1 true RU2703786C1 (ru) 2019-10-22

Family

ID=68318441

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018139243A RU2703786C1 (ru) 2018-11-06 2018-11-06 Устройство для съемки рельефа дна акватории

Country Status (1)

Country Link
RU (1) RU2703786C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2757065C1 (ru) * 2020-11-02 2021-10-11 Акционерное Общество "Концерн "Океанприбор" Способ съемки рельефа поверхности

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007025572A1 (de) * 2005-09-01 2007-03-08 Atlas Elektronik Gmbh Verfahren zum erzeugen eines sonarbildes
RU2434246C1 (ru) * 2010-03-16 2011-11-20 Сергей Борисович Курсин Способ съемки рельефа дна акватории и устройство для его осуществления
RU2010148968A (ru) * 2010-11-30 2012-06-10 Владимир Максимович Смолин (RU) Способ съемки рельефа дна акватории с движущегося судна многолучевым эхолотом с вертикальным зондированием гидроакустическими сигналами поверхности дна и многолучевой эхолот с вертикальным зондированием гидроакустическими сигналами поверхности дна акватории для его осуществления
RU2487368C1 (ru) * 2011-12-01 2013-07-10 Открытое акционерное общество "Государственный научно-исследовательский навигационно-гидрографический институт" (ОАО "ГНИНГИ") Способ стереосъемки рельефа дна акватории и устройство для его осуществления
RU136899U1 (ru) * 2013-09-02 2014-01-20 ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "Концерн Океанприбор" Устройство для съемки рельефа дна акватории
RU2519269C1 (ru) * 2012-12-12 2014-06-10 Открытое акционерное общество "Государственный научно-исследовательский навигационно-гидрографический институт" (ОАО "ГНИНГИ") Способ съемки рельефа дна акватории и устройство для съемки рельефа дна акватории
RU145765U1 (ru) * 2013-12-30 2014-09-27 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Устройство для гидроакустической рельефной съемки нижней поверхности ледового покрова
RU156050U1 (ru) * 2015-03-11 2015-10-27 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг) Устройство для съемки рельефа дна акватории с управляемой шкалой дальности

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007025572A1 (de) * 2005-09-01 2007-03-08 Atlas Elektronik Gmbh Verfahren zum erzeugen eines sonarbildes
RU2434246C1 (ru) * 2010-03-16 2011-11-20 Сергей Борисович Курсин Способ съемки рельефа дна акватории и устройство для его осуществления
RU2010148968A (ru) * 2010-11-30 2012-06-10 Владимир Максимович Смолин (RU) Способ съемки рельефа дна акватории с движущегося судна многолучевым эхолотом с вертикальным зондированием гидроакустическими сигналами поверхности дна и многолучевой эхолот с вертикальным зондированием гидроакустическими сигналами поверхности дна акватории для его осуществления
RU2487368C1 (ru) * 2011-12-01 2013-07-10 Открытое акционерное общество "Государственный научно-исследовательский навигационно-гидрографический институт" (ОАО "ГНИНГИ") Способ стереосъемки рельефа дна акватории и устройство для его осуществления
RU2519269C1 (ru) * 2012-12-12 2014-06-10 Открытое акционерное общество "Государственный научно-исследовательский навигационно-гидрографический институт" (ОАО "ГНИНГИ") Способ съемки рельефа дна акватории и устройство для съемки рельефа дна акватории
RU136899U1 (ru) * 2013-09-02 2014-01-20 ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "Концерн Океанприбор" Устройство для съемки рельефа дна акватории
RU145765U1 (ru) * 2013-12-30 2014-09-27 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Устройство для гидроакустической рельефной съемки нижней поверхности ледового покрова
RU156050U1 (ru) * 2015-03-11 2015-10-27 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг) Устройство для съемки рельефа дна акватории с управляемой шкалой дальности

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2757065C1 (ru) * 2020-11-02 2021-10-11 Акционерное Общество "Концерн "Океанприбор" Способ съемки рельефа поверхности

Similar Documents

Publication Publication Date Title
US11119211B2 (en) Acoustic doppler system and method
AU2010297524B2 (en) Method and device for measuring a contour of the ground
US20100067330A1 (en) Ship mounted underwater sonar system
US11846704B2 (en) Acoustic doppler system and method
RU136899U1 (ru) Устройство для съемки рельефа дна акватории
US20170031023A1 (en) Forward Scanning Sonar System and Method with Angled Fan Beams
RU2346295C1 (ru) Активный гидролокатор
JP5767002B2 (ja) 超音波送受信装置、および魚量検出方法
RU2703786C1 (ru) Устройство для съемки рельефа дна акватории
CA2928461A1 (en) Forward scanning sonar system and method with angled fan beams
RU114169U1 (ru) Активный гидролокатор
RU108858U1 (ru) Активный гидролокатор
RU2700278C1 (ru) Способ определения местоположения подводного объекта
RU2568935C1 (ru) Способ определения параметров движения торпеды
RU2626295C1 (ru) Система автоматического обнаружения и классификации гидролокатора ближнего действия
CA2993361A1 (en) Forward scanning sonar system and method with angled fan beams
RU2660292C1 (ru) Способ определения глубины погружения объекта
RU2010148968A (ru) Способ съемки рельефа дна акватории с движущегося судна многолучевым эхолотом с вертикальным зондированием гидроакустическими сигналами поверхности дна и многолучевой эхолот с вертикальным зондированием гидроакустическими сигналами поверхности дна акватории для его осуществления
RU145765U1 (ru) Устройство для гидроакустической рельефной съемки нижней поверхности ледового покрова
RU2810693C1 (ru) Способ определения вертикального угла положения подводного объекта
CN108627839B (zh) 一种基于声波高更新率发射模式的目标探测方法及装置
RU2516602C1 (ru) Способ определения глубины погружения объекта
Tinh Investigation on beamforming solution for multi-receiver synthetic aperture sonar using CW pulse with sound velocity profiles in Vietnam’s sea
RU2699938C1 (ru) Впередсмотрящий гидролокатор глубоководного носителя
RU2625041C1 (ru) Способ определения глубины погружения объекта