RU2702316C1 - Способ верификации укладки пациента при дистанционной лучевой терапии и схема устройства двухэнергетического детектора - Google Patents
Способ верификации укладки пациента при дистанционной лучевой терапии и схема устройства двухэнергетического детектора Download PDFInfo
- Publication number
- RU2702316C1 RU2702316C1 RU2018137859A RU2018137859A RU2702316C1 RU 2702316 C1 RU2702316 C1 RU 2702316C1 RU 2018137859 A RU2018137859 A RU 2018137859A RU 2018137859 A RU2018137859 A RU 2018137859A RU 2702316 C1 RU2702316 C1 RU 2702316C1
- Authority
- RU
- Russia
- Prior art keywords
- radiation
- pixels
- ray
- filter
- patient
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000012795 verification Methods 0.000 title abstract description 9
- 238000002560 therapeutic procedure Methods 0.000 title abstract 4
- 230000005855 radiation Effects 0.000 claims abstract description 48
- 238000001959 radiotherapy Methods 0.000 claims abstract description 16
- 238000002083 X-ray spectrum Methods 0.000 claims abstract description 12
- 238000001228 spectrum Methods 0.000 claims abstract description 9
- 230000004907 flux Effects 0.000 claims abstract description 5
- 238000012545 processing Methods 0.000 claims abstract description 5
- 241000446313 Lamella Species 0.000 claims description 3
- 230000035790 physiological processes and functions Effects 0.000 abstract description 2
- 230000029058 respiratory gaseous exchange Effects 0.000 abstract description 2
- 210000000746 body region Anatomy 0.000 abstract 1
- 238000001514 detection method Methods 0.000 abstract 1
- 239000003814 drug Substances 0.000 abstract 1
- 238000012544 monitoring process Methods 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 238000003384 imaging method Methods 0.000 description 2
- 210000002307 prostate Anatomy 0.000 description 2
- 210000004872 soft tissue Anatomy 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 238000007408 cone-beam computed tomography Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000002786 image-guided radiation therapy Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/032—Transmission computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/40—Arrangements for generating radiation specially adapted for radiation diagnosis
- A61B6/4035—Arrangements for generating radiation specially adapted for radiation diagnosis the source being combined with a filter or grating
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/161—Applications in the field of nuclear medicine, e.g. in vivo counting
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- High Energy & Nuclear Physics (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Biophysics (AREA)
- Veterinary Medicine (AREA)
- Pathology (AREA)
- Heart & Thoracic Surgery (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Radiology & Medical Imaging (AREA)
- Public Health (AREA)
- Pulmonology (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Radiation-Therapy Devices (AREA)
Abstract
Группа изобретений относится к радиационным методам контроля, а именно к рентгенографическому способу, и может быть использовано при верификации положения пациента относительно изоцентра аппарата для дистанционной лучевой терапии. Способ верификации укладки пациента при дистанционной лучевой терапии заключается в укладке пациента таким образом, чтобы контролируемый участок тела пациента располагался в исходном положении относительно потока рентгеновского излучения аппарата для дистанционной лучевой терапии, разделении прошедшего сквозь участок тела пациента излучения на низкоэнергетическую и высокоэнергетическую составляющие рентгеновского спектра посредством фильтра, регистрации прошедшего излучения на плоскопанельном детекторе рентгеновского излучения и обработке данных с детектора после завершения экспонирования, при этом фильтр закреплен на торце плоскопанельного детектора рентгеновского излучения, поглощает низкоэнергетическую составляющую рентгеновского спектра и перекрывает половину пикселей детектора в шахматном порядке или посредством параллельных ламелей, половина пикселей детектора регистрирует излучение, не взаимодействовавшее с фильтром, и образует первую группу пикселей, а другая половина пикселей детектора регистрирует излучение, прошедшее через фильтр, и образует вторую группу пикселей, при этом обеспечивается условие регистрации излучения, когда комбинация четырех рядом стоящих пикселей состоит из двух пикселей первой группы, регистрирующих излучение, не взаимодействующее с фильтром и представляющее полный спектр рентгеновского излучения, и двух пикселей второй группы, регистрирующих излучение, прошедшее через фильтр и представляющее высокоэнергетическую составляющую спектра рентгеновского излучения, при обработке данных в каждой из групп пикселей проводят сложение сигналов, вычитают сигнал второй группы пикселей из первой и получают информацию о низкоэнергетической составляющей спектра рентгеновского излучения, полученной для четырех пикселей первой и второй групп, которую относят к средней координате пикселей, после чего определяют границы контролируемого участка тела пациента и совмещают их с данными из системы планирования дистанционной лучевой терапии. Устройство для осуществления способа содержит аппарат для дистанционной лучевой терапии, фильтр, выполненный с возможностью разделения прошедшего сквозь область тела пациента излучения на низкоэнергетическую и высокоэнергетическую составляющие рентгеновского спектра, и плоскопанельный детектор рентгеновского излучения. Использование группы изобретений позволяет улучшить качество получаемых 2D изображений, в том числе в случаях, когда исследуемая область пациента находится в процессе движения, связанного с дыханием или иными физиологическими процессами организма. 2 н.п. ф-лы, 2 ил.
Description
Изобретение относится к радиационным методам контроля, а именно к рентгенографическому способу, и может быть использовано при верификации положения пациента относительно изоцентра аппарата для дистанционной лучевой терапии.
Известен способ верификации с использованием спирального компьютерного томографа, расположенного в одной комнате с аппаратом лучевой терапии, при этом стол обеспечивает позиционирование пациента в терапевтическом и в диагностическом аппарате за счет получения 3-мерной томограммы [1].
Также известен способ контроля укладки пациента с использованием магнитно-резонансного томографа, который может располагаться как в отдельной комнате, так и в совмещении с аппаратом лучевой терапии [2], [3].
Известны способы и методы верификации укладки пациента и использования мегавольтных (MB) систем получения изображения, основанных на получении теневых проекций исследуемой области пациента терапевтическим пучком и регистрации этого пучка плоскопанельным детектором, расположенным после пациента, как с введенными в пациента маркерами, так и без них. При этом совмещение исходных данных из системы планирования происходит как по планарным данным, так и по томографическим [4], [5].
Наиболее близким по технологии и конструктивному исполнению является способ верификации укладки пациента при дистанционной лучевой терапии, реализующий получение кВ -изображений с использованием рентгеновской трубки с рабочими напряжениями в диапазоне 80 - 140 кВ и регистрации прошедшего через тело пациента излучения плоскопанельным детектором. При этом верификация может проводиться как с использованием рентгеноконтрастных маркеров, введенных в околоопухолевое пространство, так и по совмещению костных структур или мягких тканей тела пациента [6], [7].
Недостатком перечисленных методов верификации является низкая точность позиционирования, обусловленная малой контрастностью изображения, что в свою очередь является следствием ограниченного динамического диапазона применяемых систем визуализации.
Техническим результатом настоящего изобретения является улучшение качества получаемых 2D изображений, в том числе, в случаях, когда исследуемая область пациента находится в процессе движения, связанного с дыханием или иными физиологическими процессами организма. Улучшение качества изображений заключается в более четком определении границ мишени для дальнейшего совмещения с данными из системы планирования. Это обеспечивает более корректную верификацию укладки пациента при дистанционной лучевой терапии.
Указанный технический результат достигается за счет разделения низкоэнергетической и высокоэнергетической составляющих рентгеновского спектра, поглощенного в детекторе, за счет того, что профиль системы фильтрации прошедшего излучения создает такой поток излучения, что часть пикселей детектора регистрирует излучение, не взаимодействовавшее с фильтром, а другая половина пикселей регистрирует излучение, прошедшее через фильтр. При этом должно обеспечиваться условие, что комбинация четырех рядом стоящих пикселей состоит из двух пикселей, регистрирующих излучение, не взаимодействовавшее с фильтром, и двух пикселей, регистрирующих излучение, прошедшее через фильтр.
Для реализации способа представлена схема устройства (фиг. 1 и 2), содержащего: рентгеновский аппарат 1, создающий направленный поток рентгеновского излучения 2 изучаемой области тела пациента 3, через которое проходит направленный поток рентгеновского излучения, плоскопанельный детектор рентгеновского излучения 5 с закрепленным на его торце фильтром 4, расположенным на минимально возможном расстоянии до сцинтиллятора и перекрывающим половину пикселей детектора в шахматном порядке (фиг. 2а) или в виде параллельных ламелей (фиг. 2b).
Устройство работает следующим образом: устройство устанавливается в помещение с аппаратом для дистанционной лучевой терапии и помещается непосредственно на аппарат лучевой терапии или рядом с ним. При этом необходимо знать информацию о взаимном расположении центров аппарата и устройства. Контролируемый участок тела пациента 3 располагается в исходном положении, после чего рентгеновский аппарат 1 создает поток рентгеновского излучения, направленный на контролируемый участок тела пациента. Прошедшее сквозь пациента излучение попадает на фильтр рентгеновского излучения 4. Часть излучения, а именно, низкоэнергетическая составляющая спектра, поглощается в фильтре. В дальнейшем детектор рентгеновского излучения осуществляет детектирование всего поля рентгеновского излучения, как прошедшего, так и не прошедшего через фильтр 5.
После завершения экспонирования происходит обработка данных с детектора. Суть обработки данных заключается в следующем: берутся данные с четырех близлежащих пикселей, два из которых регистрируют излучение, не взаимодействовавшее с фильтром, т.е. полный спектр излучения (группа 1), а два других пикселя регистрируют излучение после взаимодействия с фильтром, т.е. высокоэнергетическую часть спектра излучения (группа 2). Далее происходит сложение сигналов в каждой из групп пикселей и вычитание сигнала второй группы пикселей из первой, что дает информацию о низкоэнергетической составляющей спектра. Информация о низкоэнергетической составляющей спектра, полученной в группе из четырех пикселей, приписывается к средней координате этих пикселей.
Литература
[1] Chrysi Papalazarou, Gijsbert J. Klop, Maaike T. W. Milder, Johannes P.A. Marijnissen, Vikas Gupta, Ben J. M. Heijmen, Joost J.M.E. Nuyttens, Mischa S. Hoogeman "CyberKnife with integrated CT-on-rails: system description and first clinical application for pancreas SBRT". Med Phys. 2017 Sep;44(9):4816-4827. DOI: 10.1002/mp. 12432. Epub 2017 Aug 2.
[2] Robba Rai, MHlthSc, Shivani Kumar, MPH, Vikneswary Batumalai, PhD, Doaa Elwadia, BAppSc, Lucy Ohanessian, BAppSc, Ewa Juresic, MMagResonTech, Lynette Cassapi, BSc, Shalini K. Vinod, MD, Lois Holloway, PhD, Paul J. Keall, PhD, & Gary P. Liney, PhD "The integration of MRI in radiation therapy: collaboration of radiographers and radiation therapists". Collaboration of radiographers and radiation therapists. Journal of Medical Radiation Sciences, February 2017, 64 61-68. DOI: 10.1002/jmrs.225
[3] Benjamin W. Fischer-Valuck MD, Lauren Henke MD, "Two-and-a-half-year clinical experience with the world's first magnetic resonance image guided radiation therapy system". Adv Radiat Oncol. 2017 Jun l;2(3):485-493. DOI: 10.1016/j.adro.2017.05.006. eCollection 2017 Jul-Sep.
[4] Nithya Kanakavelua, E. James Jebaseelan Samueld "Assessment and evaluation of MV image guidance system performance in radiotherapy". Rep Pract Oncol Radiother. 2015 May-Jun;20(3): 188-97. doi: 10.1016/j.rpor.2015.01.002. Epub 2015 Feb 7.
[5] Olivier Morin B.S.E., Amy Gillis M.D., Josephine Chen Ph.D, Michele Aubin M.S.E.E., M. Kara Bucci M.D., Mack Roach III M.D., Jean Pouliot Ph.D. "Megavoltage cone-beam CT: System description and clinical applications". Med Dosim. 2006 Spring;31(1):51-61. DOI: 10.1016/j.meddos. 2005.12.009.
[6] Peter H. Goff MD, PhD, Louis B. Harrison MD, FASTRO, Eli Furhang PhD, Evan Ng MBBS, FRANZCR, Stephen Bhatia RTT, Frieda Trichter DSc, Ronald D. Ennis MD "2D kV orthogonal imaging with fiducial markers is more precise for daily image guided alignments than soft-tissue cone beam computed tomography for prostate radiation therapy". Adv Radiat Oncol. 2017 May 4;2(3):420-428. DOI: 10.1016/j.adro. 2017.05.001. eCollection 2017 Jul-Sep.
Claims (2)
1. Способ верификации укладки пациента при дистанционной лучевой терапии, заключающийся в укладке пациента таким образом, чтобы контролируемый участок тела пациента располагался в исходном положении относительно потока рентгеновского излучения аппарата для дистанционной лучевой терапии, разделении прошедшего сквозь участок тела пациента излучения на низкоэнергетическую и высокоэнергетическую составляющие рентгеновского спектра посредством фильтра, регистрации прошедшего излучения на плоскопанельном детекторе рентгеновского излучения и обработке данных с детектора после завершения экспонирования, отличающийся тем, что фильтр закреплен на торце плоскопанельного детектора рентгеновского излучения, поглощает низкоэнергетическую составляющую рентгеновского спектра и перекрывает половину пикселей детектора в шахматном порядке или посредством параллельных ламелей, половина пикселей детектора регистрирует излучение, не взаимодействовавшее с фильтром, и образует первую группу пикселей, а другая половина пикселей детектора регистрирует излучение, прошедшее через фильтр, и образует вторую группу пикселей, при этом обеспечивается условие регистрации излучения, когда комбинация четырех рядом стоящих пикселей состоит из двух пикселей первой группы, регистрирующих излучение, не взаимодействующее с фильтром и представляющее полный спектр рентгеновского излучения, и двух пикселей второй группы, регистрирующих излучение, прошедшее через фильтр и представляющее высокоэнергетическую составляющую спектра рентгеновского излучения, при обработке данных в каждой из групп пикселей проводят сложение сигналов, вычитают сигнал второй группы пикселей из первой и получают информацию о низкоэнергетической составляющей спектра рентгеновского излучения, полученной для четырех пикселей первой и второй групп, которую относят к средней координате пикселей, после чего определяют границы контролируемого участка тела пациента и совмещают их с данными из системы планирования дистанционной лучевой терапии.
2. Устройство для осуществления способа по п. 1, содержащее аппарат для дистанционной лучевой терапии, фильтр, выполненный с возможностью разделения прошедшего сквозь область тела пациента излучения на низкоэнергетическую и высокоэнергетическую составляющие рентгеновского спектра, и плоскопанельный детектор рентгеновского излучения, отличающееся тем, что фильтр закреплен на торце плоскопанельного детектора рентгеновского излучения, выполнен с возможностью поглощения низкоэнергетической составляющей рентгеновского спектра и перекрытия половины пикселей детектора рентгеновского излучения в шахматном порядке или посредством параллельных ламелей, при этом детектор установлен таким образом, что половина его пикселей регистрирует излучение, не взаимодействовавшее с фильтром, и образует первую группу пикселей, а другая половина пикселей детектора регистрирует излучение, прошедшее через фильтр, и образует вторую группу пикселей, и выполнен таким образом, что обеспечивается условие регистрации излучения, когда комбинация четырех рядом стоящих пикселей состоит из двух пикселей первой группы, регистрирующих излучение, не взаимодействующее с фильтром и представляющее полный спектр рентгеновского излучения, и двух пикселей второй группы, регистрирующих излучение, прошедшее через фильтр и представляющее высокоэнергетическую составляющую спектра рентгеновского излучения.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018137859A RU2702316C1 (ru) | 2018-10-26 | 2018-10-26 | Способ верификации укладки пациента при дистанционной лучевой терапии и схема устройства двухэнергетического детектора |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018137859A RU2702316C1 (ru) | 2018-10-26 | 2018-10-26 | Способ верификации укладки пациента при дистанционной лучевой терапии и схема устройства двухэнергетического детектора |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2702316C1 true RU2702316C1 (ru) | 2019-10-07 |
Family
ID=68170911
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018137859A RU2702316C1 (ru) | 2018-10-26 | 2018-10-26 | Способ верификации укладки пациента при дистанционной лучевой терапии и схема устройства двухэнергетического детектора |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2702316C1 (ru) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2468392C2 (ru) * | 2007-04-23 | 2012-11-27 | Конинклейке Филипс Электроникс Н.В. | Детектор с частично прозрачной подложкой сцинтиллятора |
US20130329851A1 (en) * | 2011-02-22 | 2013-12-12 | Koninklijke Philips N.V. | Detection apparatus |
US20140046212A1 (en) * | 2012-07-20 | 2014-02-13 | Heinrich Deutschmann | Patient positioning and imaging system |
US20140226783A1 (en) * | 2013-02-11 | 2014-08-14 | University Of Rochester | Method and apparatus of spectral differential phase-contrast cone-beam ct and hybrid cone-beam ct |
US20160209518A1 (en) * | 2013-08-22 | 2016-07-21 | Otkrytoe Aktsionernoe Obschestvo "Intersoft Evraziya" | Ionizing radiation sensor |
US20180172849A1 (en) * | 2016-09-09 | 2018-06-21 | Minnesota Imaging And Engineering Llc | Structured detectors and detector systems for radiation imaging |
-
2018
- 2018-10-26 RU RU2018137859A patent/RU2702316C1/ru active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2468392C2 (ru) * | 2007-04-23 | 2012-11-27 | Конинклейке Филипс Электроникс Н.В. | Детектор с частично прозрачной подложкой сцинтиллятора |
US20130329851A1 (en) * | 2011-02-22 | 2013-12-12 | Koninklijke Philips N.V. | Detection apparatus |
US20140046212A1 (en) * | 2012-07-20 | 2014-02-13 | Heinrich Deutschmann | Patient positioning and imaging system |
US20140226783A1 (en) * | 2013-02-11 | 2014-08-14 | University Of Rochester | Method and apparatus of spectral differential phase-contrast cone-beam ct and hybrid cone-beam ct |
US20160209518A1 (en) * | 2013-08-22 | 2016-07-21 | Otkrytoe Aktsionernoe Obschestvo "Intersoft Evraziya" | Ionizing radiation sensor |
US20180172849A1 (en) * | 2016-09-09 | 2018-06-21 | Minnesota Imaging And Engineering Llc | Structured detectors and detector systems for radiation imaging |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11896851B2 (en) | Radiation therapy system using a digital tomosynthesis process for near real-time localization | |
Dang et al. | Image-guided radiotherapy for prostate cancer | |
US7853308B2 (en) | System and method for patient positioning for radiotherapy in the presence of respiratory motion | |
US9604077B2 (en) | Visualizing radiation therapy beam in real-time in the context of patient's anatomy | |
US11160537B2 (en) | Apparatus and method for real-time tracking of tissue structures | |
Berbeco et al. | A technique for respiratory-gated radiotherapy treatment verification with an EPID in cine mode | |
US20150080634A1 (en) | Tracking external markers to internal bodily structures | |
Rottmann et al. | A multi-region algorithm for markerless beam's-eye view lung tumor tracking | |
Wang et al. | Dosimetric comparison of stereotactic body radiotherapy using 4D CT and multiphase CT images for treatment planning of lung cancer: evaluation of the impact on daily dose coverage | |
Mao et al. | Fast internal marker tracking algorithm for onboard MV and kV imaging systems | |
Chen et al. | A review of image-guided radiotherapy | |
Fahmi et al. | Respiratory motion estimation of the liver with abdominal motion as a surrogate | |
JP7397909B2 (ja) | 肺癌放射線のためのガイダンス | |
Omari et al. | Preliminary results on the feasibility of using ultrasound to monitor intrafractional motion during radiation therapy for pancreatic cancer | |
Heinz et al. | Feasibility study on image guided patient positioning for stereotactic body radiation therapy of liver malignancies guided by liver motion | |
RU2702316C1 (ru) | Способ верификации укладки пациента при дистанционной лучевой терапии и схема устройства двухэнергетического детектора | |
Ali et al. | An algorithm to extract three‐dimensional motion by marker tracking in the kV projections from an on‐board imager: four‐dimensional cone‐beam CT and tumor tracking implications | |
Farzaneh et al. | Gated radiotherapy development and its expansion | |
Takamatsu et al. | Reproducibility of diaphragm position assessed with a voluntary breath-holding device | |
US20130079625A1 (en) | Ct - mri hyrbrid apparatus and method of implementing the same | |
Kim et al. | Interfractional diaphragmatic position variation according to stomach volume change during respiratory‐gated radiotherapy for hepatocellular carcinoma | |
Tsai et al. | Tumor phase recognition using cone‐beam computed tomography projections and external surrogate information | |
Cho et al. | Development of a real-time internal and external marker tracking system for particle therapy: a phantom study using patient tumor trajectory data | |
Hatamikia et al. | Intra-fractional lung tumor motion monitoring using arbitrary gantry angles during radiotherapy treatment | |
Juraszczyk et al. | Preliminary Study of Computer Aided Diagnosis Methodology for Modeling and Visualization the Respiratory Deformations of the Breast Surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PC41 | Official registration of the transfer of exclusive right |
Effective date: 20211215 |