[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

RU2762288C1 - Способ построения линейного электропривода - Google Patents

Способ построения линейного электропривода Download PDF

Info

Publication number
RU2762288C1
RU2762288C1 RU2020120679A RU2020120679A RU2762288C1 RU 2762288 C1 RU2762288 C1 RU 2762288C1 RU 2020120679 A RU2020120679 A RU 2020120679A RU 2020120679 A RU2020120679 A RU 2020120679A RU 2762288 C1 RU2762288 C1 RU 2762288C1
Authority
RU
Russia
Prior art keywords
stator
slider
magnetic field
magnetic
vector
Prior art date
Application number
RU2020120679A
Other languages
English (en)
Inventor
Василий Александрович Кривоносов
Дмитрий Валерьевич Хачатуров
Original Assignee
Дмитрий Валерьевич Хачатуров
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дмитрий Валерьевич Хачатуров filed Critical Дмитрий Валерьевич Хачатуров
Application granted granted Critical
Publication of RU2762288C1 publication Critical patent/RU2762288C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/06Rolling motors, i.e. motors having the rotor axis parallel to the stator axis and following a circular path as the rotor rolls around the inside or outside of the stator ; Nutating motors, i.e. having the rotor axis parallel to the stator axis inclined with respect to the stator axis and performing a nutational movement as the rotor rolls on the stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Linear Motors (AREA)

Abstract

Изобретение относится к электротехнике, в частности к линейным вентильным электродвигателям, а именно способу обеспечения поступательного движение подвижной части электродвигателя, а именно ротора в виде слайдера. Технический результат заключается в повышении удельной мощности электродвигателя, уменьшении шага полюсного деления, повышении точности позиционирования подвижной части электродвигателя. Расточку статора, находящуюся в магнитном поле постоянных магнитов слайдера с постоянным радиальным магнитным сопротивлением, формируют с постоянным магнитным сопротивлением, замкнутым через элементы слайдера по спирали зубцового винта. Таким образом обеспечивают концентрацию магнитного поля статора на зубцовом винте и перемещение вектора магнитного поля статора в немагнитном зазоре между статором и слайдером по траектории, заданной указанным зубцовым винтом. Посредством чего вектор магнитного поля статора в пределах каждого витка зубцового винта взаимодействует с вектором магнитного поля слайдера. Формируется вектор силы F с движущей осевой составляющей Fх. Преобразуется вращательно-поступательное движение магнитного поля статора в поступательное движение слайдера. 3 з.п. ф-лы, 4 ил.

Description

Заявляемое изобретение относится к области машиностроения, в частности, к линейным вентильным электродвигателям, а именно способу обеспечения поступательного движения подвижной части (слайдера) линейного электродвигателя.
Из уровня техники известно, что на сегодняшний день линейные электродвигатели нашли применение во многих отраслях промышленности, в частности, в нефтедобывающей промышленности, где эффективно используются в качестве приводов для плунжерных погружных насосов. Из патентов на изобретения: UA115401 от 25.10.2017, UA118287 от 26.12.2018, UA118520 от 25.01.2019, RU2615775 от 11.04.2017, а также заявок на изобретения WO/2019/108160 от 11.07.2018, US20170284177A1 от 05.10.2017 известны погружные насосные установки с трехфазным линейным вентильным электродвигателем, где в расточке статора установлена подвижная часть (слайдер), который выполнен из постоянных магнитов и приводится в движение под воздействием бегущего магнитного поля статора.
Также из уровня техники известны магнито-винтовые и спиральные шаговые двигатели, где подвижная часть выполняет поступательное движение с одновременным спиральным вращением. Ниже приведены примеры известных технических решений. Основными преимуществами такого типа двигателей является высокая мощность электродвигателя, а также возможность точного позиционирования подвижной части.
На ряду с указанными преимуществами известные решения имеют и недостатки, такие как: наличие паразитного вращения ротора при поступательном движении, излишний нагрев, не возможность применения в высокочастотных двигателях, многодетальность и сложность сборки конструкции.
Заявленное изобретение призвано решить известные недостатки уровня техники.
Из патента на изобретение РФ № 2183773 от 20.02.2002 известна бесконтактная магнитная винтовая передача. Известное изобретение предназначено для создания сверхточного линейного привода в станкостроении, метрологии, оптике и электронной промышленности.
Бесконтактная магнитная винтовая передача содержит винт и гайку, включающую постоянный магнит, выполненный в виде кольца с направлением намагничивания вдоль его оси, установленный между магнитопроводами с полюсными наконечниками. На винте и полюсных наконечниках выполнена мелкомодульная резьба, канавки которой заполнены твердым немагнитным материалом заподлицо с вершинами гребней резьбы. Винт и гайка взаимодействуют между собой через радиальный зазор, в который через аэростатические дроссельные узлы, установленные на краях гайки, по подводящим каналам подается сжатая текучая среда от внешнего источника. В качестве аэростатических дроссельных элементов могут быть использованы кольца из пористого материала, жиклеры, калиброванные щелевые отверстия. В описанном изобретении повышена кинематическая точность и жесткость передачи при малых габаритных размерах.
К недостаткам известного технического решения можно отнести сложность конструкции, что усложняет его применение в разных отраслях промышленности. Также недостатком можно считать наличие паразитного вращательного движения, что снижает КПД системы.
Также из заявки на изобретение WO2016173293A1 от 03.11.2016 известен статорно-роторный механизм спирального шагового двигателя. Ротор содержит центральный вал и множество блоков ротора, причем блоки ротора непрерывно или раздельно равномерно расположены на окружности центрального вала. Статор содержит множество блоков статора, барьерный слой и крышку, причем блоки статора и блоки ротора в радиальном направлении расположены на одинаковом расстоянии друг от друга. В заданном направлении осевая ширина рабочей поверхности блока статора равна ширине оси блока ротора. Блоки статора выровнены относительно блоков ротора. Когда двигатель работает, между блоками статора и блоками ротора создается динамическое спиральное магнитное поле, и под действием спирального магнитного поля возникает прямолинейное и круговое движение без трения между блоками статора и ротора. Согласно спиральному шаговому двигателю, одна из двух частей может совершать круговое движение, а другая – прямолинейное движение, или одна часть одновременно совершает круговое движение и прямолинейное движение.
К недостаткам описанного технического решения можно отнести наличие паразитного вращательного движения ротора, что снижает КПД системы, а также приводит к дополнительному нагреву двигателя.
Техническая задача, на решение которой направлено заявленное изобретение заключается в реализации способа обеспечения поступательного движения подвижной части линейного электродвигателя, что позволяет повысить КПД системы, расширить ее функциональные и эксплуатационные возможности, а также обеспечить высокую точность управления положением подвижной части электродвигателя.
Технический результат, достигнутый от реализации заявленного изобретения заключается в повышении удельной мощности электродвигателя, уменьшении шага полюсного деления, что приводит к повышению точности позиционирования подвижной части электродвигателя.
Сущность заявленного изобретения заключается в том, что согласно заявленному способу на обмотке статора формируют вращающееся магнитное поле, при этом расточку статора находящуюся в магнитном поле постоянных магнитов слайдера выполненного с постоянным радиальным магнитным сопротивлением, формируют с постоянным магнитным сопротивлением замкнутым через элементы слайдера по спирали зубцового винта. Таким образом обеспечивают концентрацию магнитного поля статора на зубцовом винте и перемещение вектора магнитного поля статора в немагнитном зазоре между статором и слайдером по траектории, заданной указанным зубцовым винтом. Посредством чего, вектор магнитного поля статора в пределах каждого витка зубцового винта взаимодействует с вектором магнитного поля слайдера, формируя вектор силы F с движущей осевой составляющей Fx, преобразуя вращательно-поступательное движение магнитного поля статора в поступательное движение слайдера.
Возвратно-поступательное движение слайдера обеспечивают посредством периодической смены фаз питающего напряжения обмотки статора, чем обеспечивают смену направления перемещения вектора магнитного поля статора по зубцовому винту.
В приведенном варианте реализации изобретения, при поступательном движении слайдер, позиционируют относительно статора посредством ограничителей радиального перемещения обеспечивая постоянный немагнитный зазор между элементами статора и слайдера. Зубцовый винт магнитопровода линейного привода формируют, по меньшей мере, однозаходным.
Сущность заявляемого изобретение поясняется, но не ограничивается следующими графическими материалами:
фиг.1 - конструктивная схема линейного электропривода (вариант 1);
фиг.2 - конструктивная схема линейного электропривода (вариант 2);
фиг.3 - конструктивная схема линейного электропривода (вариант 3);
фиг.4 - схема взаимодействия магнитных полей статора и слайдера линейного электропривода в определенный момент времени.
Заявляемое изобретение может быть реализовано в различных технологических процессах и механизмах где существует необходимость обеспечения контролируемого поступательного движения механизмов с высокой точностью позиционирования подвижных частей, в частности, в медицине, робототехнике, станкостроении, машиностроении.
Заявленное изобретение объединяет в себе преимущества известных из уровня техники способов обеспечения возвратно-поступательного движения слайдера (ротора) электродвигателя, устраняя при этом указанные выше недостатки.
Согласно одному из возможных вариантов реализации изобретения, линейный привод 1 (фиг.1-3) может быть реализован при построении линейного вентильного электродвигателя (ЛВЭД) и состоит из статора 2, содержащего магнитопровод из магнитного материала и трехфазную обмотку. Также указанный ЛВЭД содержит подвижную часть (слайдер) 3 выполненный с постоянным магнитным сопротивлением, выполняющую возвратно-поступательные движения относительно статора 2. Слайдер 3 (фиг.2) сформирован из набора постоянных магнитов 4 c концентраторами 5 магнитного поля между ними.
Также возможен вариант выполнения без концентраторов магнитного поля, при этом магниты установлены вблизи друг друга, а векторы магнитных полей концентрируются между соседними магнитами.
Постоянные магниты 4 установлены последовательно с периодической сменой полярности SN одного магнита по отношению к предыдущему NS. В одном из возможных вариантов реализации слайдер 3, выполняют из немагнитного стержня, при этом постоянные магниты 4 выполнены в виде колец и установлены на поверхности стержня, такая форма магнитов позволяет обеспечить постоянное магнитное сопротивление. Концентраторы 5 имеют больший радиальный размер по отношению к магнитам 4 и установлены периодически, разделяя магниты. Концентраторы 5 обеспечивают позиционирование слайдера 3 относительно статора 2, ограничивая радиальное перемещение и формируют постоянный немагнитный зазор 6 между расточкой статора и элементами слайдера. В приведенном варианте реализации слайдер 3, установлен внутри расточки статора 2. Также возможен вариант (фиг.2), при котором расточка статора 2 расположена внутри слайдера 3, при этом слайдер выполнен пустотелым.
В приведенном варианте реализации изобретения статор 2 состоит из шихтованного магнитопровода. Расточка статора содержит зубцовый винт 7 (фиг.3) с немагнитным винтовым зазором 8. Указанный зубцовый винт выполняют, по меньшей мере, однозаходным, при этом, повышение количества витков винта обеспечивает повышение удельной мощности электропривода. Немагнитный винтовой зазор 8 сформирован между зубцами 9 магнитопровода. В пазах между зубцами уложена обмотка статора (на фиг.3 обмотка обозначена чередованием фаз А;В;С между зубцами 9-9n). Немагнитный винтовой зазор 8 сопряжен с немагнитным зазором 6 между слайдером 3 и статором 2. На зубцах 9 указанного винта 7 концентрируется магнитное поле статора. Постоянный радиальный немагнитный зазор 6 между зубцами статора 9 и магнитами с концентраторами 5 магнитного поля слайдера 3 обеспечивает одинаковое радиальное магнитное сопротивление в каждой точке поверхности слайдера, что не позволяет магнитному потоку статора 2 провернуть слайдер 3 относительно его продольной оси.
Реализованный в описанном конструктивном решении способ построения линейного привода заключается в том, что на обмотку статора 2 подаются импульсы напряжения управляемой частоты, создающие вращающееся магнитное поле, вектор которого концентрируется на зубцах 9 расточки статора 2. Направление векторов в каждом из зубцов статора 2 в один из моментов времени обозначено на фиг.3 условными обозначениями, круг с точкой и круг с крестиком. Расточку статора 2 находящуюся в магнитном поле постоянных магнитов 4 слайдера 3 с постоянным радиальным магнитным сопротивлением, формируют с постоянным магнитным сопротивлением замкнутым через элементы слайдера 4,5 по спирали зубцового винта 7, чем обеспечивают концентрацию магнитного поля статора на зубцовом винте 7. При этом указанные конструктивные признаки задают вращающемуся магнитному полю поступательное движение, перемещая вектор магнитного поля статора по траектории заданной указанным винтовым немагнитным зазором 8 по зубцовому винту 7. Таким образом, вектор 10 магнитного поля статора в пределах каждого витка зубцового винта 7 взаимодействует с вектором 11 магнитного поля слайдера, формируя вектор силы F с движущей осевой составляющей Fx (вектор перемещения), преобразуя вращательно-поступательное движение магнитного поля статора в поступательное движение слайдера 3.
Согласно приведенному варианту реализации изобретения возвратно-поступательное движение слайдера обеспечивают посредством периодической смены фаз питающего напряжения обмотки статора 3. В результате чего вектор магнитного поля статора перемещается по зубцовому винту 7 с периодической сменой направления.
Во временя поступательного движения слайдер 3 позиционируют относительно статора 2 посредством ограничителей радиального перемещения, обеспечивая постоянный немагнитный зазор 6. В данном варианте реализации концентраторами 5, обеспечивают постоянный радиальный немагнитный зазор 6 между элементами статора 2 и слайдера 3, обеспечивая, таким образом, постоянное магнитное сопротивление по всей окружности слайдера 3.
Также постоянство немагнитного зазора может обеспечиваться без дополнительных конструктивных элементов постпредством взаимодействия магнитных полей статора и слайдера.
На фиг. 3 показано состояние магнитной системы и элементов конструкции линейного привода в определенный момент времени, что в полной мере отображает работу системы согласно заявленному способу, так как система является цикличной. На приведенной схемы отображены величины векторов Fx в один из моментов времени. Величина вектора Fx, а значит, сила перемещения увеличивается с приближением зубца статора 9n к концентратору слайдера 5n, при этом в немагнитном зазоре также возникает сонаправленный вектор Fx меньшей величины, который будет увеличиваться по мере приближением зубца к концентратору с уменьшением немагнитного зазора.
Реализация заявленного способа позволяет создать высокочастотный линейный привод, уменьшив шаг полюсного деления на слайдере, чем повысить точность позиционирования слайдера. Также описанное решение позволяет повысить КПД, а значит и удельную мощность (Н/мм), так как, векторы магнитного поля статора непрерывно взаимодействуют с магнитным полем постоянных магнитов слайдера, создавая силу перемещения Fx по всей поверхности концентраторов магнитного поля или магнитов в варианте исполнения без концентраторов.

Claims (4)

1. Способ построения линейного электропривода, содержащего статор с магнитопроводом из магнитного материала и трехфазной обмоткой, а также подвижный элемент, а именно ротор, в виде слайдера, сформированного из набора постоянных магнитов, установленных последовательно с периодической сменой полярности одного магнита по отношению к предыдущему, отличающийся тем, что на обмотке статора формируют вращающееся магнитное поле, расточку статора, находящуюся в магнитном поле постоянных магнитов слайдера, выполненного с постоянным радиальным магнитным сопротивлением, формируют с постоянным магнитным сопротивлением, замкнутым через элементы слайдера по спирали зубцового винта, чем обеспечивают концентрацию магнитного поля статора на зубцовом винте и перемещение вектора магнитного поля статора в немагнитном зазоре между статором и слайдером по траектории, заданной указанным зубцовым винтом, посредством чего вектор магнитного поля статора в пределах каждого витка зубцового винта взаимодействует с вектором магнитного поля слайдера, формируя вектор силы F с движущей осевой составляющей Fх, преобразуя вращательно-поступательное движение магнитного поля статора в поступательное движение слайдера.
2. Способ построения линейного электропривода по п.1, отличающийся тем, что возвратно-поступательное движение слайдера обеспечивают посредством периодической смены фаз питающего напряжения обмотки статора, чем обеспечивают смену направления перемещения вектора магнитного поля статора по траектории, заданной зубцовым винтом.
3. Способ построения линейного электропривода по п.1, отличающийся тем, что во время поступательного движения слайдер позиционируют относительно статора, ограничивая радиальные перемещения слайдера, обеспечивая постоянный немагнитный зазор между элементами статора и слайдера.
4. Способ построения линейного электропривода по п.1, отличающийся тем, что зубцовый винт формируют, по меньшей мере, однозаходным.
RU2020120679A 2019-11-05 2020-06-23 Способ построения линейного электропривода RU2762288C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
UAA201910903 2019-11-05
UAA201910903 2019-11-05

Publications (1)

Publication Number Publication Date
RU2762288C1 true RU2762288C1 (ru) 2021-12-17

Family

ID=79175313

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020120679A RU2762288C1 (ru) 2019-11-05 2020-06-23 Способ построения линейного электропривода

Country Status (1)

Country Link
RU (1) RU2762288C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1309203A1 (ru) * 1985-11-29 1987-05-07 Предприятие П/Я Г-4832 Синхронный электродвигатель
RU2183773C2 (ru) * 2000-09-12 2002-06-20 Общество с ограниченной ответственностью "Лаборатории Амфора" Бесконтактная магнитная винтовая передача и ее варианты
RU2275732C2 (ru) * 2004-04-29 2006-04-27 Федеральное государственное унитарное предприятие "Центральное конструкторское бюро морской техники "Рубин" Линейный электродвигатель
CN101355290A (zh) * 2008-09-11 2009-01-28 上海理工大学 双径向磁场反应式直线旋转步进电机
WO2016173293A1 (zh) * 2015-04-30 2016-11-03 俞富春 螺旋步进电动机的定子、转子机构及螺旋步进电动机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1309203A1 (ru) * 1985-11-29 1987-05-07 Предприятие П/Я Г-4832 Синхронный электродвигатель
RU2183773C2 (ru) * 2000-09-12 2002-06-20 Общество с ограниченной ответственностью "Лаборатории Амфора" Бесконтактная магнитная винтовая передача и ее варианты
RU2275732C2 (ru) * 2004-04-29 2006-04-27 Федеральное государственное унитарное предприятие "Центральное конструкторское бюро морской техники "Рубин" Линейный электродвигатель
CN101355290A (zh) * 2008-09-11 2009-01-28 上海理工大学 双径向磁场反应式直线旋转步进电机
WO2016173293A1 (zh) * 2015-04-30 2016-11-03 俞富春 螺旋步进电动机的定子、转子机构及螺旋步进电动机

Similar Documents

Publication Publication Date Title
US6246561B1 (en) Methods for controlling the path of magnetic flux from a permanent magnet and devices incorporating the same
US4286180A (en) Variable reluctance stepper motor
EP2335344B1 (en) Electrical machine
US3394295A (en) Rotating and reciprocating electric motor
CN104795960B (zh) 螺旋步进电动机的定子、转子机构及螺旋步进电动机
KR20050071703A (ko) 자석 구조물, 상기 자석 구조물을 채용한 모터 및 상기모터를 구비하는 드라이버
US20120286592A1 (en) Permanent Magnet Operating Machine
JP5363994B2 (ja) リニアステッピングモータ
KR20120049168A (ko) 작은 증분을 발생시킬 수 있는 스테핑 모터
KR100720266B1 (ko) 스파이럴형 리니어모터
RU2762288C1 (ru) Способ построения линейного электропривода
JPH06225513A (ja) リニアモータ
JP2012196021A (ja) リニアアクチュエータ
WO1985005741A1 (en) Stepping motor
RU2750646C1 (ru) Линейный вентильный электродвигатель
CN107834804B (zh) 用于点阵图像成型和触觉反馈的直线步进电机
CN105811732A (zh) 一种三相单定子螺旋运动永磁同步电动机
RU2394341C1 (ru) Стационарная катушка подмагничивания якоря линейной электрической машины
CN204967598U (zh) 螺旋步进电动机的定子、转子机构及螺旋步进电动机
RU2690509C1 (ru) Синхронный вентильный электродвигатель с совмещенными обмотками и способ формирования совмещенной обмотки
SU845235A1 (ru) Шаговый электродвигатель
JPS6331462A (ja) ステツピングモ−タ
CN101557154B (zh) 两自由度开关磁阻电动机
RU2544836C1 (ru) Шаговый электродвигатель
JPH0956143A (ja) スパイラルモータ