[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

RU2760487C1 - Ультразвуковой способ измерения высоты вертикально ориентированных плоскостных дефектов в стеклокерамических материалах элементов конструкций летательных аппаратов - Google Patents

Ультразвуковой способ измерения высоты вертикально ориентированных плоскостных дефектов в стеклокерамических материалах элементов конструкций летательных аппаратов Download PDF

Info

Publication number
RU2760487C1
RU2760487C1 RU2021111128A RU2021111128A RU2760487C1 RU 2760487 C1 RU2760487 C1 RU 2760487C1 RU 2021111128 A RU2021111128 A RU 2021111128A RU 2021111128 A RU2021111128 A RU 2021111128A RU 2760487 C1 RU2760487 C1 RU 2760487C1
Authority
RU
Russia
Prior art keywords
ultrasonic
vertically oriented
height
defect
aircraft structural
Prior art date
Application number
RU2021111128A
Other languages
English (en)
Inventor
Сергей Иванович Минин
Михаил Юрьевич Русин
Александр Васильевич Терехин
Анатолий Степанович Хамицаев
Дмитрий Викторович Харитонов
Original Assignee
Акционерное общество «Обнинское научно-производственное предприятие «Технология» им. А.Г.Ромашина»
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество «Обнинское научно-производственное предприятие «Технология» им. А.Г.Ромашина» filed Critical Акционерное общество «Обнинское научно-производственное предприятие «Технология» им. А.Г.Ромашина»
Priority to RU2021111128A priority Critical patent/RU2760487C1/ru
Application granted granted Critical
Publication of RU2760487C1 publication Critical patent/RU2760487C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

Использование: для измерения высоты вертикально ориентированных плоских дефектов (трещин) в стеклокерамических материалах элементов конструкций летательных аппаратов. Сущность изобретения заключается в том, что ультразвуковыми волнами при помощи прямого совмещенного ультразвукового преобразователя возбуждают в изделии импульсы продольных ультразвуковых колебаний в направлении, совпадающем с плоскостью дефекта, и принимают отраженные донной поверхностью изделия ультразвуковые колебания, с целью увеличения точности измерения вычисляют отношение амплитуды отраженной от донной поверхности ультразвуковой продольной волны, прошедшей через вертикально ориентированный плоскостной дефект (трещину) элемента конструкции летательного аппарата, к амплитуде отраженной от донной поверхности ультразвуковой продольной волны, прошедшей через область элемента конструкции летательного аппарата без дефекта, для проведения измерений применяются ультразвуковые волны в диапазоне частот от 10 МГц до 20 МГц. Технический результат: повышение точности измерения высоты вертикально ориентированных плоскостных дефектов в стеклокерамических материалах элементов конструкций летательных аппаратов. 4 ил.

Description

Изобретение относится к области неразрушающего контроля сплошности стеклокерамических материалов и служит для измерения высоты вертикально ориентированных плоских дефектов (трещин) с целью определения возможности их механической выборки.
Известен способ измерения условной высоты вертикально ориентированных плоских дефектов (трещин) в сварном соединении металлов ультразвуковым методом (ГОСТ Р 55724-2013. Контроль неразрушающий. Соединения сварные). Условную высоту трещины ΔН определяют как разность измеренных значений глубины расположения трещины 2 в крайних положениях ультразвукового преобразователя 3, перемещаемого в плоскости падения ультразвукового луча. Условную высоту трещины 2 измеряют в сечении сварного соединения 1, где эхо-сигнал от трещины 2 имеет наибольшую амплитуду 4, а также в сечениях, расположенных на расстояниях, указанных в технологической документации на контроль. Точность измерения высоты трещины 2 в данном методе определяется точностью положений ΔХ ультразвукового преобразователя 3 и точностью измерения уровня амплитуды ультразвукового сигнала, принятого за начало и окончание трещины 2.
Реализация данного способа иллюстрируется на фиг.1. Схема измерения условной высоты трещины в сварном соединении по ГОСТ Р 55724-2013 «Контроль неразрушающий. Соединения сварные», где ΔН – условная высота трещины, ΔХ – расстояние между крайними положениями ультразвукового преобразователя.
Недостаток указанного способа измерения высоты трещины заключается в условном (неточном) измерении высоты трещины, а также применение данного способа для контроля толстостенных сварных соединений.
Известен способ измерения высоты вертикально ориентированных плоских дефектов (трещин) при помощи дифракции первого рода ультразвуковых волн на краю трещины в металлах (Н.П. Алешин, В.П. Белый и др. Метод акустического контроля металлов. – М. Машиностроение, - 1989, 456 с.). При падении поперечной ультразвуковой волны 5 от наклонного ультразвукового преобразователя 6, расположенного на металлическом изделии 1, на трещину 2 вокруг нее могут возникать волны различного происхождения. В соответствии с первым законом дифракции дифракционное поле образуется только теми лучами, которые падают на острый край, следовательно, чем больше высота трещины 2, тем большая часть ультразвуковой волны поперечной 5 будет переходить в ультразвуковую волну продольную 4. Таким образом, измеряя амплитуду ультразвуковой волны продольной 4, дифрагированной из ультразвуковой волны поперечной 5, принимая ее при помощи прямого преобразователя 3, можно определить высоту трещины 2.
Реализация данного способа иллюстрируется на фиг.2. Функциональная схема измерения высоты трещины при помощи дифракции поперечной ультразвуковой волны по Н.П. Алешину, В.П. Белому и др. «Метод акустического контроля металлов».
Недостаток данного способа заключается в том, что требуется наличие двух ультразвуковых преобразователей – излучающего наклонного ультразвукового преобразователя и приемного прямого ультразвукового преобразователя. Кроме того, необходимо точно позиционировать приемный ультразвуковой преобразователь над трещиной, расположенной с противоположной стороны изделия, что сделать достаточно трудно.
Наиболее близким по технической сущности (прототипом) является ультразвуковой способ контроля изделий на наличие вертикально ориентированных плоскостных дефектов (А. с. СССР №1441299 А1, МПК G01N 29/04, опубл. 30.11.1988), в котором при помощи прямого совмещенного ультразвукового преобразователя возбуждают в изделии импульсы продольных ультразвуковых колебаний (волн) в направлении, совпадающем с плоскостью вертикально ориентированного плоскостного дефекта, принимают этим же ультразвуковым преобразователем отраженные донной поверхностью ультразвуковые волны, измеряют их параметры и с их помощью определяют характеристики дефекта. С целью повышения точности определения высоты вертикально ориентированного плоскостного дефекта, в качестве измеряемого параметра используют разность времен между временем распространения отраженных от донной поверхности продольных ультразвуковых колебаний и временем распространения трансформированных на дефекте продольных ультразвуковых колебаний. Высоту вертикально ориентированного плоскостного дефекта определяют по измеренной разности времен прихода ультразвуковых колебаний. Также по амплитуде отраженных донной поверхностью изделия трансформированных колебаний определяют наличие дефекта.
Недостатком указанного способа, взятого в качестве прототипа, является неточное измерение разности времени распространения отраженных от донной поверхности продольных ультразвуковых колебаний и времени распространения, трансформированных на дефекте продольных ультразвуковых колебаний в тонких изделиях, из-за высокой скорости продольных ультразвуковых колебаний в стеклокерамических материалах и их малой толщины.
Техническим результатом предполагаемого изобретения является повышение точности измерения высоты вертикально ориентированных плоскостных дефектов в стеклокерамических материалах элементов конструкций летательных аппаратов.
Указанный технический результат достигается тем, что предложен ультразвуковой способ измерения высоты вертикально ориентированных плоскостных дефектов в стеклокерамических материалах элементов конструкций летательных аппаратов, заключающийся в том, что ультразвуковыми волнами при помощи прямого совмещенного ультразвукового преобразователя возбуждают в изделии импульсы продольных ультразвуковых колебаний в направлении, совпадающем с плоскостью дефекта, и принимают отраженные донной поверхностью изделия ультразвуковые колебания, отличающийся тем, что с целью увеличения точности измерения вычисляют отношение амплитуды отраженной от донной поверхности ультразвуковой продольной волны, прошедшей через вертикально ориентированный плоскостной дефект (трещину) элемента конструкции летательного аппарата, к амплитуде отраженной от донной поверхности ультразвуковой продольной волны, прошедшей через область элемента конструкции летательного аппарата без дефекта, для проведения измерений применяются ультразвуковые волны в диапазоне частот от 10 МГц до 20 МГц.
Пример реализации предполагаемого способа иллюстрируется на фиг. 3, 4.
На фиг. 3а представлена функциональная схема измерения высоты ориентированных плоскостных дефектов при помощи дифракции продольной ультразвуковой волны.
В предложенном способе измерения высоты вертикально ориентированных плоскостных дефектов (трещин) 2 ультразвуковые продольные волны посредством прямого совмещенного ультразвукового пьезоэлектрического преобразователя 3 вводят в стеклокерамический материал элемента 1 конструкции летательного аппарата, причем прямой совмещенный ультразвуковой пьезоэлектрический преобразователь 3 фиксируется над вертикально ориентированным плоскостным дефектом (трещиной) 2, ультразвуковая продольная волна 4 распространяется вдоль вертикально ориентированного плоскостного дефекта 2, претерпевает дифракцию, отражается от донной поверхности элемента 1 конструкции летательного аппарата и возвращается по траектории 5 на этот же прямой совмещенный ультразвуковой пьезоэлектрический преобразователь 3. На ультразвуковом дефектоскопе 6, подключенном к прямому совмещенному ультразвуковому пьезоэлектрическому преобразователю 3, фиксируется амплитуда ультразвуковой продольной волны, возвратившейся по траектории 5.
Затем прямой совмещенный ультразвуковой пьезоэлектрический преобразователь 3 переставляется в бездефектную область (фиг. 3б) стеклокерамического материала элемента 1 конструкции летательного аппарата. На ультразвуковом дефектоскопе 6 фиксируется амплитуда продольной ультразвуковой волны, отраженной от донной поверхности по траектории 5. Вычисляется отношение амплитуды ультразвуковой продольной волны, прошедшей вдоль плоскостного дефекта и отраженной от донной поверхности (фиг. 3а), к амплитуде ультразвуковой волны прошедшей через бездефектную область (фиг. 3б) материала элемента 1 конструкции летательного аппарата и отраженной от донной поверхности.
На основании экспериментальных исследований построена графическая зависимость отношения амплитуд продольных ультразвуковых волн, прошедших через вертикально ориентированный плоскостной дефект и через бездефектный материал от высоты вертикально ориентированного плоскостного дефекта. При проведении экспериментов высота вертикально ориентированного плоскостного дефекта измерялась рентгеновским методом.
На фиг. 4 представлена графическая зависимость отношения амплитуд ультразвуковых волн от высоты вертикально ориентированного плоскостного дефекта, где
Атр – амплитуда ультразвуковой волны, прошедшей через стеклокерамический материал с вертикально ориентированный плоскостной дефект и отраженной от донной поверхности (ДБ);
А – амплитуда ультразвуковой волны, прошедшей через стеклокерамический материал и отраженной от донной поверхности (ДБ).

Claims (1)

  1. Ультразвуковой способ измерения высоты вертикально ориентированных плоскостных дефектов в стеклокерамических материалах элементов конструкций летательных аппаратов, заключающийся в том, что ультразвуковыми волнами при помощи прямого совмещенного ультразвукового преобразователя возбуждают в изделии импульсы продольных ультразвуковых колебаний в направлении, совпадающем с плоскостью дефекта, и принимают отраженные донной поверхностью изделия ультразвуковые колебания, отличающийся тем, что с целью увеличения точности измерения вычисляют отношение амплитуды отраженной от донной поверхности ультразвуковой продольной волны, прошедшей через вертикально ориентированный плоскостной дефект - трещину элемента конструкции летательного аппарата, к амплитуде отраженной от донной поверхности ультразвуковой продольной волны, прошедшей через область элемента конструкции летательного аппарата без дефекта, для проведения измерений применяются ультразвуковые волны в диапазоне частот от 10 МГц до 20 МГц.
RU2021111128A 2021-04-20 2021-04-20 Ультразвуковой способ измерения высоты вертикально ориентированных плоскостных дефектов в стеклокерамических материалах элементов конструкций летательных аппаратов RU2760487C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021111128A RU2760487C1 (ru) 2021-04-20 2021-04-20 Ультразвуковой способ измерения высоты вертикально ориентированных плоскостных дефектов в стеклокерамических материалах элементов конструкций летательных аппаратов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021111128A RU2760487C1 (ru) 2021-04-20 2021-04-20 Ультразвуковой способ измерения высоты вертикально ориентированных плоскостных дефектов в стеклокерамических материалах элементов конструкций летательных аппаратов

Publications (1)

Publication Number Publication Date
RU2760487C1 true RU2760487C1 (ru) 2021-11-25

Family

ID=78719398

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021111128A RU2760487C1 (ru) 2021-04-20 2021-04-20 Ультразвуковой способ измерения высоты вертикально ориентированных плоскостных дефектов в стеклокерамических материалах элементов конструкций летательных аппаратов

Country Status (1)

Country Link
RU (1) RU2760487C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2814130C1 (ru) * 2023-03-02 2024-02-22 Акционерное общество "Обнинское научно-производственное предприятие "Технология" им. А.Г.Ромашина" Ультразвуковой способ измерения высоты вертикально ориентированных плоскостных дефектов в кварцевой керамике

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5929349A (en) * 1997-08-22 1999-07-27 Shell Oil Company Inspection tool for measuring wall thickness of underground storage tanks
RU2176624C1 (ru) * 2001-03-29 2001-12-10 Меркулов Юрий Юрьевич Стеклокерамика, способ ее получения и защитная конструкция на ее основе

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5929349A (en) * 1997-08-22 1999-07-27 Shell Oil Company Inspection tool for measuring wall thickness of underground storage tanks
RU2176624C1 (ru) * 2001-03-29 2001-12-10 Меркулов Юрий Юрьевич Стеклокерамика, способ ее получения и защитная конструкция на ее основе

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
V.V. Klyuev et al., Non-destructive testing and diagnostics, Mashinostroenie Publishing House, CJSC NIIIN MNPO Spektr, 2002, p. 214. *
Yu.V. Kazakov et al., Welding and cutting of materials, Moscow, Publishing Center "Academy", 2003, p. 351. *
В.В.Клюев и др., Неразрушающий контроль и диагностика, Издательство "Машиностроение", ЗАО "НИИИН МНПО "Спектр", 2002, стр. 214. Ю.В.Казаков и др., Сварка и резка материалов, Москва, Издательский центр "Академия", 2003, стр. 351. М.В.Шахматов и др., Работоспособность и неразрушающий контроль сварных соединений с дефектами, Центр научно-технической информации г. Челябинск, 2000, стр. 173, 174, 181-183. *
ГОСТ Р 50.05.05-2018. ГОСТ EN 1748-2-1-2016. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2814130C1 (ru) * 2023-03-02 2024-02-22 Акционерное общество "Обнинское научно-производственное предприятие "Технология" им. А.Г.Ромашина" Ультразвуковой способ измерения высоты вертикально ориентированных плоскостных дефектов в кварцевой керамике
RU2814126C1 (ru) * 2023-03-07 2024-02-22 Акционерное общество "Обнинское научно-производственное предприятие "Технология" им. А.Г.Ромашина" Способ определения глубины складок в изделиях из стеклопластиковых материалов с помощью ультразвуковых волн

Similar Documents

Publication Publication Date Title
KR101134431B1 (ko) 초음파 탐상 장치 및 방법
KR101163554B1 (ko) 위상배열 초음파 탐상용 검증용 시험편
KR20100045284A (ko) 위상배열 초음파 탐상을 위한 보정(대비)시험편 및 보정절차
Clorennec et al. Laser ultrasonic inspection of plates using zero-group velocity lamb modes
Osumi et al. Imaging slit in metal plate using aerial ultrasound source scanning and nonlinear harmonic method
KR20100124238A (ko) 위상배열 초음파 탐상을 위한 보정(대비)시험편 및 보정절차
RU2760487C1 (ru) Ультразвуковой способ измерения высоты вертикально ориентированных плоскостных дефектов в стеклокерамических материалах элементов конструкций летательных аппаратов
JP5672725B2 (ja) Sh波の発生方法および超音波計測方法
RU2814130C1 (ru) Ультразвуковой способ измерения высоты вертикально ориентированных плоскостных дефектов в кварцевой керамике
KR20070065934A (ko) 위상배열 초음파 결함길이평가 장치 및 그 방법
Bagheri et al. A Novel Method for Ultrasonic Evaluation of Horizontal Defects Using Time-of-Flight Diffraction
JP3761883B2 (ja) 超音波探傷方法
RU2488108C2 (ru) Способ ультразвукового контроля стыковых, нахлесточных и тавровых сварных соединений тонкостенных труб малого диаметра
RU2789244C1 (ru) Способ ультразвукового контроля поверхности кварцевых керамических изделий на наличие царапин
RU2596242C1 (ru) Способ ультразвукового контроля
RU2397489C1 (ru) Устройство ультразвуковой дефектоскопии и способ ультразвуковой дефектоскопии
Riahi et al. Substitution of the time-of-flight diffraction technique for nondestructive testing of welds and thick layers of steel: A comparative investigation
JP4761147B2 (ja) 超音波探傷方法及び装置
RU2791670C1 (ru) Способ контроля качества акустического контакта между ультразвуковым преобразователем и керамическим изделием при проведении ультразвуковой дефектоскопии
JIANG et al. Simulation of modified absolute arrival time technique for measuring surface breaking cracks
Baby et al. Ultrasonic sizing of embedded vertical cracks in ferritic steel welds
RU2788337C1 (ru) Способ контроля глубины дефектов типа "складка" в изделиях из стеклопластиковых материалов ультразвуковым методом
RU2787645C1 (ru) Способ неразрушающего контроля керамических изделий ультразвуковым методом
RU2739385C1 (ru) Способ ультразвукового контроля паяных соединений
Nam Directivity evaluation of an artificial defect in a simulated butt joint by the visualization method