[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

RU2743608C1 - Способ локализации отделов головного мозга - Google Patents

Способ локализации отделов головного мозга Download PDF

Info

Publication number
RU2743608C1
RU2743608C1 RU2020125205A RU2020125205A RU2743608C1 RU 2743608 C1 RU2743608 C1 RU 2743608C1 RU 2020125205 A RU2020125205 A RU 2020125205A RU 2020125205 A RU2020125205 A RU 2020125205A RU 2743608 C1 RU2743608 C1 RU 2743608C1
Authority
RU
Russia
Prior art keywords
brain
localization
time series
fmri
individual
Prior art date
Application number
RU2020125205A
Other languages
English (en)
Inventor
Максим Геннадьевич Шараев
Арсений Александрович Боженко
Евгений Владимирович Бурнаев
Александр Владимирович Бернштейн
Вячеслав Эдуардович Яркин
Давид Ильич Пицхелаури
Татьяна Викторовна Мельникова-Пицхелаури
Александр Сергеевич Смирнов
Игорь Николаевич Пронин
Original Assignee
ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "СберМедИИ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "СберМедИИ" filed Critical ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "СберМедИИ"
Priority to RU2020125205A priority Critical patent/RU2743608C1/ru
Application granted granted Critical
Publication of RU2743608C1 publication Critical patent/RU2743608C1/ru
Priority to PCT/RU2021/050220 priority patent/WO2022025803A1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

Изобретение относится к вычислительной технике, а именно к локализации отделов головного мозга. Способ содержит этапы, на которых: получают изображения магнитно-резонансной томографии в формате DICOM; конвертируют изображения из формата DICOM в формат BIDS; обрабатывают конвертированные изображения в формате BIDS, по меньшей мере осуществляют очистку от шумов, корегистрацию со структурной МРТ, а также нормализацию; создают индивидуальный шаблон для конкретного пациента, с учетом индивидуальной анатомии, посредством преобразования универсального шаблона, характеризующий локализацию отделов головного мозга; из полученного индивидуального шаблона выделяют независимые компоненты во временных рядах, в которых присутствует активность в отделах головного мозга; осуществляют локализацию отделов головного мозга, при этом: вычисляют меру близости временного ряда в каждом вокселе фМРТ и получают карту корреляций с выделенными искомыми временными рядами; к каждому элементу карты корреляции строят его z-преобразование; применяют пороговую технику к z-преобразованной карте и выделяют воксели, совокупность которых составляет отделы головного мозга. Изобретение обеспечивает определение локализации отделов головного мозга по данным фМРТ покоя. 2 з.п. ф-лы, 2 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
Настоящее техническое решение относится к области вычислительной техники, в частности, к способу локализации отделов головного мозга.
УРОВЕНЬ ТЕХНИКИ
Из уровня техники известен источник информации RU 2 504 329 C1, 20.01.2014, раскрывающий способ выявления в коре головного мозга сенсомоторных зон, ответственных за локомоцию, включающий проведение МРТ в режиме T1 MPR (Multiplanar reconstruction) и фМРТ с последующим проведением навигационной транскраниальной магнитной стимуляции, отличающийся тем, что фМРТ проводят с использованием сенсомоторной пассивной парадигмы, имитирующей опорную нагрузку при ходьбе с помощью аппарата «КОРВИТ», полученные данные МРТ в режимах T1 MPR и фМРТ загружают в систему NBS eXimia Nexstim и строят индивидуальную трехмерную модель головного мозга обследуемого с нанесением на нее зон активации, выявленных на фМРТ с помощью сенсомоторной пассивной парадигмы, соотносят реальные анатомические образования головного мозга с данными, полученными на МРТ в режимах T1 MPR, после чего накладывают электромиографические электроды системы eXimia Nexstim на исследуемые мышцы голени - m. gastrocnemius, m. soleus, m. tibialis anterior, участвующие в процессе ходьбы, для регистрации вызванных моторных ответов проводят магнитную стимуляцию зон активации, полученных на фМРТ, с определением вызванных моторных ответов, имеющих амплитуду 100-500 мкВ, при напряженности магнитного поля в точке стимуляции 80-110 В/м, выявляют из них точку с максимальной амплитудой вызванных моторных ответов, в которой определяют пассивный моторный порог по минимальной интенсивности магнитной стимуляции, при которой более чем в половине повторных стимулов регистрируют вызванные моторные ответы с амплитудой более 50 мкВ, картируют на индивидуальной трехмерной модели головного мозга моторное представительство мышц по интенсивности 110% от выбранного моторного порога для локализации сенсомоторных зон коры головного мозга, ответственных за локомоцию.
Из уровня техники известен источник информации RU 2 688 993 C1, 23.05.2019, раскрывающий способ выявления зон активации, соответствующих управляющим функциям головного мозга, включающий проведение функциональной магнитно-резонансной томографии (фМРТ) головного мозга с блоковым дизайном, отличающийся тем, что выполняют сканирование в процессе выполнения восьми блоков с чередованием блока покоя и блока активации в количестве 10 сканирований для каждого блока, причем блок покоя проводят с закрытыми глазами, а периоды блока активации соответствуют выполнению по голосовой команде испытуемым серийного счета про себя от одного и далее с пропуском чисел, кратных трем, затем проводят обработку полученных 80 сканирований в режиме Т2* с цветовым картированием зон активации, соответствующих управляющим функциям головного мозга, по усилению интенсивности сигнала и последующим наложением полученных в режиме Т2* карт зон активации на объемную реконструкцию головного мозга.
Предлагаемый способ локализации отделов головного мозга отличается от известных из уровня техники решений тем, что создают индивидуальный шаблон пациента, а также выделяют независимые компоненты во временных рядах на созданном индивидуальном шаблоне, для определения локализация речевых, моторных и двигательных отделов головного мозга.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Технической проблемой, на решение которой направлено заявленное техническое решение, является создание способа локализации отделов головного мозга, который охарактеризован в независимом пункте формулы. Дополнительные варианты реализации настоящего изобретения представлены в зависимых пунктах изобретения.
Технический результат заключается в определении локализации отделов головного мозга по данным фМРТ покоя.
Заявленный результат достигается за счет осуществления способа локализации отделов головного мозга содержащий этапы, на которых:
получают изображения магнитно-резонансной томографии в формате DICOM;
конвертируют изображения из формата DICOM в формат BIDS;
обрабатывают конвертированные изображения в формате BIDS, по меньшей мере осуществляют очистку от шумов, корегистрацию со структурной МРТ, а также нормализацию;
создают индивидуальный шаблон для конкретного пациента, с учетом индивидуальной анатомии, посредством преобразования универсального шаблона, характеризующий локализацию отделов головного мозга;
из полученного индивидуального шаблона выделяют независимые компоненты во временных рядах, в которых присутствует активность в отделах головного мозга;
осуществляют локализацию отделов головного мозга, при это:
вычисляют меру близости временного ряда в каждом вокселе фМРТ и получают карту корреляций с выделенными искомыми временными рядами;
к каждому элементу карты корреляции строят его z-преобразование;
применяют пороговую технику к z-преобразованной карте и выделяют воксели, совокупность которых составляет отделы головного мозга.
В частном варианте реализации предлагаемого способа, отделами головного мозга являются: речевой отдел, зрительный отдел и двигательный отдел.
В другом частном варианте реализации предлагаемого способа, индивидуальный шаблон пациента представляет собой трехмерную карту.
ОПИСАНИЕ ЧЕРТЕЖЕЙ
Реализация изобретения будет описана в дальнейшем в соответствии с прилагаемыми чертежами, которые представлены для пояснения сути изобретения и никоим образом не ограничивают область изобретения. К заявке прилагаются следующие чертежи:
Фиг.1 иллюстрирует пример осуществления способа.
Фиг. 2 иллюстрирует пример общей схемы вычислительного устройства.
ДЕТАЛЬНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
В приведенном ниже подробном описании реализации изобретения приведены многочисленные детали реализации, призванные обеспечить отчетливое понимание настоящего изобретения. Однако квалифицированному в предметной области специалисту, будет очевидно каким образом можно использовать настоящее изобретение, как с данными деталями реализации, так и без них. В других случаях хорошо известные методы, процедуры и компоненты не были описаны подробно, чтобы не затруднять излишне понимание особенностей настоящего изобретения.
Кроме того, из приведенного изложения будет ясно, что изобретение не ограничивается приведенной реализацией. Многочисленные возможные модификации, изменения, вариации и замены, сохраняющие суть и форму настоящего изобретения, будут очевидными для квалифицированных в предметной области специалистов.
Для определения индивидуальной локализации (картирования) речевых, зрительных или двигательных отделов головного мозга, перед операцией проводится структурное МР-исследование и специализированное фМРТ-исследование (называемое стимулозависимой фМРТ), при котором в процессе многократного МР-сканирования пациент должен выполнять определенные действия, соответствующие картируемой зоне мозга. Выполненные пациентом реальные действия во время сканирования, соотнесенные с последовательностью фиксируемых МР-изображений, позволяют определить локализацию (выполнить картирование) отделов головного мозга, а именно: речевого отдела, зрительного отдела и двигательного отдела . Результатом картирования является изображение мозга с выделенными зонами. С использованием этого изображения, хирург выбирает тактику оперативного вмешательства и следует ей во время операции.
Картирование с помощью стимулозависимой фМРТ имеет ряд существенных недостатков:
зависит от физического и психологического состояния пациента и может быть просто невозможно по объективным причинам (например, если пациент находится в бессознательном состоянии);
имеет высокую “временную трудоемкость” (необходимо много повторений для каждой задачи, по 10-15 минут, что, помимо дороговизны процедуры, приводит к усталости пациента и появлению артефактов движения);
само выполнение движения пациентом также приводит к появлению артефактов движения.
При этом в стимулозависимой фМРТ может активироваться не вся функциональная область, а лишь специфичная экспериментальной парадигме часть (например, только часть моторной коры, отвечающая за движение кисти руки в случае определения двигательных зон).
В настоящее время программное обеспечение для картирования указанных областей по стимулозависимой фМРТ является проприетарным и поставляется либо производителями томографов, либо нейронавигационного оборудования.
Предлагаемый способ выполняется на вычислительном устройстве.
Предлагаемое решение строит последовательность двумерных изображений (срезов), каждое из которых соответствует определенному срезу мозга, и на которых цветом выделены соответствующие алгоритму зоны. Последовательность двумерных изображений строится по данным структурного МР-сканирования и данным фМРТ-сканирования покоя, которые являются трехмерным снимком мозга.
Последовательность таких двумерных срезов в формате PNG является входными данными и может быть загружена в нейронавигационное оборудование, доступна хирургу до и во время операции, и позволяет выбирать и реализовывать тактику хирургического вмешательства.
На Фиг.1 представлена схема осуществления предлагаемого способа. Входными данными являются изображения структурной магнитно-резонансной томографии (МРТ) и функциональной магнитно-резонансной томографии (фМРТ), в состоянии покоя, в формате DICOM, полученные с аппарата магнитно-резонансной томографии.
Полученные изображения структурной МРТ и фМРТ в формате DICOM конвертируют в формат BIDS, посредством общеизвестных методов, которые включены в работу предлагаемого способа.
Осуществляют предобработку изображения структурной МРТ и фМРТ в формат BIDS. Полученные данные фМРТ в состоянии покоя проходят очистку от шумов, корегистрацию со структурной МРТ и нормализацию.
Предобработка структурной и функциональной МРТ состоит из нескольких отдельных блоков, корректность работы и валидность результатов каждого из которых проверялась различными способами.
Блок пространственной корегистрации структурных и функциональных МР-изображений основан на методе boundary-based registration с шестью степенями свободы (https://www.sciencedirect.com/science/article/abs/pii/S1053811909006752?via%3Dihub), а оценка параметров движения головы испытуемого во время записи осуществляется алгоритмом mcflirt (https://www.sciencedirect.com/science/article/abs/pii/S1053811902911328?via%3Dihub).
Пространственная нормализация проводится при помощи нелинейной регистрации в пакете ANTS (Avants B.B. et al. Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain // Med. Image Anal. 2008.) и приведения к стандартному шаблону «ICBM 152 Nonlinear Asymmetrical template».
Согласно рекомендациям работы, Power J.D. (Power J.D. et al. Temporal interpolation alters motion in fMRI scans: Magnitudes and consequences for artifact detection // PLoS One. 2017.)временные коррекции проводятся после пространственных по известным и испытанным методам 3dTshift пакета AFNI ( Cox R.W. AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages // Comput. Biomed. Res. 1996.).
Очистка данных от артефактов движения проводилась при помощи доступного и протестированного пакета AROMA (Pruim R.H.R. et al. ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data // Neuroimage. 2015.). Данный пакет автоматического удаления артефактов движения (ICA-AROMA) основан на ICA (independent component analysis) и использует небольшой (n = 4) набор теоретически мотивированных временных и пространственных характеристик. Данный пакет не требует переобучения классификаторов, сохраняет автокорреляционную структуру данных и в значительной степени сохраняет временные степени свободы.
Результатом предобработки являются фМРТ-данные в том же формате BIDS, приведенные к универсальному шаблону стандартного мозга человека и очищенные от шумов.
Осуществляют построение универсальных шаблонов, характеризующие локализацию искомых зон здорового человека, с использованием данных атласа функциональных зон мозга «90 fROIs» и медицинских знаний о локализации искомых зон здорового человека (раскрытых, например, в источниках информации Kapsalakis I.Z. et al. Preoperative Evaluation with fMRI of Patients with Intracranial Gliomas // Radiol. Res. Pract. 2012. Vol. 2012. P. 1–17. Esteban O. et al. FMRIPrep : a robust preprocessing pipeline for functional MRI // preprint. 2018. Shirer W.R. et al. Decoding subject-driven cognitive states with whole-brain connectivity patterns // Cereb. Cortex. 2012. Vol. 22, № 1. P. 158–165. Kuchcinski G. et al. Three-tesla functional MR language mapping : Comparison with direct cortical stimulation in gliomas // Neurology. 2015. Vol. 84, № 6. P. 560–568.).
Создают индивидуальный шаблон для конкретного пациента, характеризующий локализацию отделов головного мозга, с учетом индивидуальной анатомии, посредством преобразования универсального шаблона, а именно создают трехмерную карту той же пространственной размерности, что и предобработанные структурные МРТ и фМРТ-данные.
В процедуре создания индивидуального шаблона происходит преобразование (адаптация) универсального шаблона под конкретного пациента с учетом его индивидуальной анатомии. За основу универсального шаблона берут функциональные отделы мозга, полученные из анатомического атласа функциональных зон мозга [7]. По данным литературы (раскрытых, например, в источниках информации Kuchcinski G. et al. Three-tesla functional MR language mapping : Comparison with direct cortical stimulation in gliomas // Neurology. 2015. Vol. 84, № 6. P. 560–568. Briganti C. et al. Reorganization of functional connectivity of the language network in patients with brain gliomas // Am. J. Neuroradiol. 2012. Vol. 33, № 10. P. 1983–1990. Wise R. et al. Language activation studies with positron emission tomography // Ciba Found Symp. 1991. Vol. 163. P. 218–234. Mitchell T.J. et al. A novel data-driven approach to preoperative mapping of functional cortex using resting-state functional magnetic resonance imaging // Neurosurgery. 2013. Vol. 73, № 6. P. 969–983.), были выбраны наиболее часто встречаемые в исследованиях двигательных, зрительных и речевых функций зоны мозга, из которых путем объединения, была создана универсальная маска для каждой из зон здорового человека, для которых создавались алгоритмы.
Затем, универсальные шаблоны были адаптированы под индивидуальную анатомию конкретного пациента путем линейной корегистрации с индивидуальной структурной МРТ, выполненной посредством пакета antsRegistration программы ANTs v2.1.0 (https://www.sciencedirect.com/science/article/abs/pii/S1361841507000606?via%3Dihub) и последующей нормализацией к универсальному шаблону «ICBM 152 Nonlinear Asymmetrical template».
Из полученного индивидуального шаблона выделяют независимые компоненты во временных рядах, в которых присутствует активность в отделах головного мозга.
Выделение независимых компонент во временных рядах, построенных для каждого пикселя фМРТ-последовательности, в которых значимо присутствует активность искомых зон. Эти независимые компоненты выделяются с помощью технологии анализа независимых компонент с ограничениями, где ограничениями будут считаться данные из созданного индивидуального шаблона. Результатом этой процедуры будут найденные компоненты, в которой значимо присутствует активность искомых зон.
Далее опишем стандартный метод анализа независимых компонент.
Стандартный метод Анализа Независимых Компонент (Independent Component Analysis, ICA) решает следующую задачу. Относительно наблюдаемого сигнала
Figure 00000001
предполагается, что он получается, как линейная комбинация неизвестных взаимно независимых сигналов (источников)
Figure 00000002
Figure 00000003
где
Figure 00000004
— неизвестная матрица.
Задача состоит в нахождении матрицы
Figure 00000005
с помощью которой компоненты
Figure 00000006
оцениваются величиной вид
Figure 00000007
с использованием выбранного критерия качества такого решения.
Одним из критериев используемых для нахождения матрицы
Figure 00000008
является максимизация ”негауссовости”. Этот способ основан на фундаментальном результате теории информации о том, что среди всех непрерывных распределений с одинаковыми дисперсиями гауссовское распределение обладает наибольшей энтропией. Исходя из этого, в качестве целевой функции выбирается подлежащая максимизации и называемая Negentropy мера «негауссовости»:
Figure 00000009
где H – энтропия случайного вектора,
Figure 00000010
– гауссовский случайный вектор c нулевым средним и дисперсиями, равными дисперсиям вектора
Figure 00000011
[Hyvarinen, A., Oja, E., 2000. Independent component analysis: algorithms and applications. Neural Networks 13 (4–5), 411–430]. Решение такой задачи не единственно и может требовать дополнительных условий. Само вычисление такой функции трудоемко и для нее используются специальные приближения [Hyvarinen, A., Oja, E., 2000. Independent component analysis: algorithms and applications. Neural Networks 13 (4–5), 411–430].
Анализ независимых компонент с ограничениями. Как уже было указано ранее, под ограничениями понимаются данные, полученные из созданного индивидуального шаблона.
В Анализе Независимых Компонент с ограничениями (Constrained ICA) к задаче оптимизации (1) добавляются ограничения:
Figure 00000012
заданные векторы ограничений вида неравенств и вида равенств, соответственно. В качестве таких ограничений могут выступать ограничения
Figure 00000013
где
Figure 00000014
— заданные сигналы и
Figure 00000015
— заданные пороги для лучшего различения разных выходов
Figure 00000016
a
Figure 00000017
— строки матрицы
Figure 00000018
[Lin Q.H. et al. Semiblind spatial ICA of fMRI using spatial constraints // Hum. Brain Mapp. 2010. Vol. 31, № 7. P. 1076–1088]. Сигналы
Figure 00000014
могут определять, например, пространственные ограничения для выделения определенных зон мозга в fMRI анализе [Lin Q.H. et al. Semiblind spatial ICA of fMRI using spatial constraints // Hum. Brain Mapp. 2010. Vol. 31, № 7. P. 1076–1088].
Указанная в начале раздела задача оптимизации сводится к задаче минимизации функции Лагранжа:
Figure 00000019
где
Figure 00000020
— вспомогательная переменная (для перевода ограничения с неравенством в ограничение c равенством
Figure 00000021
и
Figure 00000022
— положительные множители Лагранжа,
Figure 00000023
— коэффициент штрафа в слагаемых, введенных для обеспечения локальной выпуклости (положительной определенности Гессиана функции L) [Lu W, Rajapakse JC, 2005: Approach and applications of constrained ICA. IEEE Trans Neural Netw 16:203–212].
После исключения z, сумма второго и третьего слагаемых в функции Лагранжа (соответствующих ограничениям-неравенствам) заменяется функцией [Lu W, Rajapakse JC, 2005: Approach and applications of constrained ICA. IEEE Trans Neural Netw 16:203–212]
Figure 00000024
С помощью ограничений-равенств могут ограничиваться дисперсии вектора
Figure 00000011
или накладываться условия некоррелированности его компонент.
Осуществляют локализация искомых зон пациента.
Вычисляют меру близости (корреляция Пирсона) временного ряда в каждом вокселе фМРТ-изображения к выделенным независимым компонентам в которых значимо присутствует активность искомых зон. На основе вычислений строится карта корреляций с выделенными искомыми временными рядами.
К каждому элементу карты корреляций строится его z-преобразование, которое рассчитывается путем вычитания среднего значения по совокупности из индивидуального необработанного показателя и последующего деления разницы на стандартное отклонение по совокупности. К z-преобразованной карте корреляций применяют пороговую технику, отсечение значений ниже заранее заданного порога, которое позволяет выделить воксели, совокупность которых составляет искомые зоны. Значение порога было выбрано по результатам тестовых испытаний на основе экспертных мнений врачей, которые учитывают показатели карты областей, например, но не ограничиваясь, локализация, связность участков, гладкость границ, объем.
В результате получают трехмерные карты локализации речевых, зрительных и двигательных отделов головного мозга. Вышеуказанный способ применяется для построения трехмерной карты локализации отделов головного мозга отдельно для каждой зоны, а именно речевой, зрительной и двигательной.
На Фиг. 2 далее будет представлена общая схема вычислительного устройства (200), обеспечивающего обработку данных, необходимую для реализации заявленного решения.
В общем случае устройство (200) содержит такие компоненты, как: один или более процессоров (201), по меньшей мере одну память (202), средство хранения данных (203), интерфейсы ввода/вывода (204), средство В/В (205), средства сетевого взаимодействия (206).
Процессор (201) устройства выполняет основные вычислительные операции, необходимые для функционирования устройства (200) или функциональности одного или более его компонентов. Процессор (201) исполняет необходимые машиночитаемые команды, содержащиеся в оперативной памяти (202).
Память (202), как правило, выполнена в виде ОЗУ и содержит необходимую программную логику, обеспечивающую требуемый функционал.
Средство хранения данных (203) может выполняться в виде HDD, SSD дисков, рейд массива, сетевого хранилища, флэш-памяти, оптических накопителей информации (CD, DVD, MD, Blue-Ray дисков) и т.п. Средство (203) позволяет выполнять долгосрочное хранение различного вида информации, например, вышеупомянутых файлов с наборами данных пользователей, базы данных, содержащих записи измеренных для каждого пользователя временных интервалов, идентификаторов пользователей и т.п.
Интерфейсы (204) представляют собой стандартные средства для подключения и работы с серверной частью, например, USB, RS232, RJ45, LPT, COM, HDMI, PS/2, Lightning, FireWire и т.п.
Выбор интерфейсов (204) зависит от конкретного исполнения устройства (200), которое может представлять собой персональный компьютер, мейнфрейм, серверный кластер, тонкий клиент, смартфон, ноутбук и т.п.
В качестве средств В/В данных (205) в любом воплощении системы, реализующей описываемый способ, должна использоваться клавиатура. Аппаратное исполнение клавиатуры может быть любым известным: это может быть, как встроенная клавиатура, используемая на ноутбуке или нетбуке, так и обособленное устройство, подключенное к настольному компьютеру, серверу или иному компьютерному устройству. Подключение при этом может быть, как проводным, при котором соединительный кабель клавиатуры подключен к порту PS/2 или USB, расположенному на системном блоке настольного компьютера, так и беспроводным, при котором клавиатура осуществляет обмен данными по каналу беспроводной связи, например, радиоканалу, с базовой станцией, которая, в свою очередь, непосредственно подключена к системному блоку, например, к одному из USB-портов. Помимо клавиатуры, в составе средств В/В данных также может использоваться: джойстик, дисплей (сенсорный дисплей), проектор, тачпад, манипулятор мышь, трекбол, световое перо, динамики, микрофон и т.п.
Средства сетевого взаимодействия (206) выбираются из устройства, обеспечивающий сетевой прием и передачу данных, например, Ethernet карту, WLAN/Wi-Fi модуль, Bluetooth модуль, BLE модуль, NFC модуль, IrDa, RFID модуль, GSM модем и т.п. С помощью средств (205) обеспечивается организация обмена данными по проводному или беспроводному каналу передачи данных, например, WAN, PAN, ЛВС (LAN), Интранет, Интернет, WLAN, WMAN или GSM.
Компоненты устройства (200) сопряжены посредством общей шины передачи данных (210).
В настоящих материалах заявки было представлено предпочтительное раскрытие осуществление заявленного технического решения, которое не должно использоваться как ограничивающее иные, частные воплощения его реализации, которые не выходят за рамки испрашиваемого объема правовой охраны и являются очевидными для специалистов в соответствующей области техники.

Claims (12)

1. Способ локализации отделов головного мозга, содержащий этапы, на которых:
получают изображения магнитно-резонансной томографии в формате DICOM;
конвертируют изображения из формата DICOM в формат BIDS;
обрабатывают конвертированные изображения в формате BIDS, по меньшей мере осуществляют очистку от шумов, корегистрацию со структурной МРТ, а также нормализацию;
создают индивидуальный шаблон для конкретного пациента, с учетом индивидуальной анатомии, посредством преобразования универсального шаблона, характеризующий локализацию отделов головного мозга;
из полученного индивидуального шаблона выделяют независимые компоненты во временных рядах, в которых присутствует активность в отделах головного мозга;
осуществляют локализацию отделов головного мозга, при этом:
вычисляют меру близости временного ряда в каждом вокселе фМРТ и получают карту корреляций с выделенными искомыми временными рядами;
к каждому элементу карты корреляции строят его z-преобразование;
применяют пороговую технику к z-преобразованной карте и выделяют воксели, совокупность которых составляет отделы головного мозга.
2. Способ по п.1, отличающийся тем, что отделами головного мозга являются: речевой отдел, зрительный отдел и двигательный отдел.
3. Способ по п.1, отличающийся тем, что индивидуальный шаблон пациента представляет собой трехмерную карту.
RU2020125205A 2020-07-29 2020-07-29 Способ локализации отделов головного мозга RU2743608C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2020125205A RU2743608C1 (ru) 2020-07-29 2020-07-29 Способ локализации отделов головного мозга
PCT/RU2021/050220 WO2022025803A1 (ru) 2020-07-29 2021-07-16 Способ локализации отделов головного мозга

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020125205A RU2743608C1 (ru) 2020-07-29 2020-07-29 Способ локализации отделов головного мозга

Publications (1)

Publication Number Publication Date
RU2743608C1 true RU2743608C1 (ru) 2021-02-20

Family

ID=74666254

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020125205A RU2743608C1 (ru) 2020-07-29 2020-07-29 Способ локализации отделов головного мозга

Country Status (2)

Country Link
RU (1) RU2743608C1 (ru)
WO (1) WO2022025803A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2794557C1 (ru) * 2022-12-16 2023-04-21 федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр имени В.А. Алмазова" Министерства здравоохранения Российской Федерации Способ контролируемой легочной тромбэндартерэктомии при лечении хронической тромбоэмболической легочной гипертензии

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117438054B (zh) * 2023-12-15 2024-03-26 之江实验室 一种脑影像数据的bids格式自动转换方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8571634B2 (en) * 2010-07-23 2013-10-29 David R. Hubbard Method to diagnose and measure vascular drainage insufficiency in the central nervous system
RU2504329C1 (ru) * 2012-10-02 2014-01-20 Федеральное государственное бюджетное учреждение "Научный центр неврологии" Российской академии медицинских наук Способ выявления в коре головного мозга сенсомоторных зон, ответственных за локомоцию
RU2688993C1 (ru) * 2018-03-27 2019-05-23 Федеральное государственное бюджетное научное учреждение "Научный центр неврологии" (ФГБНУ НЦН) Способ выявления зон активации для оценки управляющих функций мозга

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8571634B2 (en) * 2010-07-23 2013-10-29 David R. Hubbard Method to diagnose and measure vascular drainage insufficiency in the central nervous system
RU2504329C1 (ru) * 2012-10-02 2014-01-20 Федеральное государственное бюджетное учреждение "Научный центр неврологии" Российской академии медицинских наук Способ выявления в коре головного мозга сенсомоторных зон, ответственных за локомоцию
RU2688993C1 (ru) * 2018-03-27 2019-05-23 Федеральное государственное бюджетное научное учреждение "Научный центр неврологии" (ФГБНУ НЦН) Способ выявления зон активации для оценки управляющих функций мозга

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Саенко И.В. и др. Изменение функциональной коннективности моторных зон при использовании мультимодального экзоскелетонного комплекса "регент" в нейрореабилитации больных, перенесших инсульт, Физиология человека. 2016. 42(1): 64-72. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2794557C1 (ru) * 2022-12-16 2023-04-21 федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр имени В.А. Алмазова" Министерства здравоохранения Российской Федерации Способ контролируемой легочной тромбэндартерэктомии при лечении хронической тромбоэмболической легочной гипертензии

Also Published As

Publication number Publication date
WO2022025803A1 (ru) 2022-02-03

Similar Documents

Publication Publication Date Title
Schirner et al. Inferring multi-scale neural mechanisms with brain network modelling
Yang et al. Current methods and new directions in resting state fMRI
Onofrey et al. Generalizable multi-site training and testing of deep neural networks using image normalization
JP2018529409A (ja) 超高密度の電極に基づく脳撮像システム
US20240057888A1 (en) Method And System For Determining Brain-State Dependent Functional Areas Of Unitary Pooled Activity And Associated Dynamic Networks With Functional Magnetic Resonance Imaging
US20170238879A1 (en) Method of Analyzing the Brain Activity of a Subject
Zhou et al. Detecting directional influence in fMRI connectivity analysis using PCA based Granger causality
Lei et al. A parallel framework for simultaneous EEG/fMRI analysis: methodology and simulation
JP2020062369A (ja) 脳機能結合相関値の調整方法、脳機能結合相関値の調整システム、脳活動分類器のハーモナイズ方法、脳活動分類器のハーモナイズシステム、および脳活動バイオマーカシステム
Kadipasaoglu et al. Category-selectivity in human visual cortex follows cortical topology: a grouped icEEG study
Ferdowsi et al. Removing ballistocardiogram artifact from EEG using short-and long-term linear predictor
Khosropanah et al. Fused multivariate empirical mode decomposition (MEMD) and inverse solution method for EEG source localization
RU2743608C1 (ru) Способ локализации отделов головного мозга
Ferdowsi et al. A predictive modeling approach to analyze data in EEG–fMRI experiments
Hu et al. Tensor clustering on outer-product of coefficient and component matrices of independent component analysis for reliable functional magnetic resonance imaging data decomposition
Zwoliński et al. Open database of epileptic EEG with MRI and postoperational assessment of foci—a real world verification for the EEG inverse solutions
US10789713B2 (en) Symplectomorphic image registration
Hu et al. Impact of inter-individual variability on the estimation of default mode network in temporal concatenation group ICA
Lee et al. Automatic classification and removal of structured physiological noise for resting state functional connectivity MRI analysis
Stangl et al. Population-level analysis of human grid cell activation
Karahan et al. Individual variability in the human connectome maintains selective cross-modal consistency and shares microstructural signatures
Goebel Analysis methods for real-time fMRI neurofeedback
Harrison et al. Graph-partitioned spatial priors for functional magnetic resonance images
Ranjbar et al. Robust automatic whole brain extraction on magnetic resonance imaging of brain tumor patients using dense-Vnet
Madden et al. Age-related differences in resting-state, task-related, and structural brain connectivity: graph theoretical analyses and visual search performance