RU2639592C2 - Дефектоскоп для сварных швов - Google Patents
Дефектоскоп для сварных швов Download PDFInfo
- Publication number
- RU2639592C2 RU2639592C2 RU2015157395A RU2015157395A RU2639592C2 RU 2639592 C2 RU2639592 C2 RU 2639592C2 RU 2015157395 A RU2015157395 A RU 2015157395A RU 2015157395 A RU2015157395 A RU 2015157395A RU 2639592 C2 RU2639592 C2 RU 2639592C2
- Authority
- RU
- Russia
- Prior art keywords
- signal
- software
- unit
- filtering
- defects
- Prior art date
Links
- 230000007547 defect Effects 0.000 claims abstract description 32
- 238000001914 filtration Methods 0.000 claims abstract description 14
- 230000003321 amplification Effects 0.000 claims abstract description 9
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 9
- 238000001514 detection method Methods 0.000 claims abstract description 6
- 230000010354 integration Effects 0.000 claims description 4
- 238000012545 processing Methods 0.000 abstract description 6
- 230000005672 electromagnetic field Effects 0.000 abstract description 4
- 238000005259 measurement Methods 0.000 abstract description 4
- 238000012544 monitoring process Methods 0.000 abstract description 3
- 239000002184 metal Substances 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 238000004804 winding Methods 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 230000001360 synchronised effect Effects 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 230000036039 immunity Effects 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009933 burial Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009659 non-destructive testing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
- G01N27/90—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
- G01N27/9046—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents by analysing electrical signals
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
Изобретение относится к методам неразрушающего контроля и позволяет обнаруживать дефекты малых размеров и глубокого залегания в сварных швах, соединяющих, преимущественно, неферромагнитные материалы. Дефектоскоп для сварных швов включает в себя аппаратную и программную части. Дефектоскоп содержит дополнительные рабочие блоки: генерации, фильтрации, обработки сигнала. Блок генерации управляет генератором и передает интегрированные и усиленные сигналы на возбуждающие катушки вихретоковых преобразователей, которые создают электромагнитное поле, индуцирующее вихревые токи в электропроводящем объекте контроля. При обнаружении дефекта поле изменяется и меняет напряжение и разность выходных напряжений измерительных катушек преобразователей. Разность напряжений в виде сигнала несет информацию о дефектах объекта контроля. Сигнал проходит через блок усиления и блок фильтрации, которые управляются программным блоком фильтрации, связанным с программным блоком генерации. Изменение частоты фильтрации происходит одновременно с изменением частоты генерации. Сигнал передается на амплитудный детектор, через аналого-цифровой преобразователь в программный блок обработки сигнала и результаты измерений выводятся на экран персонального компьютера. Технический результат заключается в определении дефектов сварных швов малых размеров на большой глубине залегания в металле на фоне сигнала от естественных макроструктурных неоднородностей, результаты измерений выводятся на экран персонального компьютера в режиме реального времени. 3 пр., 12 ил.
Description
Изобретение относится к измерительной технике, в частности к методам неразрушающего контроля, и позволяет обнаруживать дефекты малых размеров и глубокого залегания в сварных швах, соединяющих, преимущественно, неферромагнитные материалы.
Из уровня развития техники известен аналог предлагаемого изобретения - вихретоковый преобразователь для контроля качества сварных электрических соединений, который предназначен для оценки качества сварных швов в межэлементных соединениях аккумуляторных батарей [Патент №2189586 RU, МПК7 G01N 27/90. Заявл. 21.06.99, опубл. 20.09.02. БИ №23. 2003].
Преобразователь содержит плоскую пластину и обмотку из микропровода, расположенную по ее периметру, причем для образования рабочего зазора пластина с обмоткой согнуты по оси симметрии так, что в рабочем зазоре на противоположной стороне от перегиба предусмотрена полость, имеющая конфигурацию, обеспечивающую доступ и наиболее плотное прилегание обмотки к сварному соединению, образующая рабочую часть обмотки, а оставшаяся нерабочая часть обмотки должна быть размещена возможно дальше от рабочей части. Преобразователь позволяет контролировать качество сварных швов, выполненных через отверстие в диэлектрической пластине, наружная поверхность которых недоступна для исследования.
Недостатки: низкая селективность при обнаружении дефектов разного типа (в описании - это лишь дефект типа «нет соединения»); невозможность исследования материала самого сварного шва вследствие образования жесткой индуктивной связи между датчиком, деталями сварного соединения и швом; а также невозможность определения дефектов малых размеров и глубокого залегания в шве вследствие низкой чувствительности.
Частично эти недостатки устраняются другим аналогом - универсальным полупроводниковым преобразователем для различных типов датчиков, который предназначен для возбуждения катушек индуктивности вихретокового преобразователя дефектоскопа [Дмитриев Ю.С. и др. Универсальный полупроводниковый преобразователь для различных типов датчиков // Методы и средства измерения в системах контроля и управления: труды междунар. научн.-техн. конф. - Пенза: Информационно-издательский центр ПГУ, 2002. - С. 95-97].
Устройство содержит симметричный мультивибратор, два противофазных выхода которого соединены с двумя входами усилителя мощности и двумя управляющими входами синхронного детектора, а к двум противофазным выходам усилителя мощности последовательно подключены две катушки индуктивности вихретокового преобразователя, к общему узлу которых подключен сигнальный вход синхронного детектора и конденсатор, второй вывод которого соединен с общей шиной.
Использование в конструкции вихретокового датчика двух катушек индуктивности, подключенных через усилитель к противофазным выходам мультивибратора, а общим узлом через конденсатор - к сигнальному входу синхронного детектора, а в составе всего устройства - мультивибратора и усилителя мощности позволяет повысить чувствительность и селективность устройства и обнаруживать с его помощью дефекты различного типа в различных материалах.
Недостатки: сложность отображения дефектов для оператора; неоднозначность образа дефекта вследствие наличия случайных переходных процессов в мультивибраторе и вихретоковом преобразователе; и длительность исследования из-за ручного режима сканирования объекта.
Наиболее близким по технической сущности - прототипом является устройство для обнаружения дефектов малых линейных размеров [Патент №2564823 RU, МПК6 G01N 27/83. Приоритет 19.05.14, опубл.: 10.10.15. БИ №28. 2015].
Устройство представляет собой программно-аппаратный комплекс, состоящий из вихретокового преобразователя с возбуждающей, компенсационной и измерительной катушками индуктивности, компьютера со звуковой платой и программного обеспечения - виртуального генератора, блоков обработки сигнала и управления, блока управления перемещением датчика, а также USB/LPT-интерфейс и шаговый двигатель. При работе устройства сигнал от виртуального генератора передается через ЦАП на возбуждающую и компенсационную обмотки вихретокового преобразователя, вызывает появление локального электромагнитного поля и вихревых токов в контролируемом объекте, поле вихревых токов фиксируется измерительной катушкой, соединенной встречно с компенсационной катушкой, после чего сигнал с измерительной катушки через АЦП передается в персональный компьютер, обрабатывается и отображается на его мониторе.
Однако прототип также имеет свои недостатки: невозможность определения дефектов сварного шва с малыми размерами и большой глубиной залегания из-за близости уровня сигналов от них и макроструктурных неоднородностей шва; и низкая помехозащищенность измерительной части программно-аппаратной части комплекса, снижающая правильность и достоверность дефектоскопии.
Технической задачей предлагаемого изобретения является повышение уровня сигнала от дефектов сварного шва малого размера на большой глубины залегания на фоне сигнала от его естественных макроструктурных неоднородностей, а также повышение правильности и достоверности дефектоскопии за счет повышения защищенности сигнала от дефектов от помех.
Настоящая задача решается тем, что заявляемый дефектоскоп для сварных швов, включающий в себя вихретоковый преобразователь, выполненный в виде двух индуктивно несвязанных датчиков с одинаковым импедансом, разнесенных друг от друга на расстояние, равное или меньшее ширине шва, с регулировкой, причем измерительные катушки датчиков соединены встречно, аппаратная часть дополнительно содержит блоки: интеграции, фильтрации, усиления, амплитудной детекции, и блоком управления, при этом сигнал с измерительных катушек индуктивности датчиков, несущий информацию о дефектах, поступает на блок усиления, фильтрации, рабочая частота которого меняется одновременно с частотой генерации, а затем через АЦП звуковой карты поступает в программный блок обработки сигнала, усиливается и отображается на мониторе персонального компьютера в режиме реального времени.
Заявляемое устройство отличается от прототипа:
- вихретоковым преобразователем, выполненным в виде двух индуктивно несвязанных датчиков с одинаковым импедансом, разнесенных друг от друга на расстояние, равное или меньшее ширине шва;
- аппаратная часть содержит блоки: интеграции, фильтрации, усиления, амплитудной детекции, и блоком управления,
- наличием автоматического синхронного изменения рабочей частоты и амплитуды преобразователя и частоты фильтрации принимаемого сигнала через АЦП в программный блок обработки сигнала выводом результатов измерений на экран персонального компьютера в режиме реального времени.
За счет выполнения вихретокового преобразователя в виде двух индуктивно несвязанных датчиков с одинаковыми электромагнитными характеристиками и находящихся на расстоянии, равном или меньшем ширины сварного шва, удается одновременно учитывать измерительные сигналы как от свариваемых материалов, так и от материала сварного шва, одновременно размещать датчики на поверхности контролируемого объекта так, чтобы вихревые токи возбуждались на границах:
- первый свариваемый материал/сварочный шов,
- второй свариваемый материал/сварочный шов,
- только в области сварочного шва в разнообразных вариантах сочетания.
За счет одновременного управления частотой генерируемого сигнала на возбуждающей катушке и рабочей частотой системы фильтрации и селективного усиления повышается помехозащищенность сигнала, несущего информацию об объекте контроля. За счет автоматической регулировки амплитуды сигнала на возбуждающей обмотке преобразователей становится возможным добиться полного вычитания сигналов от макроструктурной неоднородности сварного шва на измерительной обмотке в отсутствии дефектов под измерительными обмотками обоих преобразователей.
Осуществление изобретения
Дефектоскоп для сварных швов работает следующим образом, принципиальная схема датчика приведена на фиг. 1.
Персональный компьютер с программным обеспечением включает в себя дополнительные рабочие блоки: генерации 1, фильтрации 14, обработки сигнала 13. Блок 1 управляет генератором 2, сигнал f1 передается на блок интеграции 3, на усилитель мощности 4, усиленные сигналы передают на возбуждающие катушки индуктивности вихретоковых преобразователей 6, 7 и создают электромагнитное поле, индуцирующее вихревые токи в электропроводящем объекте контроля, расположенном под возбуждающими катушками 5, 6. Затем вихревые токи создают противоположное по направлению электромагнитное поле, которое наводит напряжение в измерительных катушках 7 и 8. При обнаружении дефекта, поле изменяется и меняет напряжение на измерительных катушках. Разность выходных напряжений в измерительных катушках 8 и 9 в виде сигнала несет информацию о дефектах объекта контроля. Сигнал проходит через блок усиления 9 и блок фильтрации 10, которые управляются программным блоком фильтрации 14, связанным с программным блоком генерации 1. Изменение частоты фильтрации происходит одновременно с изменением частоты генерации. Сигнал передается на амплитудный детектор 11, через аналого-цифровой преобразователь 12 в программный блок обработки сигнала 13 и результаты измерений выводятся на экран персонального компьютера. Таким образом, заявляемое устройство соответствует критерию изобретения - новизна.
В ходе сканирования датчика располагаются над объектом контроля в соответствии с фиг. 2.
Материал 15 и материал 19 соединены сварным швом 17. На сварном шве размещается датчик 16 и датчик 18.
Возможность технической реализации изобретения иллюстрируется следующими примерами осуществления изобретения.
Пример 1. Контроль сварного шва типа титан ВТ1-0/ВТ1-0. Частота сканирования - 1600 Гц. Величина вносимого напряжения на возбуждающей катушке (обмотке) -1,5 B. Образец №1: две пластины из титана, соединенные с помощью сварного шва. Толщина пластин составляла 5 мм. Ширина сварного шва составила 4-5 мм. Сканирование осуществлялось вдоль и поперек сварного шва в разных областях.
Эксперимент №1 с образцом №1 сканирование осуществлялось вдоль сварного шва, обнаружено два скачка сильных падения амплитуды сигнала, что соответствует местам залегания дефекта (области 1 и 3). Результаты эксперимента представлены на фиг. 3. Величина вносимого напряжения на измерительную обмотку преобразователя в области сварного шва при сканировании вдоль пластины. А1-А2 - границы первого дефекта (область 1), В1-В2 - границы второго дефекта (область 3).
Эксперимент №2 с образцом №1 сканирование осуществлялось вдоль пластины на участках, соответствующих областям 1 и 3 (дефекты), и участку, соответствующему области 2, находящейся на середине шва (без дефектов). При сканировании участка, соответствующего области 1, границы самого сварного шва не заметны. Однако область с дефектом хорошо видна по падению амплитуды (А1-А2)- границы дефекта, фиг. 4. При сканировании участка, соответствующего области 3, границы самого сварного шва также не заметны. Однако область с дефектом хорошо видна по падению амплитуды (Al-А2) - границы дефекта, фиг. 5. При сканировании участка, соответствующего области 2 без дефектов, границы самого сварного шва не заметны (фиг. 6). Для сравнения представлены результаты сканирование участка образца без шва. Результаты практически идентичны (фиг. 7).
Эксперимент №3 состоял в сканировании краевых зон в участках, соответствующих областям 1 и 3, рядом с дефектами. Результаты сканирования участка, соответствующего области 1, представлены на фиг. 8. Заметен характерный скачок напряжения, соответствующий границам сварного шва. Результаты сканирования участка, соответствующего области 3, представлены на фиг. 9. Скачков напряжения не зафиксировано.
Пример 2. Контроль сварного шва типа ВТ1-1/ВТ1-1.
Образец №2: две пластины из титана, соединенные с помощью сварного шва. Толщина пластин составляла 5 мм. Ширина сварного шва составила 4-5 мм. Сканирование осуществлялось вдоль и поперек поверхности сварного шва в разных областях.
Эксперимент №1. Сканирование осуществляется вдоль поверхности сварного шва. Результаты эксперимента представлены на фиг. 10. Изменение амплитуды сигнала не обнаружено.
Эксперимент №2. Сканирование осуществляется поперек сварного шва так, чтобы снять сигнал как с самого шва, так и с пластин, сваренных им. Результаты эксперимента сканирования представлены на фиг. 11. Влияние сварного шва на вносимое напряжение явно прослеживается по изменению амплитуды сигнала в области сварного шва, где напряжение падало на порядок по сравнению с областью пластин. A1-А2 - границы сварного шва.
Пример 3. Контроль области стыка ВТ1-0/ВТ1-1.
Эксперимент №1. Две имеющиеся титановые пластины (образец №1 и образец №2) одинаковой толщины плотно состыковывались, после чего область стыка подвергалась сканированию. Результаты эксперимента представлены на фиг. 12. A1-А2 - границы области, в которой область стыка оказывает влияние на вносимое напряжение. В данном эксперименте была получена зависимость, аналогичная наблюдающейся на фиг. 11 в области сварного шва образца №2. Амплитуда сигнала рядом с областью стыка изменялась более, чем на порядок по сравнению с амплитудой сигнала от самих пластин.
Согласно полученным данным сварной шов в образце №1 представляет собой качественный шов, проваренный на всю глубину стыка между пластинами. Зависимость напряжения идентична зависимости при сканировании бездефектной части. Однако в шве присутствуют две дефектные области, о которых можно судить по скачкам напряжения. Сварка в образце №2 не является качественной и проведена лишь по поверхности стыка двух пластин.
Таким образом, за счет одновременного управления частотой генерируемого сигнала на возбуждающей катушке и частотой среза системы фильтрации и селективного усиления измерительного сигнала в предлагаемом дефектоскопе повышается помехозащищенность сигнала, несущего информацию о параметрах дефектов объекта контроля.
Программное управление также позволяет быстро изменять рабочую частоту и амплитуду измерительной системы так, чтобы информативность сигнала, получаемого с измерительной обмотки, была максимальной, что позволяет определить размеры и глубину залегания дефекта после калибровки дефектоскопа по стандартным образцам.
Claims (1)
- Дефектоскоп для сварных швов, включающий в себя вихретоковый преобразователь, аппаратную и программную части, персональный компьютер, отличающийся тем, что вихретоковый преобразователь выполнен в виде двух индуктивно несвязанных датчиков с одинаковым импедансом, разнесенных друг от друга на расстояние, равное или меньшее ширине шва, с регулировкой, причем измерительные катушки датчиков соединены встречно, аппаратная часть дополнительно содержит блоки: интеграции, фильтрации, усиления, амплитудной детекции, а программное обеспечение - блок управления аппаратной частью, при этом сигнал с измерительных катушек индуктивности датчиков, несущий информацию о дефектах, поступает на блок усиления, фильтрации, рабочая частота которого меняется одновременно с частотой генерации, а затем через АЦП звуковой карты поступает в программный блок обработки сигнала, усиливается и отображается на мониторе персонального компьютера в режиме реального времени.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015157395A RU2639592C2 (ru) | 2015-12-31 | 2015-12-31 | Дефектоскоп для сварных швов |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015157395A RU2639592C2 (ru) | 2015-12-31 | 2015-12-31 | Дефектоскоп для сварных швов |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2015157395A RU2015157395A (ru) | 2017-07-05 |
RU2639592C2 true RU2639592C2 (ru) | 2017-12-21 |
Family
ID=59309225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015157395A RU2639592C2 (ru) | 2015-12-31 | 2015-12-31 | Дефектоскоп для сварных швов |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2639592C2 (ru) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2146817C1 (ru) * | 1998-01-23 | 2000-03-20 | ЗАО Московское научно-производственное объединение "Спектр" | Электромагнитный дефектоскоп для контроля длинномерных изделий |
EP1188050A1 (de) * | 1999-06-28 | 2002-03-20 | Mannesmannröhren-Werke AG | Verfahren und messgerät zur erkennung der schweissnaht von längsnahtgeschweissten rohren |
RU2564823C1 (ru) * | 2014-05-19 | 2015-10-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Алтайский государственный университет" | Устройство для обнаружения дефектов малых линейных размеров |
-
2015
- 2015-12-31 RU RU2015157395A patent/RU2639592C2/ru not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2146817C1 (ru) * | 1998-01-23 | 2000-03-20 | ЗАО Московское научно-производственное объединение "Спектр" | Электромагнитный дефектоскоп для контроля длинномерных изделий |
EP1188050A1 (de) * | 1999-06-28 | 2002-03-20 | Mannesmannröhren-Werke AG | Verfahren und messgerät zur erkennung der schweissnaht von längsnahtgeschweissten rohren |
RU2564823C1 (ru) * | 2014-05-19 | 2015-10-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Алтайский государственный университет" | Устройство для обнаружения дефектов малых линейных размеров |
Also Published As
Publication number | Publication date |
---|---|
RU2015157395A (ru) | 2017-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100218653B1 (ko) | 전자유도형 검사장치 | |
JP4756409B1 (ja) | 交番磁場を利用した非破壊検査装置および非破壊検査方法 | |
JP2009002945A5 (ru) | ||
US20160003775A1 (en) | Apparatus and Circuit | |
US5592078A (en) | Method and apparatus for moving along a boundary between electromagnetically different materials | |
KR101339117B1 (ko) | 펄스와전류를 이용한 이면 결함 탐지 장치 및 방법 | |
KR20070097113A (ko) | 회로 패턴 검사 장치 및 그 방법 | |
RU2639592C2 (ru) | Дефектоскоп для сварных швов | |
JPS6329244A (ja) | 渦電流表面欠陥検出装置 | |
JP6551885B2 (ja) | 非破壊検査装置及び非破壊検査方法 | |
RU2566416C1 (ru) | Устройство для вихретоко-магнитной дефектоскопии ферромагнитных объектов | |
JP2016057225A (ja) | 渦電流探傷センサ装置 | |
JP2018132426A (ja) | 鉄筋コンクリートの鉄筋径とかぶりの測定装置及びこれを用いた配筋方向測定方法 | |
Faraj et al. | Investigate the effect of lift-off on eddy current signal for carbon steel plate | |
Garcia-Martin et al. | Comparative evaluation of coil and hall probes in hole detection and thickness measurement on aluminum plates using eddy current testing | |
CN116448873A (zh) | 一种可探测导体极细丝裂纹的涡流探伤仪、方法 | |
CN205374376U (zh) | 焊缝裂纹涡流检测传感器探头 | |
JP2004354282A (ja) | 漏洩磁束探傷装置 | |
JP2014122849A (ja) | 渦流探傷装置および渦流探傷方法 | |
JP3964061B2 (ja) | 磁気計測による探傷方法及び装置 | |
Tajima et al. | Low frequency eddy current testing to measure thickness of double layer plates made of nonmagnetic steel | |
JPS6027852A (ja) | 渦電流探傷装置 | |
JP2013224864A (ja) | 渦電流探傷試験装置、及び方法 | |
JPH0833374B2 (ja) | 金属内異質層検出方法およびその装置 | |
RU2808437C1 (ru) | Вихретоковый преобразователь тангенциального типа с активным экранированием |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20210101 |