[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

RU2636245C2 - Система дистанционного управления вертолетом - Google Patents

Система дистанционного управления вертолетом Download PDF

Info

Publication number
RU2636245C2
RU2636245C2 RU2015152034A RU2015152034A RU2636245C2 RU 2636245 C2 RU2636245 C2 RU 2636245C2 RU 2015152034 A RU2015152034 A RU 2015152034A RU 2015152034 A RU2015152034 A RU 2015152034A RU 2636245 C2 RU2636245 C2 RU 2636245C2
Authority
RU
Russia
Prior art keywords
redundant
control
bps
fourfold
unit
Prior art date
Application number
RU2015152034A
Other languages
English (en)
Other versions
RU2015152034A (ru
Inventor
Виктор Федорович Заец
Рашид Раисович Абдулин
Владимир Сергеевич Кулабухов
Сергей Евгеньевич Залесский
Николай Иванович Костенко
Валерий Алексеевич Можаров
Дмитрий Сергеевич Тимофеев
Сергей Васильевич Капцов
Михаил Юрьевич Купреев
Геннадий Александрович Мурашов
Сергей Владимирович Кислов
Николай Алексеевич Туктарев
Original Assignee
Открытое акционерное общество Московский научно-производственный комплекс "Авионика" имени О.В. Успенского (ОАО МНПК "Авионика")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество Московский научно-производственный комплекс "Авионика" имени О.В. Успенского (ОАО МНПК "Авионика") filed Critical Открытое акционерное общество Московский научно-производственный комплекс "Авионика" имени О.В. Успенского (ОАО МНПК "Авионика")
Priority to RU2015152034A priority Critical patent/RU2636245C2/ru
Publication of RU2015152034A publication Critical patent/RU2015152034A/ru
Application granted granted Critical
Publication of RU2636245C2 publication Critical patent/RU2636245C2/ru

Links

Images

Landscapes

  • Safety Devices In Control Systems (AREA)
  • Selective Calling Equipment (AREA)

Abstract

Система дистанционного управления вертолетом содержит два поста управления с органами управления и датчиками положения ручек управления (ДПР), четыре блока управления приводом (БУП), два интегрированных блока датчиков (ИБД), два блока преобразования сигналов (БПС), блок резервной навигации (БРН), четыре электромеханических привода, блок кворумирования сигналов резервных каналов (БКС), блок управления архитектурой (БУА), два вычислительных устройства (ВУ), комплекс бортового оборудования (КБО), соединенные определенными образом. Обеспечивается повышение надежности системы дистанционного управления путем обеспечения возможности реконфигурации оборудования. 1 ил.

Description

Изобретение относится к области приборостроения и может найти применение в бортовых системах дистанционного управления летательными аппаратами, в частности вертолетами.
Неоспоримыми достоинствами системы дистанционного управления (СДУ) являются возможности широкой и эффективной автоматизации режимов полета летательного аппарата (ЛА), обеспечения заданного уровня характеристик устойчивости и управляемости, реализации функций предупреждения (сигнализации экипажу) и предотвращения выхода за установленные эксплуатационные ограничения. При этом возникает необходимость использования СДУ в комплексе с системой автоматического управления (САУ), системой формирования и выдачи экипажу ограничительных сигналов (СОС), автоматикой ограничения предельных режимов (ОПР). Использование СДУ позволяет значительно упростить конструкцию, летную и техническую эксплуатацию системы управления, а также ее связи с САУ и с другими системами бортового комплекса. Но, главное, использование СДУ дает возможность применения более гибких законов управления, обеспечивающих качественно и количественно существенно более высокие характеристики устойчивости, управляемости и маневренности вертолета на всех режимах полета. В дальнейшем, систему, объединяющую в себе функции СДУ, САУ, СОС и ОПР, будем называть комплексной системой дистанционного управления (КСДУ).
Известна электродистанционная система управления, представленная в патенте RU 2174702 С1, МПК7 G05G 11/00, опубликованном 10.10.2001. Изобретение относится к электродистанционным системам управления. Каждый из двух управляющих органов имеет датчик усилия, прилагаемого его оператором. Каждый из двух электромеханических приводов имеет датчик его положения и выполнен с возможностью выполнения функции интегрирующего звена. Устройство управления электромеханическими приводами содержит сумматор, соединенный с выходами датчиков усилий, и подключено к выходам обоих датчиков положения. Управляемый орган подключен к выходу одного из датчиков положения. Управляющий вход одного из приводов может быть соединен с выходом сумматора сигналов датчиков усилий, а управляющий вход другого привода - с выходом сумматора сигналов датчиков положения. Между выходом сумматора сигналов датчиков усилий и входами двух управляющих сумматоров может быть включен интегрирующий элемент. В каждом из управляющих сумматоров другой вход соединен с выходом датчика положения соответствующего привода, а выход - с управляющим входом этого же привода. Каждый привод может быть снабжен редуктором и соединен с датчиком положения посредством одного из управляющих органов и датчика усилия.
Недостатком указанной системы является ограниченность функциональных возможностей. Кроме того, не предусмотрена возможность реконфигурации системы в случае отказа каналов управления для обеспечения продолжения выполнения задания или возврата на аэродром посадки и недостаточно уделено внимание вопросам кворумирования сигналов резервированных каналов для контроля исправности всех систем управления. При обнаружении отказа система переходит в аварийный режим, который позволяет осуществить только посадку вертолета.
Известна Система управления вертолетом, патент № RU 2282562, МПК7 В64С 13/40, G05D 1/00, опубликован 27.08.2006 г., выбранная в качестве прототипа. Известная система управления вертолетом содержит в каждом канале управления орган управления, кинематически связанный с датчиком его положения, электрически связанный с электронным вычислителем, к которому подключена бортовая информационная система контроля и который по аналоговому выходу связан с дистанционными рулевыми приводами, а также датчики параметров полета. Выходы датчиков параметров полета подключены к указанному вычислителю, датчик положения органа управления в каждом канале управления и электронный вычислитель по цифровой части и по аналоговой части выполнены минимум двукратно резервированными и с функцией формирования и обработки сигналов одновременно во всех резервированных каналах.
Недостатком указанной системы управления, также как и описанной выше, является ограниченность функциональных возможностей, что обусловлено, в частности, отсутствием возможности реконфигурации архитектуры, как системы в целом, так и ее составных частей, таких как, например, СДУ. Это в свою очередь в случае отказа какого-либо из каналов не позволяет продолжить полет для выполнения задания или возврат на аэродром посадки. Кроме того, недостаточно внимания уделено вопросам кворумирования сигналов резервированных каналов для контроля исправности системы.
Целью заявляемого изобретения является расширение функциональных возможностей системы дистанционного управления и повышение надежности работы комплекса путем обеспечения возможности реконфигурации архитектуры вычислительно-управляющего оборудования дистанционной системы управления ЛА.
Указанная цель достигается тем, что система дистанционного управления вертолетом, содержащая в каждом канале органы управления, кинематически связанные с датчиками положения ручек управления (ДПР), электрически связанными с резервированным электронным вычислительным устройством (ВУ), которое связано с рулевыми приводами, а также с комплексом бортового оборудования (КБО), выходы которого подключены к указанному ВУ, отличается тем, что в нее дополнительно введены на первом посту управления двукратно резервированный блок преобразования сигналов (БПС), первый двукратно резервированный интегрированный блок датчиков (ИБД), первый четырехкратно резервированный блок управления приводом (БУП), четырехкратно резервированный блок резервной навигации (БРН), второй четырехкратно резервированный БУП, четырехкратно резервированный блок кворумирования сигналов резервных каналов (БКС), четырехкратно резервированный блок управления архитектурой СДУ (БУА), третий четырехкратно резервированный БУП, на втором посту управления - второй двукратно резервированный ИБД, второй двукратно резервированный БПС, четвертый четырехкратно резервированный БУП и второе двукратно резервированное ВУ, четырехкратно резервированные ДПР первого и второго поста управления соединены между собой и соединены с входами первого и второго БПС соответственно, которые соединены между собой шинами БПС и ВУ, а также соединены с выходами первого и второго ИБД соответственно, первый, второй, третий и четвертый резервированные БУП соединены с шиной ВУ и с входами соответствующих электромеханических приводов, входы БРН соединены с выходами первого и второго резервированных ИБД, выходы БРН соединены с шиной БПС, блок БКС подключен ко входам БУА, причем БУА и БКС соединены с шинами ВУ и БПС, а шина ВУ соединена с шиной КБО, к которой подключены все системы комплекса бортового оборудования.
Сущность изобретения поясняется чертежом, на котором представлена структурная схема СДУ.
СДУ содержит: на первом посту управления ручки 1 управления общим шагом и цикличным шагом с четырехкратно резервированными ДПР (на чертеже не показан), двукратно резервированное вычислительное устройство 2 ВУ, первый электромеханический привод 3, комплекс бортового оборудования 4 КБО, двукратно резервированный блок 5 БПС, двукратно резервированный блок 6 ИБД, первый четырехкратно резервированный блок 7 БУП, четырехкратно резервированный блок 8 резервной навигации БРН, второй четырехкратно резервированный блок 9 БУП, второй электромеханический привод 10, четырехкратно резервированный в каждом канале блок 11 БКС 1, четырехкратно резервированный блок 12 БУА, третий четырехкратно резервированный блок 13 БУП, третий электромеханический привод 14, второй двукратно резервированный блок 15 ИБД, второй двукратно резервированный блок 16 БПС, четвертый четырехкратно резервированный блок 17 БУП, четвертый электромеханический привод 18, ручки 19 управления общим шагом и цикличным шагом с четырехкратно резервированными ДПР на втором посту управления, второе двукратно резервированное вычислительное устройство 20 ВУ.
Для управления вертолетом используют четыре привода: три привода для управления тарелкой автомата перекоса и ползуном общего шага несущего винта и один привод для управления общим шагом хвостового винта.
Управление осуществляют с двух постов управления: поста управления первого и поста управления второго. Каждый пост управления включает:
- ручку управления боковую (РУБ), выполняющую функции продольного и поперечного управления;
- рычаг общего шага (РОШ);
- пульт управления СДУ.
Вычислитель управления полетом ВУ выполняет функции вычислителя САУ и ОПР верхнего уровня. Управление режимами САУ осуществляется с ПУ СДУ, а также от кнопок, расположенных на ручках управления ЛА. По внешней шине от КБО в ВУ поступает необходимая для выполнения функций САУ и верхнего уровня ОПР информация от систем КБО.
Блок преобразования сигналов БПС предназначен для добавления сигналов управления, сформированных алгоритмами БПС (например, сигналы демпфирования и стабилизации углов крена и тангажа). Затем суммарные сигналы управления в БПС, пересчитанные в заданные значения штоков, поступают для отработки в БУП.
Блоки управления приводами БУП формируют сигналы управления приводом ui на основе информации о заданном положении штока δiзад, а также на основе сигналов положения штока δiзад, поступающих из привода с датчиков обратных связей. Тем самым обеспечивается установка штоков в заданное положение.
Интегрированный блок датчиков ИБД предназначен для выдачи сигналов, пропорциональных угловым скоростям и линейным ускорениям в связанной с ЛА системе координат.
Блок резервной навигации БРН предназначен для преобразования сигналов ИБД в сигналы, пропорциональные углам крена и тангажа.
Блок кворумирования сигналов резервных каналов БКС предназначен для кворумирования одноименных сигналов резервированных датчиков, блоков и шин с целью выявления отклонения их параметров от пороговых значений и подачи сигнала в блок БУА.
Блок управления архитектурой БУА предназначен для выработки оптимальной архитектуры СДУ и подачи команды в БПС, ВУ и БУП с целью реорганизации архитектуры СДУ.
Структура СДУ представляет собой совокупность архитектур, характеризующих систему с независимых, но взаимосвязанных точек зрения, отражающих природу разных классов ресурсов, на основе которых СДУ должна строиться: функционально-алгоритмических (результирующей формой которых являются программные ресурсы); информационно-вычислительных и коммуникационных (топология бортовой распределенной вычислительной среды СДУ с шинами информационного обмена), аппаратных и энергетических. Наиболее важным среди указанных классов ресурсов является класс функциональных ресурсов, обеспечивающих достижение целей разработки СДУ в смысле обеспечения решения в соответствующей функциональной архитектуре предписанных системе задач управления полетом. Эта архитектура разрабатывается первой, что позволяет обеспечить безусловную реализацию всех функций СДУ при последующем проектировании других архитектур по принципу «сверху-вниз». В СДУ обеспечивают максимальную внутрисистемную унификацию блоков и модулей.
Для повышения живучести СДУ в предлагаемом изобретении четыре резерва вычислительно-управляющей системы разделены на блоки левого и правого бортов, согласно постам управления, в каждом из которых реализовано по два резерва, пространственно рассредоточенных на борту вертолета.
В СДУ предусмотрены три режима работы: основной режим, альтернативный режим и резервный режим.
Контроль исправности 4-кратно резервированных каналов управления осуществляют методом определения разности сигналов 4-х каналов между собой. Путем сравнения разностей с назначенным порогом определяют исправность каналов управления, по результатам проверки выбирают один из трех режимов управления и выдают сигнал на индикатор режимов работы СДУ, производят соответствующую ему реконфигурацию архитектуры блоков вычисления и управления.
Если все системы исправны, работает архитектура, соответствующая режиму управления "основной". Основной режим управления - режим максимальной функциональной конфигурации, в котором задействованы все основные функциональные элементы КСДУ при числе вычислителей в каждом контрольном сечении не менее 3-х. В основном режиме работают все функциональные блоки, обеспечивающие решение всех функциональных задач СДУ в полном объеме, и ядро СДУ, образованное программно-аппаратными ресурсами СДУ, наращивают за счет соответствующих ресурсов САУ и взаимодействия с КБО. Связь СДУ с системами КБО осуществляют по шинам цифрового обмена через вычислители САУ. Вычислители САУ, в виду высокой критичности выполняемых ею функций на этапах взлета и посадки по категории IIIA, также выполняют резервированными.
При возникновении более 2-х последовательных отказов в разноименных контрольных сечениях осуществляют архитектурное преобразование, соответствующее режиму управления "альтернативный", при котором задействованы все функциональные компоненты СДУ, но допускается возникновение более 2-х последовательных отказов в разноименных контрольных сечениях. В альтернативном режиме задействованы интегрированные блоки датчиков ИБД в качестве датчиков линейных ускорений и угловых скоростей, а в части СДУ задействованы все функциональные элементы, но число вычислителей-резервов в каком-либо контрольном сечении из-за отказов уменьшилось до трех. В этом режиме управления используют режимы демпфирования и стабилизации крена и тангажа по сигналам ИБД в помощь летчику при ручном управлении. Углы крена и тангажа вычисляют блоками резервной навигации. В альтернативном режиме работают функциональные блоки СДУ без привлечения блоков КБО и обеспечивают решение определенного круга задач. Переход в альтернативный режим управления осуществляется автоматически при отказе цифрового обмена с системами КБО либо при отказе всех основных взаимодействующих систем КБО. В этом режиме должны обеспечиваться безопасное завершение полета и посадка вертолета в ситуации не хуже сложной. В альтернативном режиме выполняют в полном объеме только функции ручного автоматизированного управления и нижнего уровня ОПР.
После второго отказа в каком-либо одном контрольном сечении тракта формирования и передачи сигналов управления на уровне КБО, СДУ переходит автоматически в режим управления "резервный", в котором сохраняются только сигналы, передаваемые на привод с органов управления ЛА летчиком. Подсистему, обеспечивающую режим резервного управления, реализуют в виде ядра КСДУ, обособленного по всем видам ресурсов от других устройств КСДУ, а также от систем КБО. В резервном режиме доступны только функции ручного управления.
В резервном режиме управляющие сигналы формируются цифровым вычислителем только по сигналам датчиков ДПР. В резервный режим СДУ переходит автоматически, при возникновении критических отказов и реконфигурация режимов работы КСДУ будет осуществляться автоматически. При наличии интегрального сигнала неисправности ВУ (выдаваемого извне самими ВУ или сформированного кворумами на входе БПС: неисправны два и более резерва ВУ) СДУ должна переходить в режим резервного управления по сигналам БКС и БУА. Все резервы БПС при этом могут быть исправны. Для формирования заданного положения штоков приводов блоки БПС в этом режиме не используют сигналы управления, поступающие из ВУ. В этом случае сигналы заданного положения штоков вычисляют только на основе алгоритмов СДУ и СУУ, реализованных в БПС.
Таким образом, в режиме резервного управления в КСДУ задействованы следующие элементы: ДПР РУБ и РОШ, БПС, ИБД, БУП, внутренние шины обмена, переключатель "Резервный режим". В режиме резервного управления сохраняют функции демпфирования угловых колебаний и функцию автоматической балансировки.
В предлагаемом изобретении используют принцип сохранения автономии СДУ по всем видам ресурсов, прежде всего в интересах обеспечения ее надежности и отказобезопасности, а также с целью упрощения процедур разработки. Кроме того, применительно к функциональным подсистемам СДУ применен принцип рационального обособления внутри комплексной системы. Так, СДУ не взаимодействует напрямую с КБО. Причем в составе СДУ для резервного режима (прямого) управления вводится дополнительная внутренняя полная автономия. В этом режиме СДУ функционирует только на основе собственных ресурсов и не взаимодействует не только с КБО, но и с САУ. На этот режим "наслаиваются" все другие режимы управления, реализующие дополнительные функции, в том числе и функции САУ. Такое обособление и автономия СДУ могут быть обеспечены на основе концепции построения сетевых распределенных архитектур для бортовых систем ЛА. Кроме того, архитектура распределенной вычислительной среды системы управления должна определяться ее функциональной архитектурой.
Техническим результатом является расширение функциональных возможностей системы дистанционного управления, позволяющее осуществить возвращение на аэродром взлета или продолжать выполнение задания при наличии двух и более отказов в разноименных сечениях. Повышение надежности работы комплекса осуществляется путем реконфигурации архитектуры КСДУ.

Claims (1)

  1. Система дистанционного управления вертолетом, содержащая в каждом канале органы управления, кинематически связанные с датчиками положения ручек управления (ДПР), электрически связанными с резервированным электронным вычислительным устройством (ВУ), которое связано с рулевыми приводами, а также с комплексом бортового оборудования (КБО), выходы которого подключены к указанному ВУ, отличающаяся тем, что в нее дополнительно введены на первом посту управления двукратно резервированный блок преобразования сигналов (БПС), первый двукратно резервированный интегрированный блок датчиков (ИБД), первый четырехкратно резервированный блок управления приводом (БУП), четырехкратно резервированный блок резервной навигации (БРН), второй четырехкратно резервированный БУП, четырехкратно резервированный блок кворумирования сигналов резервных каналов (БКС), четырехкратно резервированный блок управления архитектурой СДУ (БУА), третий четырехкратно резервированный БУП, на втором посту управления - второй двукратно резервированный ИБД, второй двукратно резервированный БПС, четвертый четырехкратно резервированный БУП и второе двукратно резервированное ВУ, четырехкратно резервированные ДПР первого и второго поста управления соединены между собой и соединены с входами первого и второго БПС соответственно, которые соединены между собой шинами БПС и ВУ, а также соединены с выходами первого и второго ИБД соответственно, первый, второй, третий и четвертый резервированные БУП соединены с шиной ВУ и с входами соответствующих электромеханических приводов, входы БРН соединены с выходами первого и второго резервированных ИБД, выходы БРН соединены с шиной БПС, блок БКС подключен ко входам БУА, причем БУА и БКС соединены с шинами ВУ и БПС, а шина ВУ соединена с шиной КБО, к которой подключены все системы комплекса бортового оборудования.
RU2015152034A 2015-12-04 2015-12-04 Система дистанционного управления вертолетом RU2636245C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015152034A RU2636245C2 (ru) 2015-12-04 2015-12-04 Система дистанционного управления вертолетом

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015152034A RU2636245C2 (ru) 2015-12-04 2015-12-04 Система дистанционного управления вертолетом

Publications (2)

Publication Number Publication Date
RU2015152034A RU2015152034A (ru) 2017-06-07
RU2636245C2 true RU2636245C2 (ru) 2017-11-21

Family

ID=59031559

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015152034A RU2636245C2 (ru) 2015-12-04 2015-12-04 Система дистанционного управления вертолетом

Country Status (1)

Country Link
RU (1) RU2636245C2 (ru)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10759520B2 (en) * 2017-09-29 2020-09-01 The Boeing Company Flight control system and method of use
CN114291263A (zh) * 2022-01-13 2022-04-08 沈阳智翔通飞通用航空技术有限公司 一种用于共轴双旋翼无人驾驶直升机的遥控系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU928305A1 (ru) * 1980-02-22 1982-05-15 Предприятие П/Я М-5537 Многоканальное устройство контрол
RU2225992C2 (ru) * 2002-03-19 2004-03-20 Открытое акционерное общество "Уральский приборостроительный завод" Вычислитель корректирующих функций
RU2282562C1 (ru) * 2004-12-01 2006-08-27 Открытое акционерное общество "Казанский вертолетный завод" Система управления вертолетом
US20110251739A1 (en) * 2010-04-09 2011-10-13 Honeywell International Inc. Distributed fly-by-wire system
US8231085B2 (en) * 2009-06-09 2012-07-31 Sikorsky Aircraft Corporation Automatic trim system for fly-by-wire aircraft with unique trim controllers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU928305A1 (ru) * 1980-02-22 1982-05-15 Предприятие П/Я М-5537 Многоканальное устройство контрол
RU2225992C2 (ru) * 2002-03-19 2004-03-20 Открытое акционерное общество "Уральский приборостроительный завод" Вычислитель корректирующих функций
RU2282562C1 (ru) * 2004-12-01 2006-08-27 Открытое акционерное общество "Казанский вертолетный завод" Система управления вертолетом
US8231085B2 (en) * 2009-06-09 2012-07-31 Sikorsky Aircraft Corporation Automatic trim system for fly-by-wire aircraft with unique trim controllers
US20110251739A1 (en) * 2010-04-09 2011-10-13 Honeywell International Inc. Distributed fly-by-wire system

Also Published As

Publication number Publication date
RU2015152034A (ru) 2017-06-07

Similar Documents

Publication Publication Date Title
EP2374714A2 (en) Distributed fly-by-wire system
Bieber et al. New challenges for future avionic architectures.
US7984878B2 (en) Apparatus and method for backup control in a distributed flight control system
CN112498664B (zh) 飞行控制系统以及飞行控制方法
RU2586796C2 (ru) Система моделирования в реальном времени окружения двигателя летательного аппарата
Zhang et al. Architecture design of distributed redundant flight control computer based on time-triggered buses for UAVs
CN111026148A (zh) 操控经图形接口控制的系统的命令的系统和相关操控方法
CN113534656B (zh) 一种电传飞行备份控制系统和方法
RU2636245C2 (ru) Система дистанционного управления вертолетом
Gu et al. Avionics design for a sub-scale fault-tolerant flight control test-bed
EP2604515A1 (en) Method and system for controlling a high-lift device or a flight control surface, and air- or spacecraft comprising such system
RU165180U1 (ru) Отказоустойчивая комплексная система управления
CN112363468B (zh) 用于航空飞行器的全分布式飞控系统及其操作方法和航空飞行器
WO2022026293A1 (en) Redundancy systems for small fly-by-wire vehicles
Šegvić et al. Technologies for distributed flight control systems: A review
Hofsäß et al. On the design and model-based validation of flight control system automation for an unmanned coaxial helicopter
EP1980924B1 (en) System and method of redundancy management for fault effect mitigation
Darwesh et al. A demonstrator for the verification of the selective integration of the Flexible Platform approach into Integrated Modular Avionics
Bukov et al. Avionics of zero maintenance equipment
Traverse et al. Airbus fly-by-wire: a process toward total dependability
RU2529248C1 (ru) Пассажирский самолет с системой управления общесамолетным оборудованием и самолетными системами
Eşer et al. Redundancy in Automatic Flight Control System Design for A General Purpose Helicopter
CN119247735A (zh) 电传分布式飞行控制系统
CN115951573A (zh) 一种飞控作动系统的远程电子单元及其控制方法
CN116767484A (zh) 电传飞行控制系统和方法