RU2634479C2 - Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации - Google Patents
Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации Download PDFInfo
- Publication number
- RU2634479C2 RU2634479C2 RU2015128373A RU2015128373A RU2634479C2 RU 2634479 C2 RU2634479 C2 RU 2634479C2 RU 2015128373 A RU2015128373 A RU 2015128373A RU 2015128373 A RU2015128373 A RU 2015128373A RU 2634479 C2 RU2634479 C2 RU 2634479C2
- Authority
- RU
- Russia
- Prior art keywords
- range
- height
- observation interval
- estimate
- increment
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/50—Systems of measurement based on relative movement of target
- G01S13/58—Velocity or trajectory determination systems; Sense-of-movement determination systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/50—Systems of measurement based on relative movement of target
- G01S13/58—Velocity or trajectory determination systems; Sense-of-movement determination systems
- G01S13/588—Velocity or trajectory determination systems; Sense-of-movement determination systems deriving the velocity value from the range measurement
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/50—Systems of measurement based on relative movement of target
- G01S13/58—Velocity or trajectory determination systems; Sense-of-movement determination systems
- G01S13/60—Velocity or trajectory determination systems; Sense-of-movement determination systems wherein the transmitter and receiver are mounted on the moving object, e.g. for determining ground speed, drift angle, ground track
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/50—Systems of measurement based on relative movement of target
- G01S13/58—Velocity or trajectory determination systems; Sense-of-movement determination systems
- G01S13/62—Sense-of-movement determination
Landscapes
- Radar Systems Or Details Thereof (AREA)
Abstract
Изобретение предназначено для определения модуля скорости баллистического объекта (БО) с использованием выборки произведений дальности на радиальную скорость и относится к радиолокации. Достигаемый технический результат изобретения - повышение точности определения модуля скорости БО в наземных радиолокационных станциях (РЛС) с грубыми измерениями угла места, азимута и дальности и уменьшение объема хранимых предыдущих измерений. Указанный технический результат достигается тем, что через интервалы времени, равные периоду обзора Т0, в РЛС измеряют дальность, угол места, радиальную скорость и формируют выборку значений высоты БО и произведений дальности на радиальную скорость. Определяют оценку высоты БО в середине интервала наблюдения и оценку первого приращения произведения дальности на радиальную скорость в конце интервала наблюдения с помощью α, β фильтров. Вычисляют геоцентрический угол между РЛС и БО в середине интервала наблюдения по формуле , где rcp - дальность до БО в середине интервала наблюдения, RЗ - радиус Земли, и ускорение силы тяжести в середине интервала наблюдения по формуле , где - ускорение силы тяжести на поверхности Земли. Далее вычисляют сглаженное значение модуля скорости БЦ в середине интервала наблюдения на невозмущенном пассивном участке траектории по формуле
Description
Изобретение относится к радиолокации и может быть использовано преимущественно в наземных радиолокационных станциях (РЛС) кругового и секторного обзора, размеры антенн которых соизмеримы с длиной волны, то есть в РЛС с грубыми измерениями угла места и азимута баллистического объекта (БО). Знание модуля скорости необходимо для расчета баллистической траектории, прогноза точки падения, селекции баллистических ракет от самолетов и решения других задач.
Известны способы, в которых определяют скорости изменения декартовых координат, а модуль скорости вычисляют по формуле:
Известны устройства определения скорости изменения декартовых координат с помощью цифрового нерекурсивного фильтра (ЦНРФ) путем оптимального взвешенного суммирования фиксированной выборки из N измеренных значений декартовых координат [1, рис. 4.7, С. 303] и с помощью α, β фильтра [1, рис. 4.11, С. 322] или α, β, γ фильтра [2, рис. 9.14, С. 392) путем последовательного оптимального сглаживания выборки измеренных значений декартовых координат нарастающего объема.
Основным недостатком известных устройств является низкая точность определения модуля скорости БО в РЛС с грубыми измерениями угла места и азимута, в частности в РЛС метрового диапазона волн (РЛС МДВ).
Наиболее близким аналогом (прототипом) заявленному изобретению, является способ и устройство его реализации, описанные в патенте №2540323 [4].
В этом способе существенно снижено влияние ошибок измерения угла места и устранено влияние ошибок измерения азимута за счет использования фиксированной выборки квадратов дальности.
Сущность способа-прототипа заключается в следующем. В РЛС через интервалы времени, равные периоду обзора T0, измеряют дальность и угол места БО. По результатам этих измерений определяют высоту БО. С помощью ЦНРФ формируют фиксированную выборку из N значений высоты и определяют сглаженное значение высоты БО в середине интервала наблюдения, то есть ее оценку . Далее вычисляют геоцентрический угол между РЛС и БО (смотри фиг. 1) в середине интервала наблюдения по формуле , где rcp - дальность до БО в середине интервала наблюдения, RЗ - радиус Земли, и ускорение силы тяжести в середине интервала наблюдения по формуле , где - ускорение силы тяжести на поверхности Земли. В каждом обзоре перемножают оцифрованные сигналы дальности, то есть определяют квадраты дальности. С помощью ЦНРФ формируют фиксированную выборку из N квадратов дальности и определяют оценку второго приращения квадрата дальности за обзор. В итоге вычисляют значение модуля скорости БО в середине интервала наблюдения на невозмущенном пассивном участке 'траектории по формуле
Схема устройства для реализации способа-прототипа приведена в фиг. 2. Устройство содержит блок 1 преобразования входных сигналов, первый выход которого соединен с входом ЦНРФ оценивания второго приращения квадрата дальности (блок 2), выход которого соединен с первым входом вычислителя модуля скорости БО (блок 3). Второй выход блока 1 соединен с входом ЦНРФ оценивания высоты БО в середине интервала наблюдения (блок 4), выход которого соединен с 4-м входом вычислителя модуля скорости БО (блок 3), с входом вычислителя 5 геоцентрического угла, а также с первым входом вычислителя 6 ускорения силы тяжести. Выходы вычислителя 5 геоцентрического угла и вычислителя 6 ускорения силы тяжести соединены с 3-м и 2-м входами вычислителя модуля скорости БО, выход которого является выходом заявленного устройства.
ЦНРФ оценивания второго приращения квадрата дальности (блок 2) работает следующим образом. Текущее значение квадрата дальности умножают на весовой коэффициент в блоке 2.2 и подают на вход сумматора 2.4. Значения квадратов дальности, полученные в предыдущих обзорах , после задержки на соответствующее число периодов обзора в запоминающем устройстве 2.1 умножают в блоке 2.2 на весовые коэффициенты оценки второго приращения, поступающие с блока 2.3 весовых коэффициентов, и подают на вход сумматора 2.4. Весовые коэффициенты оценки второго приращения входного сигнала за период обзора, вычисляют заранее по формуле: [3, формула (4.37), С. 155]. В итоге на входе сумматора 2.4 формируется фиксированная выборка из N взвешенных квадратов дальности, а на его выходе получают оценку второго приращения квадрата дальности за обзор .Эту оценку подают на 1-й вход вычислителя 3 модуля скорости.
Таким же образом, во втором ЦНРФ (блок 4) определяют сглаженное значение высоты БЦ, то есть оценку высоты , в середине интервала наблюдения. В Отличие от блока 3, используют весовые коэффициенты оценки высоты в середине интервала наблюдения, вычисленные по формуле . Эту оценку подают на 4-й вход вычислителя 3 модуля скорости.
При высокоточных измерениях дальности ошибки определения модуля скорости БО в РЛС с грубыми измерениями угла места и азимута уменьшаются в несколько раз по сравнению со способом оценивания по выборкам декартовых координат. Однако при грубых измерениях дальности преимущество способа-прототипа утрачивается. Кроме того, в процессе оценивания параметров необходимо хранить большое число предыдущих измерений дальности и высоты (угла места), что при одновременном обслуживании большого числа целей и больших интервалах наблюдения приводит к существенному увеличению емкости запоминающих устройств.
Техническим результатом заявленного изобретения является повышение точности определения модуля скорости БО при грубых измерениях дальности, угла места и азимута и уменьшение объема хранимых предыдущих измерений.
Указанный технический результат достигается тем, что в способе определения модуля скорости баллистического объекта (БО) с использованием выборки произведений дальности на радиальную скорость, заключающемся в том, что через интервалы времени, равные периоду обзора Т0, в РЛС измеряют дальность и угол места БО, по данным измерений дальности и угла места определяют высоту БО, определяют сглаженное значение высоты БО, то есть оценку высоты БО в середине интервала наблюдения, вычисляют геоцентрический угол между РЛС и БО в середине интервала наблюдения по формуле , где rcp - дальность до БО в середине интервала наблюдения, RЗ - радиус Земли, и ускорение силы тяжести в середине интервала наблюдения по формуле , где - ускорение силы тяжести на поверхности Земли, согласно изобретению оценку высоты в середине интервала наблюдения определяют с помощью α, β фильтра, при этом определение текущих оценок высоты в n-ом обзоре производят сначала в прямом по времени направлении, а затем в обратном направлении, для этого по первым двум значениям высоты, полученным в первых двух обзорах (z1 и z2), определяют начальное значение высоты и начальное значение первого приращения высоты , задают начальные значения коэффициентов сглаживания (α0=1, β0=1), далее во всех последующих обзорах значения коэффициентов сглаживания определяют по формулам и , на интервале наблюдения от третьего обзора (n=3) до последнего обзора (n=N) экстраполированное значение высоты для n-го обзора определяют путем суммирования предыдущей (n-1)-ой оценки высоты и (n-1)-ой оценки первого приращения высоты, сигнал ошибки определяют как разность между текущим значением высоты и его экстраполированным значением, а от N-го обзора до обзора, произведенного в середине интервала наблюдения, экстраполированное значение высоты для n-го обзора определяют путем суммирования предыдущей (n-1)-ой оценки высоты и инвертированного значения (n-1)-ой оценки первого приращения высоты, сигнал ошибки определяют как разность между текущей оценкой высоты и ее экстраполированным значением, текущую оценку высоты определяют путем суммирования экстраполированного значения высоты и взвешенного коэффициентом сглаживания α сигнала ошибки, а текущую оценку первого приращения высоты определяют путем суммирования (n-1)-ой оценки первого приращения высоты и взвешенного коэффициентом сглаживания β сигнала ошибки, измеряют радиальную скорость БО, перемножают измеренные значения дальности и радиальной скорости и получают выборку произведений дальности на радиальную скорость, определяют оценку первого приращения произведения дальности на радиальную скорость в конце интервала наблюдения, то есть в последнем N-ом обзоре РЛС, с помощью α, β фильтра, для этого по первым двум значениям произведения дальности на радиальную скорость определяют начальное значение произведения дальности на радиальную скорость и начальное значение первого приращения произведения дальности па радиальную скорость , задают начальные значения коэффициентов сглаживания (α0=1, β0=1), далее во всех последующих обзорах (n=3,4,…,N) значения коэффициентов сглаживания определяют по формулам и , определяют экстраполированное значение произведения дальности на радиальную скорость для n-го обзора путем суммирования предыдущей (n-1)-ой оценки произведения дальности на радиальную скорость и (n-1)-ой оценки первого приращения произведения дальности на радиальную скорость, определяют сигнал ошибки между текущим значением произведения дальности на радиальную скорость и его экстраполированным значением, определяют текущую оценку произведения дальности на радиальную скорость путем суммирования экстраполированного значения произведения дальности на радиальную скорость и взвешенного коэффициентом сглаживания α сигнала ошибки, определяют текущую оценку первого приращения произведения дальности на радиальную скорость путем суммирования (n-1)-ой оценки первого приращения произведения дальности на радиальную скорость и взвешенного коэффициентом сглаживания β сигнала ошибки, в итоге вычисляют сглаженное значение модуля скорости баллистического объекта в середине интервала наблюдения на невозмущенном пассивном участке траектории по формуле
Указанный технический результат достигается также тем, что в устройстве определения модуля скорости БО с использованием выборки произведений дальности на радиальную скорость (смотри фиг. 3), содержащем блок 1 преобразования входных сигналов, первый выход которого соединен с входом блока 2 оценивания преобразованной координаты дальности, выход которого соединен с входом вычислителя 3 модуля скорости БО в середине интервала наблюдения, блок 4 оценивания высоты БО в середине интервала наблюдения, вход которого соединен с вторым выходом блока 1 преобразования входных сигналов, а выход соединен с четвертым входом вычислителя 3 модуля скорости БО в середине интервала наблюдения, а также с входом вычислителя 5 геоцентрического угла и с первым входом вычислителя 6 ускорения силы тяжести, второй вход которого соединен с вторым выходом вычислителя 5 геоцентрического угла, выходы вычислителя 6 ускорения силы тяжести и вычислителя 5 геоцентрического угла соединены с вторым и третьим входами вычислителя 3 модуля скорости БО в середине интервала наблюдения, выход которого является выходом заявленного устройства, согласно изобретению на первый вход блока 1 преобразования входных сигналов подают данные измерений радиальной скорости, в умножителе 1.1 блока 1 перемножают измерения дальности и радиальной скорости, блок 2 оценивания преобразованной координаты дальности и блок 4 оценивания высоты БО в середине интервала наблюдения является α, β фильтрами.
Для доказательства практического отсутствия систематических (методических) ошибок оценивания модуля скорости заявленным способом и способом-прототипом вычислим значение модуля скорости китайской баллистической ракеты средней дальности (БРСД) «Дунфэн-21» на 280-й секунде полета, траекторные параметры которой приведены в таблице 1.
В способе-прототипе:
В заявленном способе
Если не учитывать поправку на сферичность Земли (RЗsin2ϕcp=249,77 км), то модуль скорости будет определяться с большим отрицательным смещением (-415 м/с). Поэтому смещение оценки до 10 м/с можно считать пренебрежимо малым смещенем.
Результаты вычислений оценок первого приращения произведения дальности на радиальную скорость и высоты в середине интервала наблюдения приведены в таблицах 2 и 3.
Как видно из таблицы, оценки в текущем обзоре, то есть в конце интервала наблюдения, используются для определения модуля скорости в середине интервала наблюдения. Например, , вычисленная на 360-ой секунде, используются для определения модуля скорости в середине интервала наблюдения, то есть на 280-ой секунде.
В отличие от прототипа, для определения модуля скорости используются только последнее текущее значение произведения дальности на радиальную скорость и его экстраполированное значение , а не вся фиксированная выборка из N произведений дальности на радиальную скорость.
Как видно из таблицы 3, при оценивании высоты в прямом (от 220-ой до 360-ой с) и в обратном (от 360-ой до 280-ой с) направлении практически устраняется смещение оценки высоты. Кроме того, по сравнению с прототипом, в два раза уменьшается объем хранимых значений высоты.
Результаты сравнения точности, то есть среднеквадратических ошибок (СКО) определения в РЛС МДВ «Резонанс-НЭ» (, σr=300 м, σε=1,5°, T0=5 с) [5, С. 356-361] модуля скорости оперативно-тактической ракеты (ОТБР) «Атакмс» на 75-й секунде полета (rcp=205 км, εср=15,3°, ∂ср=9,65 м/с2, Vcp=1120 м/с) в заявленном изобретении (3), в прототипе (2) и в аналоге (1) приведены в таблице 4.
СКО оценивания модуля скорости БО вычислялись по следующим формулам:
а) для изобретения:
σε - СКО измерения угла места;
б) для прототипа:
в) для аналога:
где θср - угол наклона вектора скорости БО к местному горизонту.
Как видно из таблицы 4, в заявленном способе и устройстве обеспечивается повышение от 6-ти до 19-ти раз точности определения модуля скорости БО по сравнению с прототипом и аналогами при грубых измерениях угла места и дальности. Как видно из формулы (4) увеличение ошибок измерения дальности до 300 м несущественно влияет на точность определения модуля скорости. В прототипе уменьшение ошибок измерения дальности в 12 раз (от 300 м до 25 м) приводит к повышению точности определения модуля скорости от 5-ти до 10-ти раз. В способах-аналогах оценивания по выборкам декартовых координат доминирующее влияние на точность определения модуля скорости оказывают ошибки измерения угла места.
Увеличение точности определения модуля скорости заявленным способом, как и способом-прототипом, происходит только при выборе точки оценивания в середине интервала наблюдения, то есть скорость оценивается с запаздыванием по времени на половину длительности интервала наблюдения. При оценивании скорости в реальном режиме времени, то есть в момент получения последнего измерения, преимущества заявленного способа в значительной степени утрачиваются из-за необходимости учета вертикальной скорости баллистического объекта. Кроме того, заявленный способ нельзя использовать на активном участке траектории, то есть при работающем ракетном двигателе, и при совершении БЦ маневра на пассивном участке траектории.
Таким образом, доказана реализуемость технического результата заявляемого изобретения: повышение точности определения модуля скорости БО при грубых измерениях дальности, угла места и азимута и уменьшение объема хранимых предыдущих измерений.
Список использованных источников
1. Кузьмин С.З. Цифровая обработка радиолокационной информации. М.: «Советское радио», 1967, 400 с.
2. Кузьмин С.З. Основы теории цифровой обработки радиолокационной информации. М.: «Советское радио», 1974, 432 с.
3. Кузьмин С.З. Основы проектирования систем цифровой обработки радиолокационной информации. М.: «Советское радио», 1986, 352 с.
4. Патент №2540323. Способ определения модуля скорости баллистической цели в наземной радиолокационной станции.
5. Вооружение ПВО и РЭС России. Альманах. М.: Издательство НО «Лига содействия оборонным предприятиям», 2011, 504 с.)
6. Справочник по радиолокации. / Под ред. М.И. Сколника. Книга 1. М.: «Техносфера», 2015, 672 с.
Claims (2)
1. Способ определения модуля скорости баллистического объекта (БО) с использованием выборки произведений дальности на радиальную скорость, заключающийся в том, что через интервалы времени, равные периоду обзора T0, в РЛС измеряют дальность и угол места БО, по данным измерений дальности и угла места определяют высоту БО, определяют сглаженное значение высоты БО, то есть оценку высоты БО в середине интервала наблюдения, вычисляют геоцентрический угол между РЛС и БО в середине интервала наблюдения по формуле , где rcp - дальность до БО в середине интервала наблюдения, Rз - радиус Земли, и ускорение силы тяжести в середине интервала наблюдения по формуле , где - ускорение силы тяжести на поверхности Земли, отличающийся тем, что оценку высоты определяют с помощью α, β фильтра, при этом определение текущих оценок высоты в n-м обзоре производят сначала в прямом по времени направлении, а затем в обратном направлении, для этого по первым двум значениям высоты, полученным в первых двух обзорах (z1 и z2), определяют начальное значение высоты и начальное значение первого приращения высоты , задают начальные значения коэффициентов сглаживания (α0=1, β0=1), далее во всех последующих обзорах значения коэффициентов сглаживания определяют по формулам и , на интервале наблюдения от третьего обзора (n=3) до последнего обзора (n=N) экстраполированное значение высоты для n-го обзора определяют путем суммирования предыдущей (n-1)-й оценки высоты и (n-1)-й оценки первого приращения высоты, сигнал ошибки определяют как разность между текущим значением высоты и его экстраполированным значением, а от N-го обзора до -го обзора, произведенного в середине интервала наблюдения, экстраполированное значение высоты для n-го обзора определяют путем суммирования предыдущей (n-1)-й оценки высоты и инвертированного значения (n-1)-й оценки первого приращения высоты, сигнал ошибки определяют как разность между текущей оценкой высоты и ее экстраполированным значением, текущую оценку высоты определяют путем суммирования экстраполированного значения высоты и взвешенного коэффициентом сглаживания α сигнала ошибки, а текущую оценку первого приращения высоты определяют путем суммирования (n-1)-й оценки первого приращения высоты и взвешенного коэффициентом сглаживания β сигнала ошибки, измеряют радиальную скорость БО, перемножают измеренные значения дальности и радиальной скорости и получают выборку произведений дальности на радиальную скорость, определяют оценку первого приращения произведения дальности на радиальную скорость в конце интервала наблюдения, то есть в последнем N-м обзоре РЛС, с помощью α, β фильтра, для этого по первым двум значениям произведения дальности на радиальную скорость ( и ) определяют начальное значение произведения дальности на радиальную скорость () и начальное значение первого приращения произведения дальности на радиальную скорость (), задают начальные значения коэффициентов сглаживания (α0=1, β0=1), далее во всех последующих обзорах (n=3, 4, …, N) значения коэффициентов сглаживания определяют по формулам и , определяют экстраполированное значение произведения дальности на радиальную скорость для n-го обзора путем суммирования предыдущей (n-1)-й оценки произведения дальности на радиальную скорость и (n-1)-й оценки первого приращения произведения дальности на радиальную скорость, определяют сигнал ошибки между текущим значением произведения дальности на радиальную скорость и его экстраполированным значением, определяют текущую оценку произведения дальности на радиальную скорость путем суммирования экстраполированного значения произведения дальности на радиальную скорость и взвешенного коэффициентом сглаживания α сигнала ошибки, определяют текущую оценку первого приращения произведения дальности на радиальную скорость путем суммирования (n-1)-й оценки первого приращения произведения дальности на радиальную скорость и взвешенного коэффициентом сглаживания β сигнала ошибки, в итоге вычисляют сглаженное значение модуля скорости баллистического объекта в середине интервала наблюдения на невозмущенном пассивном участке траектории по формуле .
2. Устройство определения модуля скорости БО с использованием выборки произведений дальности на радиальную скорость, содержащее блок (1) преобразования входных сигналов, первый выход которого соединен с входом блока (2) оценивания приращения преобразованной координаты дальности, выход которого соединен с входом вычислителя (3) модуля скорости БО в середине интервала наблюдения, блок (4) оценивания высоты БО в середине интервала наблюдения, вход которого соединен со вторым выходом блока (1) преобразования входных сигналов, а выход соединен с четвертым входом вычислителя (3) модуля скорости БО в середине интервала наблюдения, а также с входом вычислителя (5) геоцентрического угла и с первым входом вычислителя (6) ускорения силы тяжести, второй вход которого соединен с вторым выходом вычислителя (5) геоцентрического угла, выходы вычислителя 6 ускорения силы тяжести и вычислителя (5) геоцентрического угла соединены со вторым и третьим входами вычислителя (3) модуля скорости БО в середине интервала наблюдения, выход которого является выходом заявленного устройства, отличающееся тем, что на первый вход блока (1) преобразования входных сигналов подают данные измерений радиальной скорости, в умножителе (1.1) блока (1) перемножают измерения дальности и радиальной скорости, блок (2) оценивания приращения преобразованной координаты дальности и блок (4) оценивания высоты БО в середине интервала наблюдения являются α, β фильтрами.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015128373A RU2634479C2 (ru) | 2015-07-14 | 2015-07-14 | Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015128373A RU2634479C2 (ru) | 2015-07-14 | 2015-07-14 | Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2015128373A RU2015128373A (ru) | 2017-01-18 |
RU2634479C2 true RU2634479C2 (ru) | 2017-10-31 |
Family
ID=58449358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015128373A RU2634479C2 (ru) | 2015-07-14 | 2015-07-14 | Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2634479C2 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2796965C1 (ru) * | 2021-12-27 | 2023-05-29 | Закрытое акционерное общество "Научно-исследовательский центр "Резонанс" (ЗАО "НИЦ "Резонанс") | Способ и устройство определения модуля скорости баллистической цели с использованием оценок ее радиального ускорения при неоднозначных измерениях радиальной скорости |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107219519B (zh) * | 2017-04-20 | 2019-12-17 | 中国人民解放军军械工程学院 | 连发火炮弹道曲线拟合方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050012657A1 (en) * | 2003-06-16 | 2005-01-20 | Paul Mohan | Method and apparatus for remotely deriving the velocity vector of an in-flight ballistic projectile |
WO2008031896A1 (en) * | 2006-09-15 | 2008-03-20 | Thales Nederland B.V. | Method of and device for tracking an object |
US7884754B1 (en) * | 2006-04-28 | 2011-02-08 | The United States Of America As Represented By The Secretary Of The Navy | Method of distributed estimation using multiple asynchronous sensors |
US8138965B1 (en) * | 2007-07-18 | 2012-03-20 | Lockheed Martin Corporation | Kinematic algorithm for rocket motor apperception |
RU2509319C1 (ru) * | 2012-10-10 | 2014-03-10 | Закрытое акционерное общество Научно-исследовательский центр "РЕЗОНАНС" (ЗАО НИЦ "РЕЗОНАНС") | Способ радиолокационного определения времени окончания активного участка баллистической траектории |
RU2510861C1 (ru) * | 2012-09-10 | 2014-04-10 | Открытое акционерное общество "Федеральный научно-производственный центр "Нижегородский научно-исследовательский институт радиотехники" | Способ радиолокационного определения времени окончания активного участка баллистической траектории |
RU2540323C1 (ru) * | 2014-01-21 | 2015-02-10 | Открытое акционерное общество "Федеральный научно-производственный центр "Нижегородский научно-исследовательский институт радиотехники" | Способ определения модуля скорости баллистической цели в наземной радиолокационной станции |
-
2015
- 2015-07-14 RU RU2015128373A patent/RU2634479C2/ru not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050012657A1 (en) * | 2003-06-16 | 2005-01-20 | Paul Mohan | Method and apparatus for remotely deriving the velocity vector of an in-flight ballistic projectile |
US7884754B1 (en) * | 2006-04-28 | 2011-02-08 | The United States Of America As Represented By The Secretary Of The Navy | Method of distributed estimation using multiple asynchronous sensors |
WO2008031896A1 (en) * | 2006-09-15 | 2008-03-20 | Thales Nederland B.V. | Method of and device for tracking an object |
US8138965B1 (en) * | 2007-07-18 | 2012-03-20 | Lockheed Martin Corporation | Kinematic algorithm for rocket motor apperception |
RU2510861C1 (ru) * | 2012-09-10 | 2014-04-10 | Открытое акционерное общество "Федеральный научно-производственный центр "Нижегородский научно-исследовательский институт радиотехники" | Способ радиолокационного определения времени окончания активного участка баллистической траектории |
RU2509319C1 (ru) * | 2012-10-10 | 2014-03-10 | Закрытое акционерное общество Научно-исследовательский центр "РЕЗОНАНС" (ЗАО НИЦ "РЕЗОНАНС") | Способ радиолокационного определения времени окончания активного участка баллистической траектории |
RU2540323C1 (ru) * | 2014-01-21 | 2015-02-10 | Открытое акционерное общество "Федеральный научно-производственный центр "Нижегородский научно-исследовательский институт радиотехники" | Способ определения модуля скорости баллистической цели в наземной радиолокационной станции |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2796965C1 (ru) * | 2021-12-27 | 2023-05-29 | Закрытое акционерное общество "Научно-исследовательский центр "Резонанс" (ЗАО "НИЦ "Резонанс") | Способ и устройство определения модуля скорости баллистической цели с использованием оценок ее радиального ускорения при неоднозначных измерениях радиальной скорости |
RU2797227C1 (ru) * | 2021-12-27 | 2023-05-31 | Закрытое акционерное общество "Научно-исследовательский центр "Резонанс" (ЗАО "НИЦ "Резонанс") | Способ и устройство определения вертикальной скорости баллистической цели с использованием оценок первого и второго приращений ее радиальной скорости |
Also Published As
Publication number | Publication date |
---|---|
RU2015128373A (ru) | 2017-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2540323C1 (ru) | Способ определения модуля скорости баллистической цели в наземной радиолокационной станции | |
RU2510861C1 (ru) | Способ радиолокационного определения времени окончания активного участка баллистической траектории | |
CN111221018B (zh) | 一种用于抑制海上多路径的gnss多源信息融合导航方法 | |
RU2524208C1 (ru) | Способ радиолокационного обнаружения маневра баллистической цели на пассивном участке траектории | |
US8791859B2 (en) | High precision radio frequency direction finding system | |
Yevseiev et al. | Development of an optimization method for measuring the Doppler frequency of a packet taking into account the fluctuations of the initial phases of its radio pulses | |
CN116774264B (zh) | 基于低轨卫星机会信号多普勒的运动目标定位方法 | |
CN103675927A (zh) | 固定翼航空电磁系统接收吊舱摆动角度的校正方法 | |
RU2658317C1 (ru) | Способ и устройство определения модуля скорости баллистического объекта с использованием выборки квадратов дальности | |
RU2634479C2 (ru) | Способ определения модуля скорости баллистического объекта с использованием выборки произведений дальности на радиальную скорость и устройство для его реализации | |
CN105372692A (zh) | 一种北斗测姿接收机的快速整周模糊度方法 | |
RU158491U1 (ru) | Радиолокационный измеритель путевой скорости неманеврирующей аэродинамической цели по выборке квадратов дальности | |
RU2509319C1 (ru) | Способ радиолокационного определения времени окончания активного участка баллистической траектории | |
RU2669773C1 (ru) | Способ определения модуля скорости неманеврирующей аэродинамической цели по выборкам измерений дальности | |
RU2644588C2 (ru) | Способ радиолокационного определения путевой скорости неманеврирующей аэродинамической цели по выборке произведений дальности на радиальную скорость и устройство для его реализации | |
RU2615783C1 (ru) | Обнаружитель маневра баллистической ракеты по фиксированной выборке квадратов дальности | |
CN114252875B (zh) | 一种成像高度计数据的高精度网格化方法 | |
RU2646854C2 (ru) | Способ радиолокационного определения вертикальной скорости баллистического объекта и устройство для его реализации | |
RU2782527C1 (ru) | Способ и устройство определения путевой скорости неманеврирующей цели с использованием оценок ее радиального ускорения | |
RU2607358C1 (ru) | Способ радиолокационного определения модуля скорости баллистического объекта | |
RU2635657C2 (ru) | Обнаружитель маневра баллистической ракеты по фиксированной выборке произведений дальности на радиальную скорость | |
RU2632476C2 (ru) | Способ обнаружения маневра баллистического объекта по выборкам произведений дальности на радиальную скорость и устройство для его реализации | |
RU195705U1 (ru) | Измеритель путевой скорости неманеврирующей аэродинамической цели по выборке произведений дальности на радиальную скорость | |
RU2714884C1 (ru) | Способ определения курса объекта на линейной траектории с использованием измерений его радиальной скорости | |
RU2776870C2 (ru) | Способ и устройство радиолокационного определения путевой скорости неманеврирующего объекта с учетом пропусков измерений дальности и радиальной скорости |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20180715 |