[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

RU2631217C2 - Способ изготовления восстановительно отожженной покрытой стальной основы для упаковочных применений и полученный упаковочный стальной продукт - Google Patents

Способ изготовления восстановительно отожженной покрытой стальной основы для упаковочных применений и полученный упаковочный стальной продукт Download PDF

Info

Publication number
RU2631217C2
RU2631217C2 RU2014143773A RU2014143773A RU2631217C2 RU 2631217 C2 RU2631217 C2 RU 2631217C2 RU 2014143773 A RU2014143773 A RU 2014143773A RU 2014143773 A RU2014143773 A RU 2014143773A RU 2631217 C2 RU2631217 C2 RU 2631217C2
Authority
RU
Russia
Prior art keywords
annealing
tape
temperature
steel
tin
Prior art date
Application number
RU2014143773A
Other languages
English (en)
Other versions
RU2014143773A (ru
Inventor
Жан Жозеф КАМАНЬЕЛЛО
Жак Хюберт Ольга Йозеф ВЕЙЕНБЕРГ
Илья ПОРТЕГИС ЗВАРТ
Original Assignee
Тата Стил Эймейден Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Тата Стил Эймейден Б.В. filed Critical Тата Стил Эймейден Б.В.
Publication of RU2014143773A publication Critical patent/RU2014143773A/ru
Application granted granted Critical
Publication of RU2631217C2 publication Critical patent/RU2631217C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • C21D1/72Temporary coatings or embedding materials applied before or during heat treatment during chemical change of surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • C21D8/0284Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0478Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0478Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment
    • C21D8/0484Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • C25D5/505After-treatment of electroplated surfaces by heat-treatment of electroplated tin coatings, e.g. by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/28Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by cold-rolling, e.g. Steckel cold mill
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2251/00Treating composite or clad material
    • C21D2251/02Clad material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/60Continuous furnaces for strip or wire with induction heating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • C25D3/06Electroplating: Baths therefor from solutions of chromium from solutions of trivalent chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12542More than one such component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • Y10T428/12569Synthetic resin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12708Sn-base component
    • Y10T428/12722Next to Group VIII metal-base component

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Wrappers (AREA)

Abstract

Изобретение относится к области металлургии. Для повышения коррозионной стойкости упаковочной ленты способ включает получение сляба из стали, содержащей, мас.%: C 0,003 или менее, N 0,004 или менее, Mn от 0,05 до 0,5, P 0,02 или менее, Si 0,02 или менее, S 0,03 или менее, Al 0,1 или менее, железо и неизбежные примеси - остальное, горячую прокатку сляба при конечной температуре выше или равной температуре фазового перехода Ar3, однократную или двукратную холодную прокатку ленты, причем при двукратной холодной прокатке проводят рекристаллизационный отжиг между стадиями холодной прокатки, электроосаждение слоя олова по меньшей мере на одну сторону ленты, причем масса покрытия слоя олова или слоев на одной или обеих сторонах ленты составляет не более 1000 мг/м2; отжиг ленты с покрытием путем ее нагрева со скоростью, превышающей 300°C/с, до температуры Та от 513 до 645°C с выдержкой при Та в течение времени ta с обеспечением преобразования слоя олова в слой сплава железо-олово, который содержит по меньшей мере 90 мас.%, предпочтительно 95 мас.% FeSn с 50 ат.% железа и 50 ат.% олова, с получением восстановленной микроструктуры стали при отсутствии рекристаллизации стальной ленты, подвергнутой холодной прокатке, и быстрое охлаждение ленты с покрытием со скоростью по меньшей мере 100°C/с. 2 н. и 8 з.п. ф-лы, 3 табл.

Description

Данное изобретение относится к способу изготовления восстановительно отожженной покрытой стальной основы для упаковочных применений и к полученному упаковочному стальному продукту.
Упаковочная сталь обычно предусматривается как однократно или двукратно сниженный по толщине покрытый оловом продукт с толщиной от 0,14 до 0,49 мм. Однократно катаный (SR)) покрытый оловом продукт является холоднокатаным непосредственно до конечного размера и затем рекристаллизационно отожженным. Рекристаллизация осуществляется непрерывным отжигом или порционным отжигом холоднокатаного материала. После отжига материал обычно подвергается дрессировке, обычно с использованием обжатия по толщине на 1-2% для улучшения свойств материала. Двукратно катаный (DR) покрытый оловом продукт получают первой холодной прокаткой с достижением промежуточного размера, рекристаллизационным отжигом и затем второй холодной прокаткой до конечного размера. Получаемый двукратно катаный продукт является более жестким, более твердым и более прочным, чем однократно катаный продукт, позволяя потребителю использовать более тонкую сталь в своем применении. Указанная непокрытая холоднокатаная, отожженная с рекристаллизацией и необязательно дрессированная одно- или двукратно катаная упаковочная сталь называется жестью (в частности, черной жестью). Первая и вторая холодные прокатки могут быть выполнены как холодная прокатка со снижением толщины на тандем-стане холодной прокатки, обычно имеющем множество (обычно 4 или 5) прокатных клетей.
Восстановительный отжиг (отжиг с возвратом) представляет собой экономически эффективный способ изготовления упаковочной стали при уровне прочности, сравнимым с сортами двукратно катаной жести, но с лучшей формуемостью и заметными значениями удлинения. Имеются три стадии в способе отжига с первой фазой, являющейся возвратом, которая дает разупрочнение металла путем частичного удаления дефектов кристаллов (главным типом которых являются дислокации) и снижения накопленной энергии, введенной в процессе деформации. Фаза возврата охватывает все эффекты отжига, которые имеют место до появления новых зерен, не содержащих напряжения. Второй фазой является рекристаллизация, где новые зерна с высокоугловой границей раздела зарождаются и растут за счет зерен с высокой накопленной энергией. Это должно быть исключено в способе и продукте согласно настоящему изобретению, поскольку это ведет к внезапному и резкому снижению прочностных свойств и увеличению значений удлинения. Третья стадия представляет собой рост зерен после рекристаллизации.
К сожалению, недостатком восстановительного отжига является то, что механические свойства являются обычно неоднородными по длине ленты, а также от ленты к ленте. Эта неоднородность в механических свойствах является следствием слишком динамичного ответа на сорт и/или колебания температуры отжиговой печи.
Целью настоящего изобретения является обеспечение улучшенного регулирования условий восстановительного отжига.
Также целью настоящего изобретения является создание восстановительно отожженного материала с воспроизводимыми свойствами.
Также целью настоящего изобретения является создание более экономически эффективной высокопрочной стали для упаковочных целей, которая имеет коррозионностойкую наружную поверхность.
Одна или более из указанных целей достигается способом изготовления восстановительно отожженной покрытой стальной основы для упаковочных применений, который содержит следующие стадии:
- обеспечение стального сляба, или ленты, подходящего для изготовления сверхнизкоуглеродистой горячекатаной ленты, имеющей содержание углерода самое большое 0,003% и одно или более из следующего:
- содержание ниобия в интервале 0,001-0,1%,
- содержание титана в интервале 0,001-0,15%,
- содержание ванадия в интервале 0,001-0,2%,
- содержание циркония в интервале 0,001-0,1%,
- содержание бора в интервале 5-50 ч./млн
для изготовления упаковочной стали горячей прокаткой при конечной температуре выше или равной температуре фазового перехода Ar3;
- холодная прокатка полученной стальной ленты с получением
- однократно катаной стальной основы или
- двукратно катаной стальной основы, которая была подвергнута рекристаллизационному отжигу между первой и второй стадиями холодной прокатки;
- электроосаждение слоя олова на одну или обе стороны однократно катаной или двукратно катаной стальной основы с получением покрытой оловом стальной основы, где масса покрытия оловянного слоя или слоев на одной или обеих сторонах основы составляет самое большое 1000 мг/м2;
- отжиг покрытой оловом стальной основы при температуре Та по меньшей мере 513°C в течение времени отжига ta для
- преобразования слоя олова в слой сплава железо-олово, который содержит по меньшей мере 80 массовых процентов (% масс.) FeSn (50% ат. железа и 50% ат. олова) и
- одновременного получения восстановленной микроструктуры, и когда рекристаллизация однократно катаной стальной основы или двукратно катаной стальной основы не имеет место (т.е. восстановительный отжиг),
- быстрое охлаждение отожженной основы.
Изобретение также включает в себя упаковочное стальное изделие, такое как жестяная банка, крышка и днище банки, содержащее сверхнизкоуглеродистую стальную основу, имеющую содержание углерода самое большое 0,003%, обеспеченную на одной или обеих сторонах слоем сплава железо-олово, который содержит по меньшей мере 80 мас.% FeSn (50% ат. железа и 50% ат. олова), где сплав железо-олово был получен при обеспечении основы на одной или обеих сторонах основы слоем олова с последующей стадией отжига при температуре Та по меньшей мере 513°C в течение времени отжига ta с образованием слоя сплава железо-олово, и где стадия отжига одновременно обеспечивает восстановительно отожженную основу с последующим быстрым охлаждением отожженной основы.
Предпочтительные варианты предусматриваются в зависимых пунктах формулы изобретения.
Так, заявляется способ изготовления упаковочной стальной ленты с покрытием, включающий
- получение сляба из стали, содержащей углерод не более 0,003 мас.% и по меньшей мере один из элементов, выбранный из, в мас.%:
ниобий 0,001-0,1
титан 0,001-0,15
ванадий 0,001-0,2
цирконий 0,001-0,1
бор 5-50 ч./млн, а также содержащей, в мас.%:
азот 0,004 или менее, и/или
марганец 0,05-0,5, и/или
фосфор 0,02 или менее, и/или
кремний 0,02 или менее, и/или
серу 0,03 или менее, и/или
алюминий 0,1 или менее, и/или
железо и неизбежные примеси - остальное, горячую прокатку сляба при конечной температуре выше или равной температуре фазового перехода Ar3,
- однократную или двукратную холодную прокатку горячекатаной стальной ленты с получением холоднокатаной стальной ленты, причем при двукратной холодной прокатке проводят рекристаллизационный отжиг между первой и второй стадиями холодной прокатки,
- электроосаждение слоя олова по меньшей мере на одну сторону холоднокатаной ленты с получением стальной ленты с покрытием, причем масса покрытия слоя олова или слоев на одной или обеих сторонах стальной ленты составляет не более 1000 мг/м2;
- отжиг стальной ленты с покрытием путем ее нагрева со скоростью, превышающей 300°C/с, до температуры Та от 513 до 645°C с выдержкой при Та в течение времени ta с обеспечением преобразования слоя олова в слой сплава железо-олово, который содержит по меньшей мере 90 мас.%, предпочтительно 95 мас.% FeSn с 50% ат. железа и 50% ат. олова, с получением восстановленной микроструктуры стали при отсутствии рекристаллизации стальной ленты, подвергнутой холодной прокатке, и
- быстрое охлаждение полученной отожженной стальной ленты с покрытием со скоростью по меньшей мере 100°C/с.
Время ta при отжиге предпочтительно составляет не более 4 с.
Целесообразно, если отжиг осуществляют при выдерживании стальной ленты с покрытием в восстановительной водородсодержащей атмосфере в виде HNX или инертной газовой атмосфере перед охлаждением с использованием неокислительной или слабоокислительной охлаждающей среды и получением на поверхности упаковочной ленты прочного стабильного оксида.
В способе может быть предусмотрена стадия, на которой осуществляют быстрое охлаждение стальной ленты с покрытием водой в интервале температур от комнатной температуры до 80°C, предпочтительно от комнатной температуры до 60°C, причем охлаждение проводят с обеспечением равномерной скорости охлаждения по ширине ленты.
Также предпочтительно, если отжиг стальной ленты с покрытием включает нагрев со скоростью, превышающей 300°C/с, в водородсодержащей атмосфере в виде HNX с использованием индукционного нагревательного устройства, и/или выдержку при температуре отжига для равномерного распределения температуры по ширине ленты, и/или охлаждение, предпочтительно, в восстановительной газовой атмосфере в виде HNX, и/или охлаждение предпочтительно водой при использовании распылительных форсунок, причем вода имеет минимальное содержание растворенного кислорода и/или имеет температуру в интервале от комнатной температуры до 60°C, при экранировании от кислорода стальной ленты с покрытием слоем или слоями олова за счет поддержания инертной или восстановительной газовой атмосферы в виде HNX, перед охлаждением водой.
Предпочтительно, если масса покрытия слоя или слоев олова на одной или обеих сторонах стальной ленты составляет по меньшей мере 100 и не более 600 мг/м2 поверхности ленты.
В одном варианте осуществления, сталь ленты содержит ниобий по меньшей мере 0,02 и не более 0,08 мас.%, предпочтительно по меньшей мере 0,03 и не более 0,06 мас.%, и/или марганец по меньшей мере 0,2 мас.% и не более 0,4 мас.%.
Может быть предусмотрено, что стальная лента с покрытием снабжена дополнительным органическим покрытием, состоящим из термоотверждающегося или термопластичного однослойного или многослойного полимерного покрытия, причем, предпочтительно, термопластичное полимерное покрытие представляет собой полимерное покрытие, содержащее по меньшей мере один слой с использованием термопластичных смол в виде сложных полиэфиров или полиолефинов, акриловой смолы, полиамидов, поливинилхлоридов, фторуглеродной смолы, поликарбонатов, смолы стирольного типа, АБС-смолы, хлорированных простых полиэфиров, иономеров, уретановых смол и функционализированных полимеров, и/или их сополимеров и/или смесей.
Целесообразно, если стальную ленту с покрытием подвергают дрессировке.
Также предлагается упаковочная стальная лента с покрытием, полученная упомянутым способом.
Далее приводятся пояснения в отношении признаков настоящего изобретения. В способе согласно настоящему изобретению
предусматривается стальной сляб, или лента, подходящий для сверхнизкоуглеродистой горячекатаной ленты для изготовления горячей прокаткой при конечной температуре выше или равной температуре фазового перехода Ar3. Сверхнизкоуглеродистая сталь в контексте данного изобретения имеет содержание углерода самое большое 0,003%. В варианте изобретения сталью является сталь, не содержащая примесей внедрения (IF сталь). В указанной стали элементы примесей внедрения - углерод и азот связаны с элементами, подобными ниобию.
Горячекатаная сталь подвергается холодной прокатке с получением: i) однократно катаной стальной основы (т.е. ленты, на которую может наноситься покрытие) или ii) двукратно катаной стальной основы, которая подвергается рекристаллизационному отжигу между первой и второй стадиями холодной прокатки.
На холоднокатаные полностью твердые основы затем наносится слой олова. Основы называются полностью твердыми основами, поскольку однократно катаная не подвергается рекристаллизационному отжигу после стадии холодной прокатки, и двукратно катаная основа не подвергается рекристаллизационному отжигу после второй стадии холодной прокатки. Так что микроструктура основы по-прежнему сильно деформирована.
После нанесения покрытия олова стальная основа с покрытием олова отжигается при температуре Та по меньшей мере 513°C в течение времени отжига ta с преобразованием слоя олова в слой сплава железо-олово, который содержит по меньшей мере 80 мас.% FeSn (50% ат. железа и 50% ат. олова), и одновременно получается восстановленная микроструктура, причем не имеет место рекристаллизация однократно катаной стальной основы или двукратно катаной стальной основы (т.е. восстановительный отжиг). После указанного комбинированного диффузионного/восстановительного отжига отожженная основа быстро охлаждается.
Температура Та и время отжига ta являются относительно высокой и коротким, так что диффузионный отжиг имеет место одновременно с восстановительным отжигом основы. Снижение предела прочности и предела текучести остается ограниченным благодаря короткому времени отжига, но восстановительный эффект дает значительное увеличение значений удлинения. Параметры способа контролируются очень точно, поскольку окно время-температура способа для диффузионного отжига является критическим с точки зрения получения желаемых количеств FeSn (50:50) в диффузионном слое сплава. Поскольку он является слоем, который обеспечивает защиту от коррозии, контроль указанных параметров является критическим. Степень контроля T-t-профиля также обеспечивает, что способ восстановления, который является термически активированным способом, является воспроизводимым по длине и ширине ленты и от ленты к ленте.
Под термином «восстановленная микроструктура» понимается такая термообработанная холоднокатаная микроструктура, которая показывает минимальную или отсутствие рекристаллизации, такой возможной рекристаллизации, ограниченной локализованными зонами, такими как на краях ленты. Предпочтительно, структура является полностью нерекристаллизованной. Микроструктура упаковочной стали является поэтому, по существу, или полностью нерекристаллизованной. Указанная восстановленная микроструктура обеспечивает сталь со значительно увеличенной деформационной способностью за счет ограниченного снижения прочности.
Авторами изобретения установлено, что необходимо подвергать диффузионному отжигу покрытую оловом стальную основу при температуре (Та) по меньшей мере 513°C, чтобы получить желаемый слой покрытия железо-олово. Время (ta) диффузионного отжига при температуре (Та) диффузионного отжига выбирается так, чтобы произошло преобразование слоя олова в слой железо-олово. Преобладающим и, предпочтительно, единственным компонентом сплава железо-олово в слое железо-олово является FeSn (т.е. 50 атомных процентов (% ат.) железа и 50% ат. олова). Должно быть отмечено, что комбинация времени и температуры диффузионного отжига является взаимозаменяемой в некоторой степени. Высокая Та и короткое ta дают в результате образование одинакового слоя сплава железо-олова по сравнению с низкой Та и длительным ta. Требуется минимальная Та 513°C, потому что при более низких температурах желательный слой (50:50) FeSn не образуется. Также диффузионный отжиг не должен проходить при постоянной температуре, но температурный профиль также должно быть таким, что достигается пиковая температура. Важно, что минимальная Та 513°C поддерживается в течение достаточно длительного времени с достижением желательного количества FeSn в диффузионном слое железо-олово. Так что диффузионный отжиг может иметь место при постоянной температуре Та в течение некоторого периода времени, или диффузионный отжиг может, например, включать пиковую температуру Та металла. В последнем случае температура диффузионного отжига не является постоянной. Было установлено, что предпочтительно использовать температуру Та диффузионного отжига в интервале 513-645°C, предпочтительно, в интервале 513-625°C. При температуре ниже Та способ восстановления проходит более медленно. Максимальная температура ограничивается окном образования FeSn и температурой рекристаллизации деформированной основы.
В варианте изобретения максимальная температура отжига ограничивается температурой 625°C, и, предпочтительно, максимальная температура отжига ограничивается температурой 615°C.
Авторами изобретения установлено, что самое высокое содержание FeSn в слое сплава железо-олово было получено, когда температура отжига была выбрана, чтобы быть по меньшей мере 550°C.
В предпочтительном варианте предусмотрен способ изготовления покрытой основы для упаковочных применений, в котором время при Та составляет самое большое 4 с, предпочтительно, самое большое 2 с, и, более предпочтительно, в котором отсутствует время выдержки при Та. В последнем случае диффузионный отжиг имеет место при нагревании основы до пиковой температуры Та металла, после чего основа охлаждается. Короткое время выдержки при Та обеспечивает получение слоя сплава железо-олово на соответственно модифицированной традиционной линии нанесения покрытия олова. Точный контроль указанных параметров обеспечивает воспроизводимый способ восстановительного отжига.
Механические свойства восстановительно отожженной стали зависят от состава сорта стали, обжатия при холодной прокатке и разности между температурой восстановительного отжига и температурой рекристаллизации. Поэтому конечные механические свойства могут регулироваться, в принципе, ограничением высвобождения накопленной энергии при выборе правильного цикла отжига. Более конкретно, среди стальных листов, выполненных из одинакового сорта и имеющих одинаковую историю переработки (горячая прокатка, обжатие холодной прокаткой) и эквивалентные циклы отжига, высвобождение накопленной энергии может быть оценено с использованием следующей формулы:
М=(Та+273)(log ta+20)×10-3,
где Та - температура в °C. Стальные листы с подобным коэффициентом М имеют подобные механические свойства. При выборе правильных значений для Та и ta могут быть обеспечены требуемые свойства восстановительно отожженной основы и слоя сплава железо-олово.
В предпочтительном варианте слой сплава железо-олово содержит по меньшей мере 85% мас. FeSn, предпочтительно, по меньшей мере 90% мас., более предпочтительно, по меньшей мере 95% мас. Слой FeSn является слоем, полностью покрывающим поверхность основы. Чем больше фракция FeSn, тем лучше будет защита от коррозии основы. Хотя теоретически слой сплава железо-олово состоит только из FeSn, оказывается трудным предотвратить присутствие очень небольших долей других соединений, таких как α-Sn, β-Sn, Fe3Sn или оксиды. Однако, было установлено, что указанные небольшие доли других соединений не имеют воздействия на характеристики продукта никаким образом. Должно быть отмечено, что на основе присутствуют не иные, чем FexSny, а именно FeSn-слой. Имеется также не вошедшее в сплав олово, остающееся на основе.
Время при Та может не превышать критического времени, чтобы избежать возникновения рекристаллизации. В предпочтительном варианте предусматривается способ изготовления покрытой основы для упаковки, в котором время при Та составляет самое большое 4 с, предпочтительно, самое большое 2 с, и, более предпочтительно, в котором отсутствует время выдержки при Та. В последнем случае диффузионный отжиг имеет место при нагревании основы до пиковой температуре Та металла, после чего основа охлаждается. Короткое время выдержки при Та обеспечивает получение слоя сплава железо-олово с восстановленной основой на соответственно модифицированной традиционной линии нанесения покрытия олова, кроме того, рекристаллизация деформированной основы предотвращается.
В варианте изобретения предусматриваются слой или слои сплава железо-олово со слоем покрытия хром-металл - оксид хрома, полученным способом электроосаждения трехвалентного хрома, как описано в одновременно рассматриваемой заявке (ЕР 12162425.9).
В варианте изобретения предусматривается способ, в котором отжиг осуществляется в восстановительной газовой атмосфере, такой как HNX, при выдерживании покрытой основы в восстановительной или инертной газовой атмосфере перед охлаждением с использованием неокислительной или слабоокислительной охлаждающей среды с тем, чтобы получить прочный стабильный поверхностный оксид.
В варианте изобретения быстрое охлаждение после диффузионного/восстановительного отжига достигается с помощью резкого охлаждения водой, где вода, используемая для резкого охлаждения, имеет температуру в интервале от комнатной температуры до ее температуры кипения. Важно поддерживать равномерную скорость охлаждения по ширине ленты в процессе охлаждения, чтобы исключить риски деформирования ленты благодаря короблению при охлаждении. Это может быть достигнуто путем (заглубленной) распылительной системы, которая имеет целью создание достаточного образца охлаждения на поверхности ленты. Для обеспечения равномерной скорости охлаждения предпочтительно использовать охлаждающую воду с температурой в интервале от комнатной температуры до 60°C для предотвращения того, чтобы вода достигла температуры кипения при контакте с горячей стальной лентой. Последнее может дать в результате возникновение эффектов локализованного (нестабильного) пленочного кипения, что может привести к неравномерным скоростям охлаждения, потенциально ведущим к образованию гофр охлаждения.
В варианте изобретения способ отжига содержит i) использование нагревательного устройства, способного создавать скорость нагревания, предпочтительно, превышающую 300°C/с, например, индукционного нагревательного устройства, в водородсодержащей атмосфере, такой как HNX, и/или ii) последующее томление в нагретом состоянии при температуре отжига для обеспечения равномерного распределения температуры по ширине ленты, и/или iii) непосредственно после отжига - быстрое охлаждение при скорости охлаждения по меньшей мере 100°C/с, и/или iv), в котором охлаждение, предпочтительно, осуществляется в восстановительной газовой атмосфере, такой как HNX-атмосфера, и/или v) охлаждение, предпочтительно, осуществляется резким охлаждением водой при использовании (заглубленных) распылительных форсунок, где вода, используемая для резкого охлаждения, имеет минимальное содержание растворенного кислорода и имеет температуру в интервале от комнатной температуры до 60°C, при удержании основы со слоем (слоями) сплава железо-олово, экранированной от кислорода при поддержании инертной или восстановительной газовой атмосферы, такой как HNX-газ, перед резким охлаждением.
В варианте изобретения масса покрытия слоя или слоев олова на одной или обеих сторонах основы составляет по меньшей мере 100 и/или самое большое 600 мг/м2 поверхности основы.
В варианте изобретения сталь имеет (в % мас.):
- содержание азота 0,004 или менее, и/или
- содержание марганца 0,05-0,5, и/или
- содержание фосфора 0,02 или менее, и/или
- содержание кремния 0,02 или менее, и/или
- содержание серы 0,03 или менее, и/или
- содержание алюминия 0,1 или менее, и/или
- остаток, который составляет железо и неизбежные примеси.
В предпочтительном варианте изобретения содержание ниобия составляет по меньшей мере 0,02 и/или самое большое 0,08%, и содержание марганца составляет по меньшей мере 0,2 и/или самое большое 0,4%. Предпочтительно содержание ниобия составляет по меньшей мере 0,03 и/или самое большое 0,06%.
При выборе содержания углерода 0,003% или ниже и подходящего высокого содержания ниобия сталь становится не содержащей примесей внедрения, что означает, что углерод и азот в стали становятся соединенными с ниобием. Это дает сталь, на свойства которой не влияет явление дисперсионного твердения. Атомы внедрения, такие как углерод и азот, имеют заметное влияние на деформационное поведение стали. Скачкообразная текучесть стали сильно связана с примесями внедрения и может дать в результате линии Чернова-Людерса, которые являются вредными для внешнего вида поверхности и могут также способствовать преждевременному разрушению в процессе формования или неоднородному упругому последействию после деформации. Для борьбы с вредными эффектами примесей внедрения, стали не содержащие примесей внедрения являются, по существу, свободными от растворенных углерода и азота. Указанные «не содержащие примесей внедрения» стали основаны на осаждении в твердом состоянии карбидов, нитридов и карбосульфидов со снижением содержания растворенных примесей внедрения. Кроме того, общее содержание углерода и азота является сниженным до чрезвычайно низких уровней, обычно менее 0,003% мас. углерода и менее 0,006% мас. азота с помощью современной технологии изготовления стали.
В варианте покрытая основа дополнительно обеспечивается органическим покрытием, состоящим либо из термоотверждающегося органического покрытия, либо из термопластичного однослойного покрытия, либо из термопластичного многослойного полимерного покрытия.
В предпочтительном варианте термопластичное полимерное покрытие представляет собой систему полимерного покрытия, содержащую один или более слоев, содержащих использование термопластичных смол, таких как сложные полиэфиры или полиолефины, но могут также включать акриловые смолы, полиамиды, поливинилхлорид, фторуглеродные смолы, поликарбонаты, смолы стирольного типа, АБС-смолы, хлорированные простые полиэфиры, иономеры, уретановые смолы и функционилизированные полимеры. Для ясности:
- Сложный полиэфир представляет собой полимер, состоящий из дикарбоновой кислоты и гликоля. Примеры подходящих дикарбоновых кислот включают в себя терефталевую кислоту, изофталевую кислоту, нафталиновую дикарбоновую кислоту и циклогексановую дикарбоновую кислоту. Примеры подходящих гликолей включают в себя этиленгликоль, пропандиол, бутандиол, гександиол, циклогександиол, циклогександиметанол, неопентилгликоль и т.д. Более двух видов дикарбоновой кислоты или гликоля могут использоваться вместе.
- Полиолефины включают в себя, например полимеры или сополимеры этилена, пропилена, 1-бутена, 1-пентена, 1-гексена или 1-октена.
- Акриловые смолы включают в себя, например, полимеры или сополимеры акриловой кислоты, метакриловой кислоты, эфира акриловой кислоты, эфира метакриловой кислоты или акриламида.
- Полиамидные смолы включают в себя, например, так называемые Nylon 6, Nylon 66, Nylon 46, Nylon 610 и Nylon 11.
- Поливинилхлорид включает в себя гомополимеры и сополимеры, например, с этиленом или винилацетатом.
- Фторуглеродные смолы включают в себя, например, тетрафторированный полиэтилен, тетрафторированный монохлорированный полиэтилен, гексафторированную этилен-пропиленовую смолу, поливинилфторид и поливинилиденфторид.
- Функционализированные полимеры, например, привитой сополимеризацией малеинового ангидрида, включают в себя, например, модифицированные полиэтилены, модифицированные полипропилены, модифицированные этиленакрилатные сополимеры и модифицированные этиленвинилацетаты.
Также могут использоваться смеси двух или более смол. Кроме того, смола может быть смешана с антиоксидантом, термостабилизатором, УФ-стабилизатором, пластификатором, пигментом, зародышеобразователем, антистатиком, смазкой, веществом, препятствующим слипанию, и т.д. Показано, что использование таких систем покрытий термопластичного полимера обеспечивает превосходные характеристики в получении тары и использовании тары, такие как срок службы.
Согласно второму аспекту предусматривается упаковочная сталь, которая содержит сверхнизкоуглеродистую стальную основу, обеспеченную на одной или обеих сторонах слоем сплава железо-олово, который содержит по меньшей мере 80 массовых процентов (% масс.) FeSn (50% ат. железа и 50% ат. олова), где слой сплава железо-олово получают при обеспечении основы на одной или обеих сторонах слоем олова с последующей стадией отжига при температуре Та по меньшей мере 513°C в течение времени ta с образованием слоя сплава железо-олово, и где стадия отжига одновременно обеспечивает восстановительно отожженную основу с последующим быстрым охлаждением отожженной основы.
Указанная сталь обеспечивается как коррозионностойким покрытием в форме слоя сплава железо-олово, так и хорошим соотношением прочность/удлинение как результат основы из восстановительно отожженной полностью твердой холоднокатаной (одно- или двукратно) стали.
В варианте изобретения предусматривается упаковочный стальной продукт, в котором стальная основа содержит (в % мас.):
0,003 или менее С,
0,004 или менее N,
0,05-0,5 Mn,
0,02 или менее Р,
0,02 или менее Si,
0,03 или менее S,
0,1 или менее А1,
одно или более из 0,001-0,1% Nb, 0,001-0,15% Ti, 0,001-0,2% V, 0,001-0,1% Zr, 5-50 ч./млн В,
остальное составляет железо и неизбежные примеси.
В предпочтительном варианте предусматривается упаковочный стальной продукт, в котором:
- содержание ниобия составляет по меньшей мере 0,02 и/или самое большое 0,08%, предпочтительно, по меньшей мере 0,03 и/или самое большое 0,06%, и/или
- содержание марганца составляет по меньшей мере 0,2 и/или самое большое 0,4%.
Предпочтительно, стальная основа представляет собой сталь, не содержащую примесей внедрения.
Не предполагается, что будут иметься проблемы формы ленты со сталью, не содержащей примесей внедрения, после способа восстановительного отжига. Плоскостность ленты зависит от внутренних напряжений, которые, в свою очередь, происходят от негомогенной микроструктуры благодаря разбросу температуры отжига. Разброс механических свойств является замедленным для сорта Nb-стали, не содержащей примесей внедрения. При разбросе температуры отжига изменение механических свойств является относительно небольшим (например, 35 МПа для изменения температуры на 50°C), тогда как для низкоуглеродистой стали различие примерно 70 МПа ожидается для Rp и Rm для восстановительно отожженной низкоуглеродистой стали. Так что низкоуглеродистные стали являются более критическими для изготовления, чем сорта стали, не содержащей примесей внедрения (IF сталь).
Однако, если форма ленты или текстура поверхности (например, шероховатость) будут требовать некоторых незначительных коррекций, или если продукт потребует создания условий, в которых требуется ограничить предел текучести, тогда изобретение осуществляется в способе, в котором покрытая и отожженная основа дрессировке или подвергается выравниванию напряжений, в котором обжатие основы составляет 0,5-3% при дрессировке или эквивалентное обжатие для выравнивания напряжений. Стали, не содержащие примесей внедрения, не твердеют дисперсионно как результат отсутствия свободных примесей внедрения, и поэтому единственной причиной дрессировки сталей, не содержащих примесей внедрения, будет коррекция формы или текстуры поверхности. Дрессировка может быть осуществлена после того, как основу покрывают термоотверждающимся органическим покрытием или термопластичным однослойным покрытием, или термопластичным многослойным полимерным покрытием.
Настоящее изобретение теперь будет дополнительно пояснено с помощью следующих неограничительных примеров.
Figure 00000001
Figure 00000002
При выбранном времени отжига окно восстановительного отжига находится между температурой начала рекристаллизации и температурой, от которой считается, что материал ведет себя как полностью твердый. Температура, от которой считается, что сталь ведет себя как полностью твердый материал, оценивается как на 200°C ниже температуры начала рекристаллизации. Температура начала рекристаллизации для Nb-40 была определена как 710°C анализом микроструктуры и механических свойств, где полностью твердые образцы были обработаны при различных температурах в течение 60 с. Поэтому интервал восстановительного отжига для сорта Nb-40 оценивается как от 710 до 510°C. В принципе, каждая температура выше 510°C может использоваться для изготовления восстановительно отожженной Nb-40-стали. Однако, минимальная температура для изготовления желаемого слоя сплава железо-олово составляет по меньшей мере 513°C. Для поддержания низкого времени отжига, предпочтительно, проводить отжиг при температуре по меньшей мере 550°C. Эксперименты были также проведены при самой высокой допустимой температуре 625°C в течение 4 с. Согласно формуле, приведенной выше, указанные условия соответствуют отжигу при 576°C в течение 60 с на стандартной линии непрерывного отжига.
Используемыми параметрами отжига были скорость нагрева до Та: 300°C/с, Та=550-625°C, ta=4-60 с, скорость охлаждения после отжига 100°C/с (таблица 3).
Figure 00000003
Nb40 - сорт представляет собой сорт IF стали. Поэтому не ожидается, что проблемы формы ленты имеют место после способа восстановительного отжига.

Claims (34)

1. Способ изготовления упаковочной стальной ленты с покрытием, включающий получение сляба из стали, содержащей углерод не более 0,003 мас.% и по меньшей мере один из элементов, выбранный из, в мас.%:
ниобий 0,001-0,1
титан 0,001-0,15
ванадий 0,001-0,2
цирконий 0,001-0,1
бор 5-50 ч./млн,
а также содержащей, в мас.%:
азот 0,004 или менее, и/или
марганец 0,05-0,5, и/или
фосфор 0,02 или менее, и/или
кремний 0,02 или менее, и/или
серу 0,03 или менее, и/или
алюминий 0,1 или менее, и/или
железо и неизбежные примеси - остальное,
горячую прокатку сляба при конечной температуре выше или равной температуре фазового перехода Ar3,
однократную или двукратную холодную прокатку горячекатаной стальной ленты с получением холоднокатаной стальной ленты,
причем при двукратной холодной прокатке проводят рекристаллизационный отжиг между первой и второй стадиями холодной прокатки,
электроосаждение слоя олова по меньшей мере на одну сторону холоднокатаной ленты с получением стальной ленты с покрытием, причем масса покрытия слоя олова или слоев на одной или обеих сторонах стальной ленты составляет не более 1000 мг/м2;
отжиг стальной ленты с покрытием путем ее нагрева со скоростью, превышающей 300°C/с, до температуры Та от 513 до 645°C с выдержкой при Та в течение времени ta с обеспечением преобразования слоя олова в слой сплава железо-олово, который содержит по меньшей мере 90 мас.%, предпочтительно 95 мас.% FeSn с 50 ат.% железа и 50 ат.% олова, с получением восстановленной микроструктуры стали при отсутствии рекристаллизации стальной ленты, подвергнутой холодной прокатке, и
быстрое охлаждение полученной отожженной стальной ленты с покрытием со скоростью по меньшей мере 100°C/с.
2. Способ по п. 1, в котором время ta при отжиге составляет не более 4 с.
3. Способ по п. 1 или 2, в котором отжиг осуществляют при выдерживании стальной ленты с покрытием в восстановительной водородсодержащей атмосфере в виде HNX или инертной газовой атмосфере перед охлаждением с использованием неокислительной или слабоокислительной охлаждающей среды и получением на поверхности упаковочной ленты прочного стабильного оксида.
4. Способ п. 1 или 2, в котором осуществляют быстрое охлаждение стальной ленты с покрытием водой в интервале температур от комнатной температуры до 80°C, предпочтительно от комнатной температуры до 60°C, причем охлаждение проводят с обеспечением равномерной скорости охлаждения по ширине ленты.
5. Способ п. 1 или 2, в котором отжиг стальной ленты с покрытием включает нагрев со скоростью, превышающей 300°C/с, в водородсодержащей атмосфере в виде HNX с использованием индукционного нагревательного устройства, и/или
выдержку при температуре отжига для равномерного распределения температуры по ширине ленты, и/или
охлаждение, предпочтительно, в восстановительной газовой атмосфере в виде HNX, и/или
охлаждение, предпочтительно водой при использовании распылительных форсунок, причем вода имеет минимальное содержание растворенного кислорода и/или имеет температуру в интервале от комнатной температуры до 60°C, при экранировании от кислорода стальной ленты с покрытием слоем или слоями олова за счет поддержания инертной или восстановительной газовой атмосферы в виде HNX, перед охлаждением водой.
6. Способ п. 1 или 2, в котором масса покрытия слоя или слоев олова на одной или обеих сторонах стальной ленты составляет по меньшей мере 100 и не более 600 мг/м2 поверхности ленты.
7. Способ п. 1 или 2, в котором сталь ленты содержит
ниобий по меньшей мере 0,02 и не более 0,08 мас.%, предпочтительно по меньшей мере 0,03 и не более 0,06 мас.%, и/или
марганец по меньшей мере 0,2 мас.% и не более 0,4 мас.%.
8. Способ п. 1 или 2, в котором стальная лента с покрытием снабжена дополнительным органическим покрытием, состоящим из термоотверждающегося или термопластичного однослойного или многослойного полимерного покрытия, причем, предпочтительно, термопластичное полимерное покрытие представляет собой полимерное покрытие, содержащее по меньшей мере один слой с использованием термопластичных смол в виде сложных полиэфиров или полиолефинов, акриловой смолы, полиамидов, поливинилхлоридов, фторуглеродной смолы, поликарбонатов, смолы стирольного типа, АБС-смолы, хлорированных простых полиэфиров, иономеров, уретановых смол и функционализированных полимеров, и/или их сополимеров и/или смесей.
9. Способ п. 1 или 2, в котором стальную ленту с покрытием подвергают дрессировке.
10. Упаковочная стальная лента с покрытием, полученная способом по любому из пп. 1-9.
RU2014143773A 2012-03-30 2013-03-28 Способ изготовления восстановительно отожженной покрытой стальной основы для упаковочных применений и полученный упаковочный стальной продукт RU2631217C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP12162441.5 2012-03-30
EP12162441 2012-03-30
PCT/EP2013/056781 WO2013144321A1 (en) 2012-03-30 2013-03-28 A process for manufacturing a recovery annealed coated steel substrate for packaging applications and a packaging steel product produced thereby

Publications (2)

Publication Number Publication Date
RU2014143773A RU2014143773A (ru) 2016-05-27
RU2631217C2 true RU2631217C2 (ru) 2017-09-19

Family

ID=48040236

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2014143773A RU2631217C2 (ru) 2012-03-30 2013-03-28 Способ изготовления восстановительно отожженной покрытой стальной основы для упаковочных применений и полученный упаковочный стальной продукт
RU2014143507A RU2633125C2 (ru) 2012-03-30 2013-03-28 Способ производства подвергнутой восстановительному отжигу стальной подложки с покрытием для упаковочных применений и изделие из упаковочной стали, полученное с его помощью

Family Applications After (1)

Application Number Title Priority Date Filing Date
RU2014143507A RU2633125C2 (ru) 2012-03-30 2013-03-28 Способ производства подвергнутой восстановительному отжигу стальной подложки с покрытием для упаковочных применений и изделие из упаковочной стали, полученное с его помощью

Country Status (14)

Country Link
US (2) US9920445B2 (ru)
EP (2) EP2831294B1 (ru)
JP (2) JP6242851B2 (ru)
KR (2) KR102074532B1 (ru)
CN (2) CN104204235B (ru)
BR (2) BR112014024178B1 (ru)
CA (2) CA2867975C (ru)
DK (1) DK2831294T3 (ru)
ES (2) ES2598853T3 (ru)
MX (2) MX363595B (ru)
RS (2) RS55255B1 (ru)
RU (2) RU2631217C2 (ru)
WO (2) WO2013144321A1 (ru)
ZA (1) ZA201406748B (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2689491C1 (ru) * 2018-07-30 2019-05-28 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства тонких холоднокатаных полос для нанесения полимерного покрытия
RU2721263C1 (ru) * 2019-12-23 2020-05-18 Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") Способ производства холоднокатаного отожженного листового проката из if-стали

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2529122T3 (es) * 2010-10-06 2015-02-17 Tata Steel Ijmuiden Bv Proceso para producir una capa de hierro y estaño sobre un sustrato de acero de embalaje
DE102011056847B4 (de) * 2011-12-22 2014-04-10 Thyssenkrupp Rasselstein Gmbh Stahlblech zur Verwendung als Verpackungsstahl sowie Verfahren zur Herstellung eines Verpackungsstahls
US9920445B2 (en) 2012-03-30 2018-03-20 Tata Steel Ijmuiden Bv Process for manufacturing a recovery annealed coated steel substrate for packaging applications and a packaging steel product produced thereby
WO2017203310A1 (en) 2016-05-24 2017-11-30 Arcelormittal Method for producing a twip steel sheet having an austenitic microstructure
WO2017203309A1 (en) * 2016-05-24 2017-11-30 Arcelormittal Twip steel sheet having an austenitic matrix
CN105951026A (zh) * 2016-05-25 2016-09-21 广州市南鸿散热器有限公司 一种铜铂热镀锡炉装置
RU2699879C1 (ru) * 2018-12-13 2019-09-11 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Способ получения композиционного материала на основе ванадиевого сплава и стали
CN112376110A (zh) * 2020-11-03 2021-02-19 江苏苏讯新材料科技股份有限公司 一种电镀铬钢带生产过程中的判废返修工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3174917A (en) * 1961-07-10 1965-03-23 United States Steel Corp Method of making tin plate
DE1483247A1 (de) * 1964-09-23 1969-03-20 Inland Steel Co Hochfeste Stahlbleche oder -streifen
RU2082776C1 (ru) * 1995-05-30 1997-06-27 Акционерное общество "Магнитогорский металлургический комбинат" Способ производства белой жести
RU2208485C2 (ru) * 1996-12-19 2003-07-20 Хоговенс Стал Б.В. Способ получения стальной полосы или листа
RU2381293C2 (ru) * 2005-06-29 2010-02-10 Баошан Айрон Энд Стил Ко., Лтд Мягкая черная жесть для лужения и способ для ее производства

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2357126A (en) * 1938-05-05 1944-08-29 John S Nachtman Alloying and fusing process
GB1123189A (en) * 1965-09-20 1968-08-14 Yawata Iron & Steel Co A method of manufacturing thin sheet steel for canning
JPS59100285A (ja) * 1982-11-30 1984-06-09 Nippon Kokan Kk <Nkk> 溶接缶用表面処理鋼板
US4726208A (en) 1986-04-29 1988-02-23 Weirton Steel Corporation Flat-rolled steel can stock manufacture
JP3023385B2 (ja) * 1991-03-11 2000-03-21 川崎製鉄株式会社 缶用鋼板の製造法
JP3449003B2 (ja) * 1994-12-20 2003-09-22 Jfeスチール株式会社 缶用鋼板とその製造方法
JPH09174186A (ja) * 1995-12-22 1997-07-08 Nippon Steel Corp 耐食性に優れたイージーオープン蓋用鋼板および製造方法
JPH09209083A (ja) * 1996-02-08 1997-08-12 Nkk Corp 耐二次加工脆性と耐食性の優れた2ピース電池缶用鋼板
JP3845994B2 (ja) * 1996-12-05 2006-11-15 Jfeスチール株式会社 開蓋性と開口部安全性およびスコア加工部の耐さび性に優れたオープンエンドの製造方法
JP3261069B2 (ja) * 1997-05-20 2002-02-25 東洋鋼鈑株式会社 耐内容物性に優れる表面処理鋼板、ポリエステル樹脂被覆鋼板、およびその製造方法
CA2384782A1 (en) 1999-09-14 2001-03-22 Merck Frosst Canada & Co. Carboxylic acids and acylsulfonamides, compositions containing such compounds and methods of treatment
JP2002212673A (ja) * 2001-01-19 2002-07-31 Toyo Kohan Co Ltd 異方性の優れた電池外筒缶用鋼板及びその製造法
KR100946132B1 (ko) * 2002-09-30 2010-03-10 주식회사 포스코 주석도금 원판의 제조방법
JP4552775B2 (ja) * 2005-06-30 2010-09-29 Jfeスチール株式会社 異方性の小さい鋼板およびその製造方法
JP5076544B2 (ja) * 2007-02-21 2012-11-21 Jfeスチール株式会社 缶用鋼板の製造方法
EP2459756B1 (en) * 2009-07-30 2016-05-11 Tata Steel IJmuiden BV Process for producing an ultra-low-carbon steel slab, strip or sheet
ES2529122T3 (es) * 2010-10-06 2015-02-17 Tata Steel Ijmuiden Bv Proceso para producir una capa de hierro y estaño sobre un sustrato de acero de embalaje
US9920445B2 (en) 2012-03-30 2018-03-20 Tata Steel Ijmuiden Bv Process for manufacturing a recovery annealed coated steel substrate for packaging applications and a packaging steel product produced thereby

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3174917A (en) * 1961-07-10 1965-03-23 United States Steel Corp Method of making tin plate
DE1483247A1 (de) * 1964-09-23 1969-03-20 Inland Steel Co Hochfeste Stahlbleche oder -streifen
RU2082776C1 (ru) * 1995-05-30 1997-06-27 Акционерное общество "Магнитогорский металлургический комбинат" Способ производства белой жести
RU2208485C2 (ru) * 1996-12-19 2003-07-20 Хоговенс Стал Б.В. Способ получения стальной полосы или листа
RU2381293C2 (ru) * 2005-06-29 2010-02-10 Баошан Айрон Энд Стил Ко., Лтд Мягкая черная жесть для лужения и способ для ее производства

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2689491C1 (ru) * 2018-07-30 2019-05-28 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства тонких холоднокатаных полос для нанесения полимерного покрытия
RU2721263C1 (ru) * 2019-12-23 2020-05-18 Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") Способ производства холоднокатаного отожженного листового проката из if-стали

Also Published As

Publication number Publication date
ES2802828T3 (es) 2021-01-21
RS55255B1 (sr) 2017-02-28
EP2831294A1 (en) 2015-02-04
WO2013144321A1 (en) 2013-10-03
CA2867975C (en) 2017-06-13
MX2014011715A (es) 2015-11-13
RU2633125C2 (ru) 2017-10-11
DK2831294T3 (da) 2016-11-14
KR20140140578A (ko) 2014-12-09
CN104204234A (zh) 2014-12-10
CA2867972C (en) 2017-06-13
WO2013144320A8 (en) 2014-03-13
MX2014011508A (es) 2014-12-05
CN104204235B (zh) 2016-09-07
BR112014024324B1 (pt) 2019-04-24
EP2831293B1 (en) 2020-05-13
JP6211581B2 (ja) 2017-10-11
US20150044500A1 (en) 2015-02-12
MX356496B (es) 2018-05-31
ZA201406748B (en) 2016-07-27
EP2831294B1 (en) 2016-10-05
CA2867975A1 (en) 2013-10-03
RU2014143507A (ru) 2016-05-20
RU2014143773A (ru) 2016-05-27
CN104204235A (zh) 2014-12-10
CA2867972A1 (en) 2013-10-03
US9797058B2 (en) 2017-10-24
WO2013144320A1 (en) 2013-10-03
US20150079419A1 (en) 2015-03-19
BR112014024324A2 (pt) 2017-07-25
KR20150001753A (ko) 2015-01-06
RS60571B1 (sr) 2020-08-31
ES2598853T3 (es) 2017-01-30
KR102074531B1 (ko) 2020-02-06
KR102074532B1 (ko) 2020-02-06
JP2015514159A (ja) 2015-05-18
JP6242851B2 (ja) 2017-12-06
CN104204234B (zh) 2017-04-19
EP2831293A1 (en) 2015-02-04
MX363595B (es) 2019-03-27
BR112014024178B1 (pt) 2019-03-26
US9920445B2 (en) 2018-03-20
JP2015521231A (ja) 2015-07-27

Similar Documents

Publication Publication Date Title
RU2631217C2 (ru) Способ изготовления восстановительно отожженной покрытой стальной основы для упаковочных применений и полученный упаковочный стальной продукт
US10053749B2 (en) Production method for plated steel sheet using a steel sheet annealing device
KR101403111B1 (ko) 표면품질이 우수한 용융아연도금강판 및 이의 제조방법
KR20080038142A (ko) 경도hr30t가 51±3인 연질 주석도금강판 및제조방법
JP2008214658A (ja) 缶用鋼板およびその母材に用いる熱延鋼板ならびにそれらの製造方法
JP6215303B2 (ja) 包装用途向けポリマー被覆基材及びその被覆基材の製造方法
CN108929991A (zh) 一种热浸镀高锰钢及其制造方法
KR102450998B1 (ko) 내식성 및 내열성이 우수한 열간성형용 알루미늄-철 합금 도금 강판, 열간 프레스 성형 부재 및 이들의 제조방법
JP5655839B2 (ja) 缶用鋼板の母材に用いる熱延鋼板およびその製造方法
KR102326111B1 (ko) 금형 내마모성이 우수한 열간 프레스용 알루미늄-철계 도금강판 및 그 제조방법
JPS58136720A (ja) ほうろう用熱延鋼板の製造方法
JPH0514610B2 (ru)