RU2623434C1 - Катализатор низкотемпературного дегидрирования нафтеновых углеводородов для процесса риформинга гидроочищенных бензиновых фракций и способ его получения - Google Patents
Катализатор низкотемпературного дегидрирования нафтеновых углеводородов для процесса риформинга гидроочищенных бензиновых фракций и способ его получения Download PDFInfo
- Publication number
- RU2623434C1 RU2623434C1 RU2016109561A RU2016109561A RU2623434C1 RU 2623434 C1 RU2623434 C1 RU 2623434C1 RU 2016109561 A RU2016109561 A RU 2016109561A RU 2016109561 A RU2016109561 A RU 2016109561A RU 2623434 C1 RU2623434 C1 RU 2623434C1
- Authority
- RU
- Russia
- Prior art keywords
- catalyst
- zeolite
- temperature
- hours
- platinum
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 103
- 229930195733 hydrocarbon Natural products 0.000 title claims abstract description 21
- 150000002430 hydrocarbons Chemical class 0.000 title claims abstract description 20
- 238000002407 reforming Methods 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 title description 25
- 230000018044 dehydration Effects 0.000 title 1
- 238000006297 dehydration reaction Methods 0.000 title 1
- 239000010457 zeolite Substances 0.000 claims abstract description 65
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 61
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 59
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 14
- 238000006356 dehydrogenation reaction Methods 0.000 claims abstract description 13
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 116
- 239000000203 mixture Substances 0.000 claims description 42
- 229910052697 platinum Inorganic materials 0.000 claims description 35
- 238000006555 catalytic reaction Methods 0.000 claims description 8
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 3
- 239000002994 raw material Substances 0.000 abstract description 11
- 238000006243 chemical reaction Methods 0.000 abstract description 10
- 230000007423 decrease Effects 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 3
- 125000004122 cyclic group Chemical group 0.000 abstract description 2
- 239000002149 hierarchical pore Substances 0.000 abstract description 2
- 229930195734 saturated hydrocarbon Natural products 0.000 abstract description 2
- 229910052593 corundum Inorganic materials 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 32
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 29
- 238000002360 preparation method Methods 0.000 description 26
- 239000008187 granular material Substances 0.000 description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical group O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 239000007864 aqueous solution Substances 0.000 description 17
- 238000005470 impregnation Methods 0.000 description 17
- 239000012153 distilled water Substances 0.000 description 16
- 238000003756 stirring Methods 0.000 description 14
- 229910004298 SiO 2 Inorganic materials 0.000 description 13
- 238000005341 cation exchange Methods 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 10
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- 230000008021 deposition Effects 0.000 description 8
- GDOPTJXRTPNYNR-UHFFFAOYSA-N methylcyclopentane Chemical compound CC1CCCC1 GDOPTJXRTPNYNR-UHFFFAOYSA-N 0.000 description 8
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 7
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 7
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 description 7
- 230000003197 catalytic effect Effects 0.000 description 7
- 238000000227 grinding Methods 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 239000004570 mortar (masonry) Substances 0.000 description 7
- 229910017604 nitric acid Inorganic materials 0.000 description 7
- 229910052573 porcelain Inorganic materials 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 7
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000005899 aromatization reaction Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229960000583 acetic acid Drugs 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- DBJYYRBULROVQT-UHFFFAOYSA-N platinum rhenium Chemical compound [Re].[Pt] DBJYYRBULROVQT-UHFFFAOYSA-N 0.000 description 3
- KVZJLSYJROEPSQ-UHFFFAOYSA-N 1,2-dimethylcyclohexane Chemical compound CC1CCCCC1C KVZJLSYJROEPSQ-UHFFFAOYSA-N 0.000 description 2
- QRMPKOFEUHIBNM-UHFFFAOYSA-N 1,4-dimethylcyclohexane Chemical compound CC1CCC(C)CC1 QRMPKOFEUHIBNM-UHFFFAOYSA-N 0.000 description 2
- AFABGHUZZDYHJO-UHFFFAOYSA-N 2-Methylpentane Chemical compound CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 2
- PFEOZHBOMNWTJB-UHFFFAOYSA-N 3-methylpentane Chemical compound CCC(C)CC PFEOZHBOMNWTJB-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000004438 BET method Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 2
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000012362 glacial acetic acid Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 230000002528 anti-freeze Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- XKUTVNLXHINPAP-UHFFFAOYSA-N azane platinum Chemical compound N.[Pt] XKUTVNLXHINPAP-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005474 detonation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000002459 porosimetry Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 150000003738 xylenes Chemical class 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/82—Phosphates
- B01J29/83—Aluminophosphates [APO compounds]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/82—Phosphates
- B01J29/84—Aluminophosphates containing other elements, e.g. metals, boron
- B01J29/85—Silicoaluminophosphates [SAPO compounds]
Landscapes
- Catalysts (AREA)
Abstract
Изобретение относится к области катализа и нефтепереработки, в частности к катализатору, на основе алюмофосфатного цеолита АРО-11 или силикоалюмофосфатного цеолита SAPO-11 с иерархической пористой структурой. Готовый катализатор содержит, мас.%: 0,1-0,3 Pt, 0-0,2 Sn, 10,0-80,0 алюмофосфатного цеолита АРО-11 или силикоалюмофосфатного цеолита SAPO-11 с иерархической пористой структурой, Al2O3 - остальное. Изобретение обеспечивает снижение рабочего интервала температур проведения реакций дегидрирования циклических насыщенных углеводородов в процессе риформинга гидроочищенных бензиновых фракций, с использованием катализатора, обеспечивающего относительное остаточное содержание С5+ нафтеновых углеводородов в стабилизированном катализате не более 0,45 при температурах не более 480°С по сравнению с сырьем. 2 з.п. ф-лы, 5 табл., 12 пр.
Description
Изобретение относится к области катализа и нефтепереработки, в частности к катализатору на основе алюмофосфатного или силикоалюмофосфатного цеолитов структуры AEL с иерархической системой пор, эффективно обеспечивающего дегидрирование нафтеновых углеводородов с получением высокооктановых бензинов в процессе риформинга гидроочищенных бензиновых фракций и способу его приготовления.
На сегодняшний день одной из первоочередных задач в целях совершенствования существующих технологий является снижение температуры проведения процесса риформинга. Низкая температура позволит подавить побочные реакции крекинга и тем самым избежать нежелательных потерь углеводородов на образование С1-С4 газов, понизит коксообразование на катализаторе, что положительным образом скажется на продолжительности его межрегенерационного периода эксплуатации. Эффективным инструментом для решения этой задачи является оптимизация состава катализатора, который позволит получать риформат с необходимыми характеристиками (детонационная стойкость, фракционный состав и т.д.), при более низких реакционных температурах без потерь в выходе. Однако разработка оптимального состава катализатора затруднена сложным химизмом процесса риформинга. В связи с чем представляется целесообразным использование не одного катализатора, а каталитической системы, состоящей из нескольких катализаторов, каждый из которых направлен на преимущественное проведение тех или иных реакций (дегидрирование, изомеризация, дегидроциклизация и др.). Причем катализаторы разной направленности могут быть загружены как в один реактор послойно, так и в отдельные реакторы установок риформинга с периодической регенерацией в определенной последовательности, обеспечивающей эффективную работу каталитической системы.
Известны примеры цеолитсодержащих катализаторов на основе ZSM-5/M и ZSM-11/М, где М=Pt, Pd. Способ приготовления катализатора представляет собой последовательность: прокаливание цеолита, нанесение металла известным способом (например, ионный обмен с Pt(NH3)4Cl2), термическая обработка, модификация катионами металлов IA группы (например, обработка водным раствором CsCl) с целью подавления кислотности. Были проведены сравнительные испытания катализаторов Cs-ZSM-5 / Pt (1,7 масс %) и Al2O3 / Pt (0,5 масс %) на эквимолярной модельной смеси 1,2-диметилциклогексана и 1,4-диметилциклогексана в качестве сырья. Катализатор на основе Cs-ZSM-5 / Pt продемонстрировал заметно лучшие результаты по сравнению с Al2O3 / Pt, позволив достигнуть большей степени конверсии при меньшей температуре, показал высокую селективность по отношению к структуре исходных нафтенов, приводя преимущественно к образованию р-ксилола, в то время как система Al2O3 / Pt не обладала таким свойством, катализируя дегидрирование нафтенов с образованием смеси изомерных ксилолов близкой по составу к эквимолярной. ЕР 0186479 В1, 23.08.1989.
Следует отметить нежелательно высокое (1,7 масс %) содержание платины в системе Cs-ZSM-5 / Pt как главный недостаток данного катализатора.
Подробно описано изучение эффективности катализаторов ZSM-12 / Pt и ZSM-12 / Al2O3 / Pt в сравнении с Al2O3 / Pt в процессе риформинга богатого нафтенами сырья. Zhang W., Smirniotis P.G. Dealuminated zeolite-based composite catalysts for reforming an industrial naphthene-rich feedstock. Appl. Catal. A. General, 1998, v. 168, n. 1, p. 113-130. Из экспериментальных данных отчетливо видно преимущество катализатора ZSM-12 / Pt перед Al2O3 / Pt с точки зрения степени конверсии сырья при одинаковой температуре (420°C) процесса, при этом содержание ароматических углеводородов и остаточное содержание нафтенов в катализате соизмеримо. Однако, даже при такой невысокой температуре как 420°C катализатор ZSM-12 / Pt сильно уступает системе Al2O3 / Pt по величине выхода целевых жидких продуктов С5+. С увеличением температуры до 470°C в случае ZSM-12 / Pt степень конверсии сырья приближается к 100%, степень ароматизации возрастает более чем в два раза, остаточное содержание нафтенов в катализате снижается до 0%, но выход жидких С5+ продуктов при этом также ощутимо снижается с 28,45 до 15,32%. Катализаторы состава ZSM-12 / Al2O3 / Pt независимо от процентного содержания цеолита выгодно превосходят систему Al2O3 / Pt при температуре 470°C по трем параметрам: степени конверсии сырья, степени ароматизации и остаточному содержанию нафтенов в катализате. Тем не менее, даже минимальное содержание (1%) цеолита в катализаторе приводит к потере около 30 масс % в выходе жидких С5+ продуктов риформинга по сравнению с Al2O3 / Pt.
Известен катализатор Mg-KL / Pt (0,4-0,8 масс %), дегидрирующая активность которого была протестирована в ходе процесса ароматизации с использованием смеси С6-С7 углеводородов нафты в качестве сырья. Максимальная производительность (степень ароматизации) данного катализатора отмечена при следующих параметрах: содержание платины 0,6 масс %, температура 510°C, давление 9,3 атм, при этом достигался лишь умеренно высокий суммарный выход - 75-80 масс % ароматических углеводородов. US 6740228 В1, 25.05.2004.
Недостатками описанной каталитической системы, безусловно, являются высокая рабочая температура процесса (510°C) и нежелательно завышенное процентное содержание платины (минимальное значение превышает 0,4 масс %, оптимальное составляет 0,6 масс %).
Несмотря на более чем 60-летнюю историю испытаний цеолитов в промышленных каталитических процессах переработки нефти, не всем типам цеолитов было уделено одинаково большое внимание. Так, в отличие от алюмосиликатов, силикоалюмофосфаты (SAPO) и алюмофосфаты (АРО), относительно мало исследованы на предмет активности и селективности в каталитическом дегидрировании углеводородов.
Наиболее близким по технической сущности и достигаемому техническому результату к предлагаемому катализатору дегидрирования является катализатор, содержащий силикоалюмофосфатный цеолит структуры AEL, общего состава: SAPO-11 (40%) / SiO2 / Al2O3 / Pt. Приведены испытания каталитических систем SiO2 / Al2O3 / Pt и SAPO-11(40%) / SiO2 / Al2O3 / Pt с целью сравнительной оценки эффективности в процессе риформинга модельной смеси углеводородов. В качестве сырья использована смесь следующего состава, масс %: н-гексан (86,357), метилциклопентан (9,694), 3-метилпентан (3,741), 2-метилпентан (0,207); ОЧИ=29,27. Ключевые результаты, в полной мере отражающие преимущества цеолитсодержащего катализатора по сравнению с системой SiO2 / Al2O3 / Pt, представлены в Таблице 1. US 5520796 А, 28.05.1996.
Из приведенных результатов следует, что, несмотря на меньшее содержание платины в составе, система SAPO-11 (40%) / SiO2 / Al2O3 / Pt позволяет достичь заметно большего значения соотношения W (бензол) / W (С1-С5) по сравнению с системой SiO2 / Al2O3 / Pt независимо от температуры процесса риформинга. Более того, в случае цеолитсодержащего катализатора, при снижении температуры с 484 до 460°C соотношение W (бензол) / W (С1-С5) изменяется в пользу бензола, в то время как для катализатора SiO2 / Al2O3 / Pt - в пользу побочных С1-С5 продуктов. Величина октанового числа (ОЧИ) риформата несколько уменьшается при снижении температуры процесса для обоих катализаторов, но при этом значения ОЧИ, достигаемые в случае цеолитсодержащей системы, значительно превосходят соответствующие значения ОЧИ в случае системы SiO2 / Al2O3 / Pt при обеих температурах.
Недостатком данного катализатора является высокое остаточное содержание нафтенов (а именно, метилциклопентана) в катализате относительно сырья (0,46 при 484°C), а также некоторое уменьшение степени конверсии метилциклопентана при снижении температуры: остаточное содержание метилциклопентана в катализате возрастает с 4,47 масс % при 484°C до 5,65 масс % при 460°C. Тогда как для системы SiO2 / Al2O3 / Pt наблюдается обратная зависимость. Таким образом, катализатор SAPO-11 (40%) / SiO2 / Al2O3 / Pt, имея ряд очевидных вышеупомянутых преимуществ перед системой SiO2 / Al2O3 / Pt, тем не менее, нуждается в дальнейшей оптимизации.
Техническая задача предлагаемого изобретения заключается в разработке катализатора для низкотемпературного дегидрирования нафтеновых углеводородов, содержащего не более 0,3 масс % платины, и способа его получения, позволяющего эффективно проводить дегидрирование нафтеновых углеводородов в процессе риформинга гидроочищенных бензиновых фракций при температуре 410-480°C.
Технический результат от реализации заявленной группы изобретений заключается в снижении рабочего интервала температур проведения реакций дегидрирования циклических насыщенных углеводородов в процессе риформинга гидроочищенных бензиновых фракций, с использованием катализатора, обеспечивающего относительное остаточное содержание С5+ нафтеновых углеводородов в стабилизированном катализате не более 0,45 по сравнению с сырьем.
Технический результат по катализатору достигается тем, что катализатор для низкотемпературного дегидрирования нафтеновых углеводородов содержит платину и носитель, состав которого включает алюмофосфатный цеолит АРО-11 или силикоалюмофосфатный цеолит SAPO-11 с иерархической пористой структурой и оксид алюминия, при следующем содержании компонентов, масс %:
платина | 0,1-0,3 |
алюмофосфатный цеолит АРО-11 или | |
силикоалюмофосфатный цеолит SAPO-11 | |
с иерархической пористой структурой | 10,0-80,0 |
оксид алюминия | остальное |
Причем силикоалюмофосфатный цеолит SAPO-11 с иерархической пористой структурой имеет соотношение в диапазоне 0,3-0,5, где SМП и SBH - удельная площадь поверхности микропор, м2/г и удельная площадь внешней поверхности цеолита, м2/г. Катализатор дополнительно содержит олово в количестве 0,1-0,2 масс %.
В приведенном изобретении термином «цеолит с иерархической пористой структурой» обозначается цеолит, который кроме упорядоченной микропористой структуры, характерной для цеолитов, содержит, дополнительно, систему мезо- или мезо- и макропор. Создание в структуре цеолитов системы мезопор позволяет значительно увеличить доступность активных центров цеолитов и повысить скорость диффузии реагентов и продуктов. Кроме того, на поверхности мезопор могут происходить химические превращения объемных молекул, которые не способны проникнуть в микропоры цеолита.
В соответствии с поставленной задачей разработан способ приготовления катализатора, содержащего цеолит структуры AEL: алюмофосфатный цеолит АРО-11 или силикоалюмофосфатный цеолит SAPO-11 с иерархической пористой структурой, не более 0,3 масс % платины, обеспечивающего снижение остаточного содержания С5+ нафтенов в стабилизированном катализате относительно сырья не более 0,45 и проведение дегидрирования нафтеновых углеводородов при температурах не более 480°C.
Способ осуществляют следующим образом.
Для приготовления катализатора синтезируют носитель, содержащий: алюмофосфатный цеолит АРО-11 или силикоалюмофосфатный цеолит SAPO-11 с иерархической пористой структурой и оксид алюминия. На полученный носитель наносят платину методом пропитки из водного раствора гексахлорплатиновой кислоты (H2PtCl6) или методом катионного обмена из водного раствора аммиаката платины (Pt(NH3)4Cl2). В частном случае, на катализатор после нанесения платины вводят олово методом пропитки из раствора SnCl4×5H2O. Готовый катализатор содержит, масс %: 0,1-0,3 Pt, 0-0,2 Sn, 10,0-80,0 алюмофосфатного цеолита АРО-11 или силикоалюмофосфатного цеолита SAPO-11 с иерархической пористой структурой, Al2O3 - остальное.
Изобретение иллюстрируется, но не лимитируется нижеприведенными примерами.
Пример 1.
Приготовление катализатора №1 осуществляют посредством синтеза носителя, включающего 60 масс % алюмофосфатного цеолита АРО-11 состава Al2O3: Р2О5=1,0:1,0 (моль: моль) и оксид алюминия, и последующего нанесения на носитель 0,3 масс % платины методом пропитки из водного раствора H2PtCl6.
Приготовление катализатора №1 включает следующие стадии:
1. В фарфоровой ступке смешивают 19,5 г порошка алюмофосфатного цеолита АРО-11 и 15,5 г псевдобемита, растирая полученную смесь до однородности.
2. К полученной смеси при постоянном перемешивании небольшими порциями приливают 29,4 мл раствора, состоящего из 0,5 мл концентрированной (65 масс %) азотной кислоты и 1,9 мл триэтиленгликоля, остальное - дистиллированная вода. Перемешивание продолжают до достижения состояния однородной пасты.
3. Полученную пасту формуют с использованием поршневого экструдера с фильерой диаметром 1,5 мм.
4. Полученные экструдаты провяливают при комнатной температуре в течение 15 ч, сушат при ступенчатом подъеме температуры 60, 80, 110°C и выдержке при каждой температуре в течение 3, 3 и 2 ч, соответственно. Высушенные экструдаты затем измельчают до гранул длиной 1,5-2,5 мм.
5. Полученные гранулы носителя постепенно в течение 10 ч нагревают в муфельной печи до температуры 550°C и выдерживают при данной температуре в течение 37 ч при постоянной подаче воздуха.
6. Готовят пропиточный раствор посредством смешения 29,7 мл дистиллированной воды, 3,03 мл водного раствора H2PtCl6 с концентрацией 11,3 мг Pt/мл, 0,13 мл концентрированной (36 масс %) соляной кислоты и 0,16 мл «ледяной» уксусной кислоты.
7. Взвешивают 12,6 г прокаленных при температуре 550°C гранул носителя, которые затем заливают приготовленным пропиточным раствором и выдерживают при комнатной температуре в течение 18 ч.
8. После окончания стадии пропитки, пропиточный раствор декантируют, а полученный катализатор высушивают при ступенчатом подъеме температуры 60, 80, 110°C и выдержке при каждой температуре в течение 3, 3 и 2 ч, соответственно.
Пример 2.
Приготовление катализатора №2 осуществляют посредством синтеза носителя, включающего 60 масс % алюмофосфатного цеолита АРО-11 состава Al2O3:Р2О5=1,0:1,0 (моль: моль) и оксид алюминия, и последующим нанесением на данный носитель 0,3 масс % платины методом катионного обмена из водного раствора Pt(NH3)4Cl2.
Приготовление катализатора №2 включает следующие стадии:
1. В фарфоровой ступке смешивают 19,5 г порошка алюмофосфатного цеолита АРО-11 и 15,5 г псевдобемита, растирая полученную смесь пестиком до однородности.
2. К полученной смеси, при постоянном перемешивании пестиком, небольшими порциями приливают 29,4 мл раствора, состоящего из 0,5 мл концентрированной (65%) азотной кислоты и 1,9 мл триэтиленгликоля, остальное - дистиллированная вода. Перемешивание продолжают до достижения состояния однородной пасты.
3. Полученную пасту формуют с использованием лабораторного поршневого экструдера с фильерой диаметром 1,5 мм.
4. Полученные экструдаты провяливают при комнатной температуре в течение 15 ч, сушат при ступенчатом подъеме температуры 60, 80, 110°C и выдержке при каждой температуре в течение 3, 3 и 2 ч, соответственно. Высушенные экструдаты измельчают до гранул длиной 1,5-2,5 мм.
5. Полученные гранулы носителя постепенно в течение 10 ч нагревают в муфельной печи до температуры 550°C и выдерживают при данной температуре в течение 37 ч при постоянной подаче воздуха.
6. Для нанесения платины методом катионного обмена готовят раствор посредством смешения 11,1 мл дистиллированной воды, 15,95 мл водного раствора Pt(NH3)4Cl2 с концентрацией 2,23 мг Pt/мл и 0,46 мл водного (25%) NH4OH.
7. Взвешивают 12,2 г прокаленных при температуре 550°C гранул носителя, заливают приготовленным раствором для нанесения платины и выдерживают на термостатируемой водяной бане с обратным холодильником при температуре 95°C в течение 6 ч, после чего охлаждают до комнатной температуры и дополнительно выдерживают 18 ч при комнатной температуре.
8. После окончания стадии нанесения платины, раствор декантируют, а полученный катализатор высушивают при ступенчатом подъеме температуры 60, 80, 110°C и выдержке при каждой температуре в течение 3, 3 и 2 ч, соответственно.
9. Высушенные гранулы катализатора постепенно в течение 24 ч нагревают в муфельной печи до температуры 500°C и выдерживают при данной температуре в течение 5 ч при постоянной подаче воздуха.
Пример 3.
Приготовление катализатора №3 осуществляют посредством синтеза носителя, включающего 40 масс % алюмофосфатного цеолита АРО-11 состава Al2O3: Р2О5=1,0:1,0 (моль : моль) и оксид алюминия, и последующим нанесением на носитель 0,3 масс % платины методом пропитки из водного раствора H2PtCl6.
Приготовление катализатора №3 включает следующие стадии:
1. В фарфоровой ступке смешивают 16,0 г порошка алюмофосфатного цеолита АРО-11 и 28,6 г псевдобемита, растирая полученную смесь пестиком до однородности.
2. К полученной смеси, при постоянном перемешивании пестиком, небольшими порциями приливают 36,0 мл раствора, состоящего из 0,9 мл концентрированной (65%) азотной кислоты и 2,4 мл триэтиленгликоля, остальное - дистиллированная вода. Перемешивание продолжают до достижения состояния однородной пасты.
3. Полученную пасту формуют с использованием лабораторного поршневого экструдера с фильерой диаметром 1,5 мм.
4. Полученные экструдаты провяливают при комнатной температуре в течение 15 ч, сушат при ступенчатом подъеме температуры 60, 80, 110°C и выдержке при каждой температуре в течение 3, 3 и 2 ч, соответственно. Высушенные экструдаты затем измельчают до гранул длиной 1,5-2,5 мм.
5. Полученные гранулы носителя постепенно в течение 10 ч нагревают в муфельной печи до температуры 550°C и выдерживают при данной температуре в течение 37 ч при постоянной подаче воздуха.
6. Готовят пропиточный раствор посредством смешения 44,9 мл дистиллированной воды, 4,69 мл водного раствора H2PtCl6 с концентрацией 11,3 мг Pt/мл, 0,21 мл концентрированной (36%) соляной кислоты и 0,25 мл «ледяной» уксусной кислоты.
7. Взвешивают 19,6 г прокаленных при температуре 550°C гранул носителя, которые затем заливают приготовленным пропиточным раствором и выдерживают при комнатной температуре в течение 18 ч.
8. После окончания стадии пропитки, пропиточный раствор декантируют, а полученный катализатор высушивают при ступенчатом подъеме температуры 60, 80, 110°C и выдержке при каждой температуре в течение 3, 3 и 2 ч, соответственно.
Пример 4.
Приготовление катализатора №4 осуществляют посредством синтеза носителя, включающего 40 масс % алюмофосфатного цеолита АРО-11 состава Al2O3:Р2О5=1,0: 1,0 (моль : моль) и оксид алюминия, с последовательным нанесением на носитель 0,3 масс % платины методом пропитки из водного раствора H2PtCl6 и 0,1 масс % олова методом пропитки по влагопоглощению из раствора SnCl4×5H2O в смеси концентрированной соляной кислоты (36%) и дистиллированной воды.
Приготовление катализатора №4 включает следующие стадии:
1. В фарфоровой ступке смешивают 16,0 г порошка алюмофосфатного цеолита АРО-11 и 28,6 г псевдобемита, растирая полученную смесь пестиком до однородности.
2. К полученной смеси, при постоянном перемешивании пестиком, небольшими порциями приливают 36,0 мл раствора, состоящего из 0,9 мл концентрированной (65%) азотной кислоты и 2,4 мл триэтиленгликоля, остальное - дистиллированная вода. Перемешивание продолжают до достижения состояния однородной пасты.
3. Полученную пасту формуют с использованием лабораторного поршневого экструдера с фильерой диаметром 1,5 мм.
4. Полученные экструдаты провяливают при комнатной температуре в течение 15 ч, сушат при ступенчатом подъеме температуры 60, 80, 110°C и выдержке при каждой температуре в течение 3, 3 и 2 ч, соответственно. Высушенные экструдаты измельчают до гранул длиной 1,5-2,5 мм.
5. Полученные гранулы носителя постепенно в течение 10 ч нагревают в муфельной печи до температуры 550°C и выдерживают при данной температуре в течение 37 ч при постоянной подаче воздуха.
6. Готовят пропиточный раствор посредством смешения 44,9 мл дистиллированной воды, 4,69 мл водного раствора H2PtCl6 с концентрацией 11,3 мг Pt/мл, 0,21 мл концентрированной (36%) соляной кислоты и 0,25 мл «ледяной» уксусной кислоты.
7. Взвешивают 19,6 г прокаленных гранул носителя, которые заливают приготовленным пропиточным раствором и выдерживают при комнатной температуре в течение 18 ч.
8. После окончания стадии пропитки, пропиточный раствор декантируют, а полученный катализатор высушивают при ступенчатом подъеме температуры 60, 80, 110°C и выдержке при каждой температуре в течение 3, 3 и 2 ч, соответственно.
9. Готовят пропиточный раствор посредством полного растворения 0,024 г SnCl4×5H2O в смеси, состоящей из 0,023 мл концентрированной (36%) соляной кислоты и дистиллированной воды, общего объема 6,7 мл.
10. Взвешивают 8,9 г высушенного катализатора, который затем заливают приготовленным пропиточным раствором и выдерживают при комнатной температуре в течение 6,5 ч.
11. После окончания стадии пропитки, полученный катализатор высушивают при ступенчатом подъеме температуры 60, 80, 110°C и выдержке при каждой температуре в течение 3, 3 и 2 ч, соответственно.
Пример 5.
Приготовление катализатора №5 осуществляют посредством синтеза носителя, включающего 40 масс % алюмофосфатного цеолита АРО-11 и оксид алюминия, и последующим нанесением на носитель 0,3 масс % платины методом катионного обмена из водного раствора Pt(NH3)4Cl2.
Приготовление катализатора №5 включает следующие стадии:
1. В фарфоровой ступке смешивают 16,0 г порошка алюмофосфатного цеолита АРО-11 состава Al2O3:Р2О5=1,0:1,0 (моль : моль) и 28,6 г псевдобемита, растирая полученную смесь пестиком до однородности.
2. К полученной смеси, при постоянном перемешивании пестиком, небольшими порциями приливают 36,0 мл раствора, состоящего из 0,9 мл концентрированной (65%) азотной кислоты и 2,4 мл триэтиленгликоля, остальное - дистиллированная вода. Перемешивание продолжают до достижения состояния однородной пасты.
3. Полученную пасту формуют с использованием лабораторного поршневого экструдера с фильерой диаметром 1,5 мм.
4. Полученные экструдаты провяливают при комнатной температуре в течение 15 ч, сушат при ступенчатом подъеме температуры 60, 80, 110°C и выдержке при каждой температуре в течение 3, 3 и 2 ч, соответственно. Высушенные экструдаты затем измельчают до гранул длиной 1,5-2,5 мм.
5. Полученные гранулы носителя постепенно в течение 10 ч нагревают в муфельной печи до температуры 550°C и выдерживают при данной температуре в течение 37 ч при постоянной подаче воздуха.
6. Для нанесения платины методом катионного обмена готовят раствор посредством смешения 10,2 мл дистиллированной воды, 14,62 мл водного раствора Pt(NH3)4Cl2 с концентрацией 2,23 мг Pt/мл и 0,42 мл водного (25%) NH4OH.
7. Взвешивают 11,2 г прокаленных гранул носителя, которые затем заливают приготовленным раствором для нанесения платины методом катионного обмена и выдерживают на термостатируемой водяной бане с обратным холодильником при температуре 95°C в течение 6 ч, после чего охлаждают до комнатной температуры и дополнительно выдерживают 18 ч при комнатной температуре.
8. После окончания стадии нанесения платины, раствор декантируют, а полученный катализатор высушивают при ступенчатом подъеме температуры 60, 80, 110°C и выдержке при каждой температуре в течение 3, 3 и 2 ч, соответственно.
9. Высушенные гранулы катализатора постепенно в течение 24 ч нагревают в муфельной печи до температуры 500°C и выдерживают при данной температуре в течение 5 ч при постоянной подаче воздуха.
Пример 6.
Приготовление катализатора №6 осуществляют посредством синтеза носителя, включающего 40 масс % силикоалюмофосфатного цеолита SAPO-11 с иерархической пористой структурой состава Al2O3:Р2О5:SiO2=1,0:0,8:0,7 (моль: моль: моль) с соотношением , равным 0,3 и оксид алюминия, с последующим нанесением на данный носитель 0,3 масс % платины методом катионного обмена из водного раствора Pt(NH3)4Cl2. SМП и SBH - удельная площадь поверхности микропор цеолита, м2/г и удельная площадь внешней поверхности цеолита, м2/г, соответственно, определенные методом азотной порометрии. Общая площадь поверхности цеолита определена по методу БЭТ, удельная площадь поверхности микропор цеолита (SМП) и удельная площадь внешней поверхности цеолита (SBH) определены с использованием t-графика.
Приготовление катализатора №6 включает следующие стадии:
1. В фарфоровой ступке смешивают 14,4 г порошка силикоалюмофосфатного цеолита SAPO-11 с иерархической пористой структурой и 21,4 г псевдобемита, растирая полученную смесь пестиком до однородности.
2. К полученной смеси, при постоянном перемешивании пестиком, небольшими порциями приливают 25,0 мл раствора, состоящего из 0,7 мл концентрированной (65%) азотной кислоты и 1,9 мл триэтиленгликоля, остальное - дистиллированная вода. Перемешивание продолжают до достижения состояния однородной пасты.
3. Полученную пасту формуют с использованием лабораторного поршневого экструдера с фильерой диаметром 1,5 мм.
4. Полученные экструдаты провяливают при комнатной температуре в течение 15 ч, сушат при ступенчатом подъеме температуры 60, 80, 110°C и выдержке при каждой температуре в течение 3, 3 и 2 ч, соответственно. Высушенные экструдаты затем измельчают до гранул длиной 1,5-2,5 мм.
5. Полученные гранулы носителя постепенно в течение 10 ч нагревают в муфельной печи до температуры 550°C и выдерживают при данной температуре в течение 10 ч при постоянной подаче воздуха.
6. Для нанесения платины методом катионного обмена готовят раствор посредством смешения 8,4 мл дистиллированной воды, 13,46 мл водного раствора Pt(NH3)4Cl2 с концентрацией 2,23 мг Pt/мл и 8,90 мл водного (25%) NH4OH.
7. Взвешивают 10,9 г прокаленных гранул носителя, которые заливают приготовленным раствором для нанесения платины методом катионного обмена и выдерживают на термостатируемой водяной бане с обратным холодильником при температуре 95°C в течение 6 ч, после чего охлаждают до комнатной температуры и дополнительно выдерживают в течение 18 ч при комнатной температуре.
8. После окончания стадии нанесения платины, раствор декантируют, а полученный катализатор высушивают при ступенчатом подъеме температуры 60, 80, 110°C и выдержке при каждой температуре в течение 3, 3 и 2 ч, соответственно.
9. Высушенные гранулы катализатора постепенно в течение 3 ч нагревают в муфельной печи до температуры 300°C и выдерживают при данной температуре в течение 3 ч при постоянной подаче воздуха.
Пример 7.
Приготовление катализатора №7 осуществляют посредством синтеза носителя, включающего 40 масс % силикоалюмофосфатного цеолита SAPO-11 с иерархической пористой структурой Al2O3:Р2О5:SiO2=1,0:0,8:0,4 (моль: моль: моль) с соотношением , равным 0,5 и оксид алюминия, и последующим нанесением на данный носитель 0,3 масс % платины методом катионного обмена из водного раствора Pt(NH3)4Cl2. Общая площадь поверхности цеолита определена по методу БЭТ, удельная площадь поверхности микропор цеолита (SМП) и удельная площадь внешней поверхности цеолита (SBH) определены с использованием t-графика.
Приготовление катализатора №7 включает следующие стадии:
1. В фарфоровой ступке смешивают 58,2 г порошка силикоалюмофосфатного цеолита SAPO-11 и 94,9 г псевдобемита, растирая полученную смесь пестиком до однородности.
2. К полученной смеси, при постоянном перемешивании пестиком, небольшими порциями приливают 130,0 мл раствора, состоящего из 3,1 мл концентрированной (65%) азотной кислоты и 8,2 мл триэтиленгликоля, остальное - дистиллированная вода. Перемешивание продолжают до достижения состояния однородной пасты.
3. Полученную пасту формуют с использованием лабораторного поршневого экструдера с фильерой диаметром 1,5 мм.
4. Полученные экструдаты провяливают при комнатной температуре в течение 15 ч, сушат при ступенчатом подъеме температуры 60, 80, 110°C и выдержке при каждой температуре в течение 3, 3 и 2 ч, соответственно. Высушенные экструдаты затем измельчают до гранул длиной 1,5-2,5 мм.
5. Полученные гранулы носителя в течение 15 ч нагревают в муфельной печи до температуры 550°C и выдерживают при данной температуре в течение 15 ч при постоянной подаче воздуха.
6. Для нанесения платины методом катионного обмена готовят раствор посредством смешения 18,3 мл дистиллированной воды, 29,3 мл водного раствора Pt(NH3)4Cl2 с концентрацией 2,23 мг Pt/мл и 19,40 мл водного 25%-го NH4OH.
7. Взвешивают 23,6 г прокаленных гранул носителя, которые затем заливают приготовленным раствором для нанесения платины методом катионного обмена и выдерживают на термостатируемой водяной бане с обратным холодильником при температуре 95°C в течение 6 ч, после чего охлаждают до комнатной температуры и дополнительно выдерживают 18 ч при комнатной температуре.
8. После окончания стадии нанесения платины, раствор декантируют, а полученный катализатор высушивают при ступенчатом подъеме температуры 60, 80, 110°C и выдержке при каждой температуре в течение 3, 3 и 2 ч, соответственно.
9. Высушенные гранулы катализатора постепенно в течение 3 ч нагревают в муфельной печи до температуры 300°C и выдерживают при данной температуре в течение 3 ч при постоянной подаче воздуха.
Пример 8.
Приготовление катализатора №8 осуществляют аналогично катализатору №7, приготовление которого описано в Примере 7, за исключением того, что на носитель наносят 0,1 масс % платины.
Пример 9.
Приготовление катализатора №9 осуществляют аналогично катализатору №4, приготовление которого описано в Примере 4, за исключением того, что на носитель наносят 0,2 масс % олова.
Пример 10.
Приготовление катализатора №10 осуществляют аналогично катализатору №1, приготовление которого описано в Примере 1, за исключением того, что содержание алюмофосфатного цеолита АРО-11 составляет 10 масс %.
Пример 11.
Приготовление катализатора №11 осуществляют аналогично катализатору №6, приготовление которого описано в Примере 6, за исключением того, что содержание силикоалюмофосфатного цеолита SAPO-11 с иерархической пористой структурой с соотношением , равным 0,3 составляет 80 масс %.
Состав катализатора, приготовленного способом, описанным в Примерах 1-11, представлен в Таблице 2. Для сравнительной экспериментальной оценки эффективности катализатора выбран катализатор сравнения - современный коммерчески доступный платино-рениевый катализатор риформинга, представленный в Таблице 2.
Пример 12.
Катализаторы №1-11, приготовленные способом, описанным в Примерах 1-11, и катализатор сравнения были испытаны в процессе низкотемпературного риформинга, проводимого на проточной каталитической установке. Данная установка оборудована обогреваемым кожухом, в который помещены газовые и жидкостные линии, смеситель, реактор. Обогреваемый кожух способствует стабильному термостатированию реактора и позволяет подогревать реагенты перед подачей в реактор. Внутренний диаметр реактора составляет 13 мм, загрузка катализатора - 10 см3.
В ходе проведения испытаний сырье из емкости, находящейся на электронных весах, подают в систему насосом высокого давления. Точное количество подаваемого сырья регистрируют на основании показаний электронных весов. Сырье поступает в смеситель, где смешивается с водородом, результирующая смесь поступает в реактор. Образовавшиеся продукты выводят из нижней части реактора, направляют в сепаратор, где происходит отделение газовой фазы (водородсодержащего газа) от жидкого катализата. Жидкий катализат из сепаратора поступает в холодильник-пробосборник, в котором реализовано охлаждение посредством термостатируемого тосола, непрерывно циркулирующего через «рубашку» аппарата. Из холодильника-пробосборника производят периодический отбор проб жидкого катализата для количественного анализа состава.
Полученный катализат подвергают стабилизации для удаления углеводородов С4-, таким образом получают стабилизированный продукт, содержащий только углеводороды С5+.
Процесс риформинга проводят при следующих условиях: температура 410-480°C, давление 1,0-2,0 МПа, объемная скорость подачи сырья 1,0-2,0 ч1, соотношение водород / сырье = 1300:1 нл/л.
В качестве сырья была использована гидроочищенная бензиновая фракция с нижеприведенными характеристиками:
- содержание С5+ нафтеновых углеводородов, масс %: 26,98;
- содержание С5+ ароматических углеводородов, масс %: 12,05;
- ОЧИ (рассчитанное значение для смеси С5+углеводородов в составе сырья): 62,51.
Мерой количественной оценки эффективности катализатора в реакции дегидрирования нафтеновых углеводородов в процессе низкотемпературного риформинга служат следующие два параметра, представленные в Таблице 3 и 4:
1) относительное остаточное содержание С5+ нафтеновых углеводородов в стабилизированном катализате;
2) относительный прирост содержания С5+ ароматических углеводородов в стабилизированном катализате.
В полном соответствии с технической задачей, разработанный катализатор на основе цеолита структуры AEL характеризуется:
- содержанием платины не более 0,3 масс %,
- обеспечивает относительное остаточное содержание С5+ нафтеновых углеводородов в стабилизированном катализате не более 0,45 при температурах процесса не более 480°C.
Полученный катализатор на основе цеолита структуры AEL значительно более эффективен, чем платино-рениевый катализатор сравнения в рамках обоих вышеуказанных параметров при температурах процесса не более 480°C, Таблица 3. Кроме того, для платино-рениевого катализатора сравнения суммарное содержание дорогостоящих активных металлов (платина и рений) составляет 0,7 масс %, что более чем в 2 раза превышает соответствующее значение для заявленного катализатора.
Заявленный катализатор более эффективен не только в рамках достигаемых значений относительного остаточного содержания нафтеновых углеводородов и относительного прироста содержания ароматических углеводородов в стабилизированном катализате, но и, как следствие, в рамках значений ОЧИ стабилизированного катализата. Репрезентативные примеры значений ОЧИ, достигаемых в процессе низкотемпературного риформинга гидроочищенной бензиновой фракции вместе с соответствующими значениями для катализатора сравнения приведены в Таблице 5.
Claims (4)
1. Катализатор низкотемпературного дегидрирования, обеспечивающий относительное остаточное содержание С5+ нафтеновых углеводородов в стабилизированном катализате не более 0,45 (мас.%/мас.%) при температурах не более 480°С в процессе риформинга гидроочищенных бензиновых фракций, содержащий платину и носитель, состав которого включает алюмофосфатный цеолит АРО-11 или силикоалюмофосфатный цеолит SAPO-11 с иерархической пористой структурой и оксид алюминия, при следующем содержании компонентов, мас.%:
3. Катализатор по п. 1, отличающийся тем, что дополнительно содержит олово в количестве 0,1-0,2 мас.%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016109561A RU2623434C1 (ru) | 2016-03-17 | 2016-03-17 | Катализатор низкотемпературного дегидрирования нафтеновых углеводородов для процесса риформинга гидроочищенных бензиновых фракций и способ его получения |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016109561A RU2623434C1 (ru) | 2016-03-17 | 2016-03-17 | Катализатор низкотемпературного дегидрирования нафтеновых углеводородов для процесса риформинга гидроочищенных бензиновых фракций и способ его получения |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2623434C1 true RU2623434C1 (ru) | 2017-06-26 |
Family
ID=59241509
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016109561A RU2623434C1 (ru) | 2016-03-17 | 2016-03-17 | Катализатор низкотемпературного дегидрирования нафтеновых углеводородов для процесса риформинга гидроочищенных бензиновых фракций и способ его получения |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2623434C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110152723A (zh) * | 2018-02-13 | 2019-08-23 | 中国石油天然气集团有限公司 | 一种加氢精制催化剂及其制备方法和应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4741820A (en) * | 1986-03-27 | 1988-05-03 | Union Carbide Corporation | Reforming/dehydrocyclization catalysts and processes |
US5135638A (en) * | 1989-02-17 | 1992-08-04 | Chevron Research And Technology Company | Wax isomerization using catalyst of specific pore geometry |
RU2351394C2 (ru) * | 2003-11-27 | 2009-04-10 | Несте Ойл Ойй | Способ получения катализатора на основе благородного металла и его применение |
US20120024754A1 (en) * | 2010-07-28 | 2012-02-02 | Chevron U.S.A. Inc. | Multi-stage reforming process with final stage catalyst regeneration |
RU2575172C1 (ru) * | 2014-10-15 | 2016-02-20 | Открытое акционерное общество "Нефтяная компания "Роснефть" | Катализатор для совместного получения низкозастывающих топлив и изопарафиновых масел и способ совместного получения низкозастывающих топлив и изопарафиновых масел в процессе изомеризации/гидрокрекинга высокопарафинистого сырья с его использованием |
-
2016
- 2016-03-17 RU RU2016109561A patent/RU2623434C1/ru active IP Right Revival
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4741820A (en) * | 1986-03-27 | 1988-05-03 | Union Carbide Corporation | Reforming/dehydrocyclization catalysts and processes |
US5135638A (en) * | 1989-02-17 | 1992-08-04 | Chevron Research And Technology Company | Wax isomerization using catalyst of specific pore geometry |
RU2351394C2 (ru) * | 2003-11-27 | 2009-04-10 | Несте Ойл Ойй | Способ получения катализатора на основе благородного металла и его применение |
US20120024754A1 (en) * | 2010-07-28 | 2012-02-02 | Chevron U.S.A. Inc. | Multi-stage reforming process with final stage catalyst regeneration |
RU2575172C1 (ru) * | 2014-10-15 | 2016-02-20 | Открытое акционерное общество "Нефтяная компания "Роснефть" | Катализатор для совместного получения низкозастывающих топлив и изопарафиновых масел и способ совместного получения низкозастывающих топлив и изопарафиновых масел в процессе изомеризации/гидрокрекинга высокопарафинистого сырья с его использованием |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110152723A (zh) * | 2018-02-13 | 2019-08-23 | 中国石油天然气集团有限公司 | 一种加氢精制催化剂及其制备方法和应用 |
CN110152723B (zh) * | 2018-02-13 | 2022-07-05 | 中国石油天然气集团有限公司 | 一种加氢精制催化剂及其制备方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1805281B1 (en) | Xylenes isomerization catalyst system and use thereof | |
US9242233B2 (en) | Catalyst for light naphtha aromatization | |
PL98293B1 (pl) | Sposob wytwarzania mieszaniny ksylenow | |
CN101945841A (zh) | 用于乙烷转化成芳烃的方法 | |
Tsai et al. | Zeolite supported platinum catalysts for benzene hydrogenation and naphthene isomerization | |
US10596558B2 (en) | Naphtha reforming catalyst and processes thereof | |
JPH01213238A (ja) | パラフィンの転化方法 | |
JPS63119853A (ja) | 白金担持触媒の製造方法 | |
US9199894B2 (en) | Isomerisation catalyst preparation process | |
RU2623434C1 (ru) | Катализатор низкотемпературного дегидрирования нафтеновых углеводородов для процесса риформинга гидроочищенных бензиновых фракций и способ его получения | |
RU2765750C2 (ru) | Композиция катализатора | |
EA030888B1 (ru) | Способ и применение катализатора для повышения качества синтетического бензина | |
CN110961143A (zh) | 分子筛催化剂、其制备方法及其在乙苯脱烷基反应和二甲苯异构化反应中的应用 | |
RU2739566C1 (ru) | Способ получения катализатора изодепарафинизации дизельных фракций для использования в каталитической системе, состоящей из катализаторов гидроочистки и изодепарафинизации и катализатор, полученный этим способом | |
EP4328212A1 (en) | Method for producing light aromatic hydrocarbons | |
RU2626747C1 (ru) | Катализатор изомеризации н-алканов в процессе риформинга гидроочищенных бензиновых фракций (варианты) | |
RU2616003C1 (ru) | Способ получения низкосернистого низкозастывающего дизельного топлива | |
RU2675629C1 (ru) | Катализатор для риформинга бензиновых фракций, способ его получения и применение катализатора | |
RU2560157C1 (ru) | Катализатор изодепарафинизации дизельных фракций и способ его получения | |
WO2013095762A1 (en) | Isomerization of light paraffins | |
RU2471854C1 (ru) | Катализатор для риформинга бензиновых фракций и способ его приготовления | |
US9604203B2 (en) | Reforming catalyst compositions | |
RU2670108C1 (ru) | Каталитическая система для низкотемпературного риформинга бензиновых фракций и способ его осуществления с применением каталитической системы | |
RU2617684C1 (ru) | Цеолитный катализатор депарафинизации и способ депарафинизации | |
RU2658018C1 (ru) | Катализатор и способ гидроизомеризации нормальных углеводородов с5-с8 с его использованием |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20200318 |
|
NF4A | Reinstatement of patent |
Effective date: 20210401 |