[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

RU2618038C2 - Способ получения жаропрочного сплава на основе ниобия - Google Patents

Способ получения жаропрочного сплава на основе ниобия Download PDF

Info

Publication number
RU2618038C2
RU2618038C2 RU2015143322A RU2015143322A RU2618038C2 RU 2618038 C2 RU2618038 C2 RU 2618038C2 RU 2015143322 A RU2015143322 A RU 2015143322A RU 2015143322 A RU2015143322 A RU 2015143322A RU 2618038 C2 RU2618038 C2 RU 2618038C2
Authority
RU
Russia
Prior art keywords
melt
crucible
niobium
casting
heat
Prior art date
Application number
RU2015143322A
Other languages
English (en)
Other versions
RU2015143322A (ru
Inventor
Евгений Николаевич Каблов
Павел Георгиевич Мин
Виталий Евгеньевич Вадеев
Дмитрий Евгеньевич Каблов
Original Assignee
Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") filed Critical Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ")
Priority to RU2015143322A priority Critical patent/RU2618038C2/ru
Publication of RU2015143322A publication Critical patent/RU2015143322A/ru
Application granted granted Critical
Publication of RU2618038C2 publication Critical patent/RU2618038C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/22Remelting metals with heating by wave energy or particle radiation
    • C22B9/221Remelting metals with heating by wave energy or particle radiation by electromagnetic waves, e.g. by gas discharge lamps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на основе ниобия, которые могут быть использованы для изготовления рабочих лопаток ГТД. Способ получения жаропрочного сплава на основе Nb-Si включает загрузку шихты в тигель, выплавку в вакуумной индукционной печи в вакууме или в среде инертного газа, разливку расплава в форму. В тигель загружают шихту, содержащую кремний, алюминий, титан, ниобий и по меньшей мере один элемент, выбранный из хрома, молибдена и вольфрама, выплавку проводят при температуре 1800-2100°С в инертном керамическом тигле, рабочий слой которого изготовлен по меньшей мере из одного из оксидов иттрия, гафния, скандия или циркония, по крайней мере за 10-15 минут перед разливкой в расплав вводят по меньшей мере один активный элемент, выбранный из циркония, гафния и иттрия, а разливку полученного расплава осуществляют в предварительно нагретую инертную форму. Получают слитки и отливки с равноосной структурой и однородным химическим составом по всему объему слитка из жаропрочных сплавов на основе ниобия (Nb-Si). 2 з.п. ф-лы, 8 табл., 4 пр.

Description

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на основе Nb-Si, которые могут быть использованы для изготовления рабочих лопаток ГТД (газотурбинного двигателя).
Современные никелевые жаропрочные сплавы для литья лопаток газотурбинных двигателей (ГТД) достигли предела рабочих температур 1100-1150°С, что составляет 80-85% от температуры их плавления. С каждым новым поколением рабочая температура никелевых жаропрочных сплавов примерно на 30°С превосходила предыдущее поколение, однако, при этом возрастала плотность сплавов и стоимость.
Создание жаропрочных естественно-композиционных конструкционных материалов на основе ниобиевой матрицы с интерметаллидным упрочнением (композитов на основе Nb-Si) позволит поднять рабочие температуры лопаток ГТД сразу на 200°С по сравнению с рабочими температурами лопаток из современных монокристаллических никелевых сплавов, что, безусловно, является революционным скачком.
Преимуществами сплавов на основе Nb-Si по сравнению с никелевыми жаропрочными сплавами (НЖС) является низкая плотность (на уровне 7,5 г/см3) и высокие рабочие температуры, что позволяет повысить мощность, экономичность и экологичность ГТД. Однако высокая рабочая температура этих сплавов связана с их высокой температурой плавления, что является серьезной проблемой при получении данных сплавов. При выплавке НЖС в вакуумной индукционной печи (ВИП) максимальная температура расплава не превышает 1700°С, это связано с материалом керамического тигля, который не работоспособен при более высоких температурах, кроме того, данный материал не подходит для выплавки сплавов на основе Nb-Si, поскольку они содержат в большом количестве активные компоненты. Для выплавки данных сплавов необходимо подобрать материал тигля, который имел бы рабочую температуру до 2000°С и был бы инертен по отношению к расплаву.
Учитывая высокие температуры плавления и высокую химическую активность расплавов с керамическими материалами, технология получения сплавов на основе Nb-Si сложнее используемой в современном промышленном производстве деталей горячего тракта ГТД.
Из уровня техники известен способ изготовления сплава на основе ниобия (Nb-Si), приготовленного из чистых компонентов в инертной атмосфере аргона или гелия в дуговой печи с нерасходуемым вольфрамовым электродом (патент US 3046109, МПК С22С 27/00, С22С 27/02, опубл. 24.07.1962). Компоненты сплава могут быть добавлены одновременно или последовательно. После затвердевания сплава слиток дробится на мелкие куски и повторно переплавляется в дуговой печи. После этого слиток подвергают обработке давлением. Недостатком известного способа является то, что двойной переплав в дуговой печи не может обеспечить равномерность распределения легирующих элементов по всему объему слитка, которая может быть достигнута за счет индукционного перемешивания при плавке в вакуумной индукционной печи.
Из уровня техники известен способ дуговой плавки, применяемый для получения жаропрочного композиционного материала на основе ниобия (Nb-Si) (патент WO 1989010982, МПК С22С 1/02, С22С 1/05, С22С 1/05; опубл. 16.11.1989). Способ включает формирование интерметаллидного композиционного материала из порошков легирующих элементов в чистом виде. Этот интерметаллидный материал смешивается с дополнительным количеством металла-основы и расплавляется в дуговой печи. Техническим результатом является итоговая металлическая матрица, которая может состоять из металла, металлического сплава, или интерметаллида, в которой располагаются частицы второй фазы, которые могут включить керамические материалы, такие как бориды, карбиды, нитриды, силициды, оксиды или сульфиды. Недостатком указанного способа является необходимость получения порошков компонентов сплава. Кроме того, компоненты в порошковом виде обладают высокой площадью поверхности, за счет чего могут иметь повышенные содержания примесей, в том числе кислорода.
Из уровня техники известен способ изготовления жаропрочного композиционного материала на основе ниобия (Nb-Si), включающий формирование смеси из порошков чистых компонентов - ниобия и кремния, прессование этой смеси для получения электрода, прикрепление полученного прессованного электрода к основе из ниобия, переплав электрода в условиях вакуумной дуговой плавки в слиток (патент US 7666243, МПК С22В 9/20, опубл. 23.02.2010). После вакуумной дуговой плавки (ВДП) проводят термомеханическую обработку и отжиг полученного слитка при 950-1150°С, что считается завершающей операцией. Техническим результатом является получение полностью рекристаллизованного, обработанного давлением ниобиевого полуфабриката с мелким однородным зерном. Недостатками способа-прототипа являются многоэтапность, увеличивающая трудоемкость и продолжительность процесса, неприменимость данного способа к производству многокомпонентных сплавов, содержащих активные компоненты (такие, как алюминий, цирконий, титан, РЗМ и др.), необходимость применения специального оборудования для получения однородной смеси порошков чистых компонентов и прессования полученной смеси в электрод.
Поскольку перечисленные аналоги, являющиеся способами получения жаропрочных сплавов на основе ниобия (Nb-Si), не связаны с выплавкой в вакуумной индукционной печи, авторами предложенного способа в качестве аналогов были выделены также способы получения НЖС в вакуумной индукционной печи.
Из уровня техники известен способ производства безуглеродистых литейных жаропрочных сплавов на никелевой основе в вакуумной индукционной печи (патент РФ 2221067 С1, МПК С22С 1/02, С22С 1/01; опубл. 10.01.2004). Способ включает расплавление шихтовых материалов в вакууме, обезуглероживающее рафинирование с введением окислителя в атмосфере инертного газа и последующим введением в вакууме редкоземельных металлов, хрома и активных легирующих элементов. Недостатком известного способа является то, что данный способ не подходит для выплавки жаропрочных сплавов на основе Nb (Nb-Si), поскольку расплавы жаропрочных сплавов на основе Nb (Nb-Si) являются более активными, чем расплавы НЖС, и материалы тигля, применяемые при выплавке НЖС, не обладают достаточными рабочими температурами и инертностью по отношению к расплаву.
Из уровня техники известен способ получения жаропрочного сплава на никелевой основе (патент CN 103074525 В С1, МПК С22С 19/05; опубл. 01.05.2013).Способ включает выплавку в вакуумной индукционной печи с введением всех компонентов (углерода, хрома, кобальта, ниобия, молибдена, алюминия, титана, тантала, бора, никеля) в завалку. Недостатком данного способа является отсутствие порядка введения активных легирующих элементов в расплав. Это увеличивает время взаимодействия активных компонентов с материалом тигля и приводит к отклонению от заданного состава. Авторами данного изобретения не уточняется, из какого именно материала изготовлен тигель вакуумной индукционной печи, однако, следует предположить, что это традиционные материалы для выплавки сплавов на никелевой основе: оксид алюминия и оксид магния, которые имеют низкие рабочие температуры и низкую инертность по отношению к активному расплаву жаропрочных сплавов на основе ниобия (Nb-Si).
Из уровня техники известен способ получения никелевого жаропрочного сплава с низкой плотностью (патент CN 101538664 А С1, МПК С22С 19/05, C22F 1/10, С22С 1/03; опубл. 23.09.2009). Способ включает выплавку сплава в вакуумной индукционной печи в тигле на основе оксида кальция (СаО)или оксида магния (MgO), при этом углерод, хром, кобальт, вольфрам, молибден, ниобий и никель вводятся в завалку, расплавление шихты проводят в вакууме, после расплавления шихты проводят рафинирование расплава при температуре 1550-1600°С, после чего перестают подавать напряжение на витки индуктора для образования корки на поверхности расплава и на образовавшуюся корку водят алюминий, лигатуру алюминий-иттрий и лигатуру никель-бор. Недостатком данного способа является неприменимость указанных материалов тигля для выплавки жаропрочных сплавов на основе Nb-Si в связи с низкой инертностью традиционных материалов тигля по отношению к активному расплаву и низкими рабочими температурами.
Наиболее близким аналогом предложенного способа является способ производства безуглеродистых литейных жаропрочных сплавов на никелевой основе (патент РФ 2278902 С1, МПК С22С 1/02, опубл. 27.06.2006), включающий расплавление в вакууме шихтовых материалов, обезуглероживающее рафинирование в среде инертного газа, раскисление, последующее введение легирующих элементов: хрома, титана, алюминия, затем кальция и лантана.
Недостатками способа-прототипа являются:
- неприменимость данного способа к производству жаропрочных сплавов на основе Nb (Nb-Si) в связи с низкой инертностью традиционных материалов тигля по отношению к активному расплаву;
- неприменимость данного способа к производству жаропрочных сплавов на основе Nb (Nb-Si) в связи с недостаточной рабочей температурой традиционных материалов тигля;
- неприменимость данного способа к производству жаропрочных сплавов на основе Nb (Nb-Si) в связи с недостаточной рабочей температурой традиционных материалов для разливки расплава: чугунных изложниц и стальных труб;
- невозможность образования ванны жидкого расплава жаропрочных сплавов на основе Nb (Nb-Si) при соблюдении порядка введения легирующих элементов, предусмотренного способом-прототипом (введение хрома, титана, алюминия в жидкий расплав).
Технической задачей и техническим результатом заявленного способа является получение слитков и отливок, равноосной структурой и однородным химическим составом по всему объему слитка из жаропрочных сплавов на основе Nb-Si.
Технический результат достигается с помощью способа получения жаропрочного сплава на основе Nb-Si, включающем в себя загрузку шихты в тигель, выплавку в вакуумной индукционной печи в вакууме или в среде инертного газа, разливку расплава в форму. При этом в тигель загружают шихту, содержащую кремний, алюминий, титан, ниобий, а также по меньшей мере один элемент, выбранный из хрома, молибдена, вольфрама, выплавку проводят при температуре 1800-2100°С в инертном керамическом тигле, рабочий слой которого изготовлен по меньшей мере из одного из оксидов иттрия, гафния, скандия или циркония по крайней мере за 10-15 минут перед разливкой в расплав вводят по меньшей мере один активный элемент, выбранный из циркония, гафния и иттрия, а разливку полученного расплава осуществляют в предварительно нагретую инертную форму.
Предпочтительно, рабочий слой инертной формы, в которую осуществляют разливку расплава, состоит из, графита или инертной керамики в виде по меньшей мере одного из оксидов иттрия, гафния, скандия и циркония.
Предпочтительно, предварительный нагрев формы для разливки осуществляют до температуры от 250 до 1500°С.
Необходимость введения в завалку кремния, титана и алюминия вместе с ниобием обусловлена высокой температурой плавления основы сплава -ниобия (Тпл~2477°С) и других тугоплавких компонентов (например, W, Мо), которые могут входить в состав сплава. Мощность вакуумных индукционных установок не позволяет произвести нагрев этих тугоплавких компонентов до температур их плавления. Алюминий имеет низкую температуру плавления (Тпл~660°С), он переходит в жидкое состояние в первую очередь. Затем в образовавшемся расплаве начинает происходить расплавление и растворение остальных компонентов, в первую очередь менее тугоплавких: кремния и титана, температура плавления которых также может быть достигнута в вакуумной индукционной печи. Объема образовавшегося расплава достаточно для полного растворения ниобия, и менее активных элементов, входящих в состав сплава, наприме, хрома и наиболее тугоплавких (W, Мо) компонентов сплава. Полученный расплав будет иметь температуру ликвидуса, достаточную для поддержания расплава в жидком состоянии за счет индукционного нагрева.
Необходимость введения активных компонентов в расплав перед разливкой обусловлена возможным взаимодействием данных компонентов с материалом тигля по типовой реакции:
А + МеО → АО + Me,
где А - активный элемент, входящий в состав сплава, один или несколько металлов из группы: Hf, Zr, Y;
Me - один или несколько металлов из группы Zr, Hf, Y, Sc, входящий в состав оксидов, составляющих основу материала тигля.
Указанное взаимодействие может привести к загрязнению сплава кислородом и отклонению содержания легирующих элементов от расчетного состава. Введение активных компонентов в расплав перед разливкой сокращает время их нахождения в расплавленном состоянии, что уменьшает время их взаимодействия с керамикой тигля. Таким образом, сплав, полученный по предлагаемому способу, обладает узкими интервалами легирования и высокой чистотой по примеси кислорода. Рекомендуется вводить активные элементы в расплав не ранее чем за 10-15 минут перед разливкой.
Материалом формы, в которую осуществляют последующую разливку расплава, является инертная керамика, рабочий слой которой изготовлен из по крайней мере одного из оксидов иттрия, гафния, скандия, циркония (для предотвращения взаимодействия расплава с материалом формы) либо графита.
Остальные части тигля и формы для разливки расплава, которые не контактируют с расплавом, могут быть изготовлены из различных огнеупорных материалов, работоспособных в указанных температурных интервалах, например оксиды циркония, иттрия, алюминия, магния и др.
Равномерное распределение легирующих элементов в слитке достигается за счет интенсивного индукционного перемешивания расплава во время вакуумной индукционной плавки.
В качестве газа для создания инертной атмосферы при вакуумной индукционной плавке предпочтительно применять аргон. Инертный раз предпочтительно вводить в камеру печи после нагревания шихты, непосредственно перед началом расплавления, для того, чтобы с поверхности шихтовых материалов испарились влага и загрязнения. Во время проведения плавки давление инертного газа препятствует интенсивному испарению с поверхности расплава легирующих элементов, обладающих высоким значением давления упругости насыщенного пара (например, Si Al, Cr, Y).
Перед разливкой осуществляют предварительный нагрев форм для предотвращения преждевременного затвердевания расплава во время разливки и заполнения всего объема формы. Предварительный нагрев формы для разливки способствует получению более плотных слитков (отливок). Предпочтительно проводить нагрев от 250 до 1500°С, в зависимости от материала и конфигурации формы, который обеспечивает дополнительное преимущество, заключающееся в снижении пористости в отливке.
Установлено, что выплавка высокотемпературных жаропрочных сплавов на основе Nb-Si обеспечивает получение слитков и отливок с равноосной структурой и стабильным химическим составом по всему объему слитка (отливки).
Примеры осуществления изобретения
Пример 1
По предлагаемому способу осуществляли выплавку высокожаропрочного сплава на основе ниобиевой матрицы с интерметаллидным упрочнением состава (% мас.): Nb(осн.)-(14,0-16,0)Ti-(9,0-10,0)Hf-(5,0-6,0)Si-(3,0-4,0)Cr-(0,5-1,0)Al.
В тигель вакуумной индукционной печи, рабочий слой которого был изготовлен на основе оксида скандия, загрузили кремний, хром, титан, алюминий и ниобий. Откачали воздух из плавильной камеры до давления ~2 кПа, расплавили завалку, выдержали расплав около 7 мин, ввели в расплав гафний в чистом виде. После растворения гафния расплав выдержали около 4 минут, провели интенсивное индукционное перемешивание и осуществили разливку расплава в керамическую форму, предварительно нагретую до 800°С.
Результаты химического анализа из проб, взятых по высоте отливки представлены в таблице 1.
Figure 00000001
Из таблицы 1 видно, что в сплаве, выплавленном по предлагаемому способу, содержание легирующих элементов в различных частях полученной заготовки практически не отличаются между собой. Содержание кислорода в сплаве находится на стабильно низком уровне, что говорит о малой степени интенсивности взаимодействия расплава с материалом тигля.
Методом рентгеноструктурного качественного анализа установлено, что в полученном сплаве присутствуют две фазы:
- твердый раствор на основе ниобия (Nb) с кубической сингонией, эмпирическая формула α - (Nb, Ti);
- интерметаллидная фаза на основе химического соединения Nb5Si3 с гексагональной сингонией, эмпирическая формула (Nb, Ti, Hf)5Si3.
Приблизительное содержание фаз в сплаве определено по данным полуколичественного фазового анализа и представлено в таблице 2.
Figure 00000002
Пример 2
По предлагаемому способу осуществляли выплавку высокожаропрочного сплава на основе ниобиевой матрицы с интерметаллидным упрочнением состава (% мас.): Nb(осн.)-(5,5-6,0)Si-(7,5-9,8)Ti-(8,0-12,0)Hf-(2,1-3,3)Cr-(0,7-1,3)Al-(4,8-7,0)Zr-(9,9-14,8)Мо-(0,6-1,8)Y.
В тигель вакуумной индукционной печи, рабочий слой которого был изготовлен на основе оксида иттрия, загрузили кремний, хром, титан, алюминий, молибден и ниобий. Откачали воздух из плавильной камеры до давления ~2 кПа, напустили в камеру аргон до давления ~23 кПа, расплавили завалку, выдержали расплав около 8 мин, ввели в расплав цирконий. После растворения циркония расплав выдержали около 3 минут и ввели в расплав иттрий. После растворения иттрия расплав выдержали около 4 минут и ввели в расплав гафний. После растворения гафния расплав выдержали около 3 минут, провели интенсивное индукционное перемешивание и осуществили разливку расплава в графитовую изложницу, предварительно нагретую до 400°С.
Результаты химического анализа из проб, взятых по высоте отливки, представлены в таблице 3.
Figure 00000003
Из таблицы 3 видно, что в сплаве, выплавленном по предлагаемому способу, содержание легирующих элементов в различных частях полученной заготовки практически не отличаются между собой. Содержание кислорода в сплаве находится на стабильно низком уровне, что говорит о малой степени интенсивности взаимодействия расплава с материалом тигля.
Методом рентгеноструктурного качественного анализа установлено, что в полученном сплаве присутствуют две фазы:
- твердый раствор на основе ниобия (Nb) с кубической сингонией, эмпирическая формула α - (Nb, Ti, Mo));
- интерметаллидная фаза на основе химического соединения Nb5Si3 с гексагональной сингонией, эмпирическая формула (Nb, Ti, Hf)5Si3.
Приблизительное содержание фаз в сплаве определено по данным полуколичественного фазового анализа и представлено в таблице 4.
Figure 00000004
Пример 3
По предлагаемому способу осуществляли выплавку высокожаропрочного сплава на основе ниобиевой матрицы с интерметаллидным упрочнением состава (% мас.): Nb(осн.)-(14,0-16,0)Ti-(9,0-10,0)Hf-(5,0-6,0)Si-(3,0-4,0)Cr-(0,5-1,0)Al.
В тигель вакуумной индукционной печи, рабочий слой которого был изготовлен на основе оксида циркония, загрузили кремний, хром, титан, алюминий и ниобий. Откачали воздух из плавильной камеры до давления ~2 кПа, напустили в камеру аргон до давления ~17 кПа, расплавили завалку, выдержали расплав около 6 мин, ввели в расплав гафний в чистом виде. После растворения гафния расплав выдержали около 3 минут, провели интенсивное индукционное перемешивание и осуществили разливку расплава в керамическую форму, предварительно нагретую до 900°С.
Результаты химического анализа из проб, взятых по высоте отливки, представлены в таблице 5.
Figure 00000005
Из таблицы 5 видно, что в сплаве, выплавленном по предлагаемому способу, содержание легирующих элементов в различных частях полученной заготовки практически не отличается между собой. Содержание кислорода в сплаве находится на стабильно низком уровне, что говорит о малой степени интенсивности взаимодействия расплава с материалом тигля.
Методом рентгеноструктурного качественного анализа установлено, что в полученном сплаве присутствуют две фазы:
- твердый раствор на основе ниобия (Nb) с кубической сингонией, эмпирическая формула α - (Nb, Ti);
- интерметаллидная фаза на основе химического соединения ND5Si3 с гексагональной сингонией, эмпирическая формула (Nb, Ti, Hf)5Si3.
Приблизительное содержание фаз в сплаве определено по данным полуколичественного фазового анализа и представлено в таблице 6.
Figure 00000006
Пример 4
По предлагаемому способу осуществляли выплавку высокожаропрочного сплава на основе ниобиевой матрицы с интерметаллидным упрочнением состава (% мас.): Nb(осн.)-(14,0-16,0)Ti-(9,0-10,0)Hf-(5,0-6,0)Si-(3,0-4,0)Cr-(0,5-1,0)Al.
В тигель на основе оксида иттрия вакуумной индукционной печи загрузили кремний, хром, титан, алюминий, вольфрам и ниобий. Откачали воздух из плавильной камеры до давления ~2 кПа, напустили в камеру гелий до давления ~23 кПа, расплавили завалку, выдержали расплав около 6 мин, ввели в расплав гафний в чистом виде. После растворения гафния расплав выдержали около 4 минут, провели интенсивное индукционное перемешивание и осуществили разливку расплава в керамическую форму, предварительно нагретую до 1000°С.
Результаты химического анализа из проб, взятых по высоте отливки, представлены в таблице 7.
Figure 00000007
Из таблицы 7 видно, что в сплаве, выплавленном по предлагаемому способу, содержание легирующих элементов в различных частях полученной заготовки практически не отличаются между собой. Содержание кислорода в сплаве находится на стабильно низком уровне, что говорит о малой степени интенсивности взаимодействия расплава с материалом тигля.
Методом рентгеноструктурного качественного анализа установлено, что в полученном сплаве присутствуют две фазы:
- твердый раствор на основе ниобия (Nb) с кубической сингонией, эмпирическая формула α - (Nb, Ti));
- интерметаллидная фаза на основе химического соединения Nb5Si3 с гексагональной сингонией, эмпирическая формула (Nb, Ti, Hf)5Si3.
Приблизительное содержание фаз в сплаве определено по данным полуколичественного фазового анализа и представлено в таблице 8.
Figure 00000008
Предлагаемый способ позволяет получать высокотемпературные жаропрочные сплавы на основе Nb-Si с равномерным химическим составом.
Использование изобретения позволяет получать заготовки высокотемпературных жаропрочных сплавов на основе Nb-Si для последующего литья с направленной структурой, что позволит повысить тягу, ресурс и надежность работы перспективных авиационных газотурбинных двигателей.

Claims (3)

1. Способ получения жаропрочного сплава на основе Nb-Si, включающий загрузку шихты в тигель, выплавку в вакуумной индукционной печи в вакууме или в среде инертного газа, разливку расплава в форму, отличающийся тем, что в тигель загружают шихту, содержащую кремний, алюминий, титан, ниобий, и по меньшей мере один элемент, выбранный из хрома, молибдена и вольфрама, выплавку проводят при температуре 1800-2100°С в инертном керамическом тигле, рабочий слой которого изготовлен по меньшей мере из одного из оксидов иттрия, гафния, скандия или циркония, по крайней мере за 10-15 минут перед разливкой в расплав вводят по меньшей мере один активный элемент, выбранный из циркония, гафния и иттрия, а разливку полученного расплава осуществляют в предварительно нагретую инертную форму.
2. Способ по п. 1, отличающийся тем, что рабочий слой инертной формы, в которую осуществляют последующую разливку расплава, состоит из графита или инертной керамики в виде по меньшей мере одного из оксидов иттрия, гафния, скандия и циркония.
3. Способ по п. 1, отличающийся тем, что предварительный нагрев формы для разливки осуществляют до температуры от 250 до 1500°С.
RU2015143322A 2015-10-13 2015-10-13 Способ получения жаропрочного сплава на основе ниобия RU2618038C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015143322A RU2618038C2 (ru) 2015-10-13 2015-10-13 Способ получения жаропрочного сплава на основе ниобия

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015143322A RU2618038C2 (ru) 2015-10-13 2015-10-13 Способ получения жаропрочного сплава на основе ниобия

Publications (2)

Publication Number Publication Date
RU2015143322A RU2015143322A (ru) 2017-04-20
RU2618038C2 true RU2618038C2 (ru) 2017-05-02

Family

ID=58641655

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015143322A RU2618038C2 (ru) 2015-10-13 2015-10-13 Способ получения жаропрочного сплава на основе ниобия

Country Status (1)

Country Link
RU (1) RU2618038C2 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109047783A (zh) * 2018-08-15 2018-12-21 长沙新材料产业研究院有限公司 一种铝合金粉末及其制备方法
RU2680321C1 (ru) * 2018-01-31 2019-02-19 Акционерное Общество "Форт" Способ получения полуфабриката из сплава на основе ниобия
RU2686831C1 (ru) * 2018-03-22 2019-04-30 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Металлокерамический композиционный материал на основе интерметаллидной матрицы и способ его получения
RU2751062C1 (ru) * 2020-11-17 2021-07-07 Федеральное государственное бюджетное учреждение науки Институт физики твердого тела Российской академии наук (ИФТТ РАН) Высокотемпературный слоисто-волокнистый композит, армированный оксидными волокнами, и способ его получения

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112831676B (zh) * 2020-12-29 2021-09-28 中航上大高温合金材料股份有限公司 一种冶炼高铌gh4169合金的真空熔炼控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3046109A (en) * 1959-05-01 1962-07-24 Gen Motors Corp High temperature niobium base alloy
RU2416656C2 (ru) * 2004-10-27 2011-04-20 Х.К. Штарк Инк. Способ изготовления продукта переработки, включающего содержащий кремний сплав ниобия и тантала (варианты), лунки глубокой вытяжки и мишени ионного распыления, полученные из него
US20110182766A1 (en) * 2008-06-18 2011-07-28 Panos Tsakiropoulos Alloys
RU2557117C1 (ru) * 2014-05-05 2015-07-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Композиционный материал на основе ниобия, упрочненный силицидами ниобия, и изделие, выполненное из него

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3046109A (en) * 1959-05-01 1962-07-24 Gen Motors Corp High temperature niobium base alloy
RU2416656C2 (ru) * 2004-10-27 2011-04-20 Х.К. Штарк Инк. Способ изготовления продукта переработки, включающего содержащий кремний сплав ниобия и тантала (варианты), лунки глубокой вытяжки и мишени ионного распыления, полученные из него
US20110182766A1 (en) * 2008-06-18 2011-07-28 Panos Tsakiropoulos Alloys
RU2557117C1 (ru) * 2014-05-05 2015-07-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Композиционный материал на основе ниобия, упрочненный силицидами ниобия, и изделие, выполненное из него

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2680321C1 (ru) * 2018-01-31 2019-02-19 Акционерное Общество "Форт" Способ получения полуфабриката из сплава на основе ниобия
RU2686831C1 (ru) * 2018-03-22 2019-04-30 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Металлокерамический композиционный материал на основе интерметаллидной матрицы и способ его получения
CN109047783A (zh) * 2018-08-15 2018-12-21 长沙新材料产业研究院有限公司 一种铝合金粉末及其制备方法
CN109047783B (zh) * 2018-08-15 2021-10-01 长沙新材料产业研究院有限公司 一种铝合金粉末及其制备方法
RU2751062C1 (ru) * 2020-11-17 2021-07-07 Федеральное государственное бюджетное учреждение науки Институт физики твердого тела Российской академии наук (ИФТТ РАН) Высокотемпературный слоисто-волокнистый композит, армированный оксидными волокнами, и способ его получения

Also Published As

Publication number Publication date
RU2015143322A (ru) 2017-04-20

Similar Documents

Publication Publication Date Title
RU2618038C2 (ru) Способ получения жаропрочного сплава на основе ниобия
CN102181809B (zh) 具有拉伸塑性的大尺寸金属玻璃复合材料及其制备方法
KR102616983B1 (ko) 저질소, 본질적으로 질화물을 함유하지 않는 크롬 및 크롬과 니오븀-함유 니켈계 합금의 제조 방법 및 수득된 크롬 및 니켈계 합금
KR101264219B1 (ko) 마그네슘계 합금 및 그 제조방법
CN110408816B (zh) 一种镍硼碳中间合金及其制备方法
CN106756372B (zh) 一种高性能铍铝-稀土合金的制备方法及其制备的产品
CN106756081A (zh) 大规格Ti‑Al‑Nb系合金细晶铸锭的制备方法
Chen et al. Pilot-scale experimental evaluation of induction melting of Ti-46Al-8Nb alloy in the fused BaZrO3 crucible
Pogozhev et al. NiAl-based electrodes by combined use of centrifugal SHS and induction remelting
WO2018228142A1 (zh) 基于铝热自蔓延梯度还原与渣洗精炼制备钛合金的方法
Li et al. Effect of vacuum level on the interfacial reactions between K417 superalloy and Y2O3 crucibles
CN105618723B (zh) 一种基于惰性气氛的钛合金自耗电极凝壳熔炼铸造工艺
RU2607857C1 (ru) Способ получения электродов из сплавов на основе алюминида никеля
Bian et al. Influence of yttrium and vacuum degree on the purification of K417 superalloy
RU2572117C1 (ru) Способ получения суперсплавов на основе никеля, легированных редкоземельными металлами
CN103526038A (zh) 一种高强度高塑性twip钢电渣重熔生产方法
CN108950273B (zh) 一种中间合金及其制备方法和应用
CN106011574B (zh) 一种无铪高抗氧化性的Nb-Si基合金及其制备方法
CN108754277A (zh) 一种钴铁镍钒锆高熵合金及其制备方法
RU2392338C1 (ru) Способ получения литейных жаропрочных сплавов на никелевой основе
RU2344186C2 (ru) Способ производства литейных жаропрочных сплавов на основе никеля (варианты)
RU2595084C1 (ru) Способ получения жаропрочного сплава на основе ниобиевой матрицы с интерметаллидным упрочнением
Min et al. Vacuum induction furnace melting technology for high-temperature composite material based on Nb–Si system
CN108588590A (zh) 一种原位自生成TiB2晶须增强TiAl基复合材料及其制备方法
EP3842556B1 (en) Inoculation process for grain refinement of a nickel base alloy