RU2617820C2 - Способ определения максимальной длины горизонтального ствола в условиях каверново-трещинного карбонатного нефтегазонасыщенного пласта с аномально низким пластовым давлением - Google Patents
Способ определения максимальной длины горизонтального ствола в условиях каверново-трещинного карбонатного нефтегазонасыщенного пласта с аномально низким пластовым давлением Download PDFInfo
- Publication number
- RU2617820C2 RU2617820C2 RU2015138933A RU2015138933A RU2617820C2 RU 2617820 C2 RU2617820 C2 RU 2617820C2 RU 2015138933 A RU2015138933 A RU 2015138933A RU 2015138933 A RU2015138933 A RU 2015138933A RU 2617820 C2 RU2617820 C2 RU 2617820C2
- Authority
- RU
- Russia
- Prior art keywords
- horizontal
- range
- density
- horizontal shaft
- formation
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 14
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 title claims description 8
- 229920006395 saturated elastomer Polymers 0.000 title claims description 4
- 238000010521 absorption reaction Methods 0.000 claims abstract description 17
- 238000005259 measurement Methods 0.000 claims abstract description 6
- 230000035699 permeability Effects 0.000 claims abstract description 5
- 238000009826 distribution Methods 0.000 claims abstract description 4
- 238000005553 drilling Methods 0.000 claims description 25
- 239000012530 fluid Substances 0.000 claims description 6
- 239000004215 Carbon black (E152) Substances 0.000 abstract description 3
- 238000004364 calculation method Methods 0.000 abstract description 3
- 229930195733 hydrocarbon Natural products 0.000 abstract description 3
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 3
- 230000005856 abnormality Effects 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 1
- 238000005755 formation reaction Methods 0.000 description 8
- 238000010276 construction Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 230000002706 hydrostatic effect Effects 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/30—Specific pattern of wells, e.g. optimising the spacing of wells
- E21B43/305—Specific pattern of wells, e.g. optimising the spacing of wells comprising at least one inclined or horizontal well
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
Abstract
Изобретение относится к нефтяной и газовой промышленности, а именно к технологии строительства глубоких скважин. Техническим результатом является повышение точности расчета максимальной длины горизонтального ствола для конкретного типа трещинного коллектора и углеводородной системы. Способ включает определение коэффициентов аномальности, гидроразрыва, поглощения, глубины по стволу, глубины вертикальной, плотности бурового раствора, эквивалентной циркуляционной плотности с учетом распределения по стволу. При этом проводят определение и анализ градаций проницаемости каверново-трещинного пласта на основе ранее пробуренных скважин, далее строят график диапазонов допустимых депрессий/репрессий; дополнительно оценивают диапазон колебания эквивалентной циркуляционной плотности в конкретной точке горизонтального ствола скважины на основе фактических замеров колебаний забойного давления в скважине, рассчитывают эквивалентную циркуляционную плотность с учетом колебаний забойного давления, характеризующуюся на графиках толщиной линии; затем строят график совмещенных давлений для интервала горизонтального ствола и, исходя из графика, на пересечении диапазонов допустимых репрессий/депрессий и диапазона эквивалентной циркуляционной плотности определяют максимально возможную длину горизонтального ствола. 4 ил.
Description
Изобретение относится к нефтяной и газовой промышленности, а именно к технологии строительства глубоких скважин, в частности к определению максимальной длины горизонтального ствола при бурении в каверново-трещинных карбонатных породах с углеводородной системой с аномально низкими пластовыми давлениями (АНПД).
Известен способ определения оптимальной длины горизонтального ствола с учетом гидропроводности, промысловых данных, нефтегазонасыщенности пласта (Патент РФ 2093669, кл. E21B 43/20, 1995). Данный способ позволяет определить оптимальную длину из учета коллекторских свойств продуктивного пласта, то есть максимального дебита проектируемой нефтегазодобывающей скважины.
Также известен способ определения оптимальной длины ствола добывающей скважины в продуктивном пласте, основывающийся на прямой зависимости от запасов нефти и обратно пропорциональный их продуктивности (Патент РФ 2474678, кл. E21B 43/16, 2011).
Основным недостатком данных способов является невозможность точного расчета максимально возможной технологической длины горизонтального ствола добывающей скважины. То есть оптимальная длина горизонтального ствола (ГС), обоснованная методами выше, может оказаться технологически недостижимой.
Наиболее близким способом оценки горно-геологических условий, определяющих технологически достижимую максимальную длину горизонтального ствола, является способ, основывающийся на построении графиков совмещенных давлений (Леонов Е.Г., Федин Д.С. Совершенствование методики построения совмещенного графика давлений для скважин с наклонными и горизонтальными участками ствола. Строительство нефтяных и газовых скважин на суше и на море, №5, 2013, стр. 15-21 (прототип)). В данном способе учитываются коэффициенты аномальности, гидроразрыва, поглощения, глубины по стволу, глубины вертикальной, плотности бурового раствора, эквивалентной циркуляционной плотности с учетом распределения по стволу, более точно разграничивающие диапазон совместимых по условиям бурения зон. Способ по прототипу имеет один существенный недостаток, а именно: не учитывается коэффициент, характеризующий диапазон колебаний эквивалентной циркуляционной плотности в процессе бурения скважины. Расчет горно-геологических условий и длины горизонтального ствола без данного критерия может привести к неверным технологическим решениям и в итоге к удорожанию стоимости строительства скважины за счет увеличения сроков и стоимости дополнительных материалов, то есть к неоправданным затратам.
Технической задачей предлагаемого изобретения является повышение точности расчета максимальной длины горизонтального ствола для конкретного типа трещинного коллектора и углеводородной системы, приводящее к технологической и экономической эффективности разработки залежей нефти и газа.
Техническим результатом является технологическая и экономическая эффективность разработки залежи нефти и газа.
Задача решается путем определения коэффициентов аномальности, гидроразрыва, поглощения, глубины по стволу, глубины вертикальной, плотности бурового раствора, эквивалентной циркуляционной плотности с учетом распределения по стволу, при этом проводят определение и анализ градаций проницаемости каверново-трещинного пласта на основе ранее пробуренных скважин, далее строят график диапазонов допустимых депрессий/репрессий; дополнительно оценивают диапазон колебания эквивалентной циркуляционной плотности в конкретной точке горизонтального ствола скважины на основе фактических замеров колебаний забойного давления в скважине, рассчитывают эквивалентную циркуляционную плотность с учетом колебаний забойного давления, характеризующуюся на графиках толщиной линии; затем строят график совмещенных давлений для интервала горизонтального ствола и, исходя из графика, на пересечении диапазонов допустимых репрессий/депрессий и диапазона эквивалентной циркуляционной плотности определяют максимально возможную длину горизонтального ствола. Диапазон ЭЦП всегда наклонен, так как характеризует рост забойного давления по мере углубления скважины. Диапазон допустимых репрессий и депрессий при горизонтальном расположении газо- и водонефтяного контакта всегда горизонтален. При этом максимальная длина горизонтального ствола определяется на пересечении диапазонов ЭЦП и допустимых диапазонов депрессии и репрессии.
ПРИМЕР использования предложенного способа определения максимальной длины горизонтального ствола в условиях каверново-трещинного карбонатного нефтегазонасыщенного пласта на примере одного из месторождений Юрубчено-Тохомской зоны нефтегазонасыщения в природном резервуаре рифея.
Авторами были определены фактические горно-геологические условия в продуктивном карбонатном пласте рифея применительно к задаче бурения горизонтального ствола длиной 1000 м, представленные на рис. 1.
По данным, представленным на рис. 1, выделено три диапазона барических условий (1, 2, 3), границы каждого из которых удалены в область репрессии (1), равновесия (2) и депрессии (3) и соответствуют для депрессии значениям Pзаб 21,1 МПа (4); 20,7 МПа (5) и 19,9 МПа (6) соответственно. Каждый уровень характеризует природную каверново-трещинную фильтрационную систему рифейского резервуара с разной раскрытостью трещин, выделено три градации. 4 - самый проницаемый, аномально-трещиноватый, 5 - промежуточный; 6 - наименее проницаемый из тех, что значимо влияют на интенсивность поглощения в первичном вскрытии горизонтальным стволом. На практике каждому из коридоров (диапазонов) соответствует своя гидравлическая программа бурения, применимая для бурения с поглощением «не выше заданного, допустимого». Таким образом, интенсивность вскрываемой горизонтальным бурением трещиноватости и просвет фильтрующих трещин (каверн) как единичных, так и групп трещин, кластеров трещиноватости, являются естественным природным фактором, ограничивающим диапазон текущих динамических давлений на забое горизонтального ствола для любой технологии первичного вскрытия (открытый или закрытый контур). Зона репрессии (1) в свою очередь характеризуется зоной неприемлемой при бурении интенсивности поглощения более 10-12 м3/час (7) и зоной приемлемой при бурении интенсивности поглощения до 10-12 м3/час (8).
По мнению авторов предлагаемого изобретения, методика школы Леонова Е.Г и др. (прототип) наиболее полно описывает гидродинамические процессы, происходящие при бурении скважин. Способ определения оптимальной длины горизонтального ствола отличается тем, что авторами данного изобретения предложено добавить один дополнительный критерий, который при бурении в каверново-трещинных карбонатных пластах с АНПД играет определяющую роль. Речь идет о допустимом диапазоне колебании ЭЦП на забое в конкретной точке горизонтального ствола.
Выполним количественную оценку диапазона колебания ЭЦП в каждой конкретной точке горизонтального ствола скважины на основе фактических замеров забойного давления в скважине (рис. 2), где введен один дополнительный критерий (характеризующий на графике диапазон колебаний - толщину линии с учетом амплитуды колебаний ЭЦП). На рис. 2 показана амплитуда колебаний забойного давления при бурении горизонтального ствола (на основе фактических замеров, 1% от гидростатического давления бурового раствора) в карбонатах рифея, которая и будет являться диапазоном колебаний эквивалентной циркуляционной плотности.
Таким образом, выбранная методика (с дополнением) позволяет исключить ошибки при проектировании, возможные при использовании более старых методик, благодаря учету всех значимых критериев (рис. 3). Уточненный график совмещенных давлений, показанный на рис. 3, с учетом колебания ЭЦП (в интервале горизонтального ствола 1000 м в нефтегазонасыщенной части карбонатного рифея), позволяет оценить максимальную длину горизонтального ствола. На рис. 3 показаны ограничения совместимых по условиям бурения зон в горизонтальном стволе, а именно градиент допустимой депрессии на пласт (синий), допустимый индекс поглощения (красный), коэффициент аномальности (серый), плотность бурового раствора со шламом (зеленый). Эквивалентная циркуляционная плотность показана широкой линией желтого цвета. Пересечение линии ЭЦП с линиями допустимого индекса поглощений и допустимой депрессии на пласт характеризует максимальную длину горизонтального ствола.
По полученным на графике данным (см. рис. 3) можно сделать вывод о том, что при плотности бурового раствора 0,84 г/см3 в рассматриваемых горно-геологических условиях бурение горизонтального ствола в 1000 м становится невозможным без поглощений БР даже при соблюдении заданных нами условий. Это обусловлено тем, что в башмаке предыдущей колонны колебания ЭЦП выходят за максимально возможную границу допустимой депрессии на пласт. В это же время на забое горизонтального ствола (1000 м от башмака предыдущей колонны) колебания ЭЦП превышают выбранный нами допустимый индекс поглощения (до 12 м3/час). Построим график совмещенных давлений для интервала горизонтального ствола, на основе рис. 1, соблюдая строго все заданные условия (рис. 4). График на рис. 4 также характеризуется тремя диапазонами барических условий (1, 2, 3), границы каждого из которых удалены в область репрессии (1), равновесия (2) и депрессии (3) и соответствуют для депрессии значениям Рзаб 21,1 МПа; 20,7 МПа и 19,9 МПа соответственно. Каждый уровень характеризует природную каверново-трещинную фильтрационную систему рифейского резервуара с разной раскрытостью трещин, выделено три градации. 4 - самый проницаемый, аномально-трещиноватый, 5 - промежуточный; 6 - наименее проницаемый из тех, что значимо влияют на интенсивность поглощения в первичном вскрытии горизонтальным стволом. Зона репрессии (1) в свою очередь характеризуется зоной неприемлемой при бурении интенсивности поглощения более 10-12 м3/час (7) и зоной приемлемой при бурении интенсивности поглощения до 10-12 м3/час (8). Диапазон эквивалентной циркуляционной плотности (ЭЦП) (9) показан пунктирными линиями. Пересечение линий диапазона ЭЦП (9) с линиями допустимого индекса поглощений (зона неприемлемой при бурении интенсивности поглощения) (7) и допустимой депрессии на пласт (для трещин более 10 мм) (4) характеризует максимальную длину горизонтального ствола. Все расчеты ведутся исходя из применения технологии горизонтального бурения на комбинированном регулируемом давлении.
На основании графика при заданных условиях (предельные значения репрессии и депрессии) максимально возможная длина горизонта составляет около 500 м. Так, мы можем вычислить технологически максимально возможную длину горизонтального ствола для каждой из трех градаций проницаемости кластеров трещин. С учетом предполагаемого диапазона проницаемости трещинной системы, вскрываемой горизонтальным стволом, эта величина будет отличаться и также может быть вычислена (оценена), при этом диапазон возможных значений забойного давления при приближении к критической точке (максимально возможному забою) равномерно сужается и превращается в точку.
Для выбранных условий бурения горизонтального ствола колебания эквивалентной циркуляционной плотности варьируются в диапазоне 0,01 г/см3, что составляет ориентировочно 1% от гидростатического давления. Для других природно-технических условий данная величина должна определяться опытным путем проведения фактических замеров в скважине, либо по данным с ранее пробуренных скважин.
Способ определения максимальной технологически возможной длины горизонтального ствола с учетом всех значимых критериев позволяет учитывать сложное геологическое строение продуктивного карбонатного рифейского резервуара и позволяет оценить технико-технологические возможности бурения горизонтальных скважин на этапе проектирования.
Способ основывается на прототипе, с учетом введения дополнительного критерия, предложенного авторами, и позволяет оперативно оценить технологически возможную длину горизонтального ствола для различных градаций трещинных систем.
Claims (1)
- Способ определения максимальной длины горизонтального ствола в условиях каверново-трещинного карбонатного нефтегазонасыщенного пласта с аномально низким пластовым давлением, включающий определение коэффициентов аномальности, гидроразрыва, поглощения, глубины по стволу, глубины вертикальной, плотности бурового раствора, эквивалентной циркуляционной плотности с учетом распределения по стволу, отличающийся тем, что проводят определение и анализ градаций проницаемости каверново-трещинного пласта на основе ранее пробуренных скважин, далее строят график диапазонов допустимых депрессий/репрессий; дополнительно оценивают диапазон колебания эквивалентной циркуляционной плотности в конкретной точке горизонтального ствола скважины на основе фактических замеров колебаний забойного давления в скважине, рассчитывают эквивалентную циркуляционную плотность с учетом колебаний забойного давления, характеризующуюся на графиках толщиной линии; затем строят график совмещенных давлений для интервала горизонтального ствола и, исходя из графика, на пересечении диапазонов допустимых репрессий/депрессий и диапазона эквивалентной циркуляционной плотности определяют максимально возможную длину горизонтального ствола.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015138933A RU2617820C2 (ru) | 2015-09-11 | 2015-09-11 | Способ определения максимальной длины горизонтального ствола в условиях каверново-трещинного карбонатного нефтегазонасыщенного пласта с аномально низким пластовым давлением |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015138933A RU2617820C2 (ru) | 2015-09-11 | 2015-09-11 | Способ определения максимальной длины горизонтального ствола в условиях каверново-трещинного карбонатного нефтегазонасыщенного пласта с аномально низким пластовым давлением |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2015138933A RU2015138933A (ru) | 2017-03-16 |
RU2617820C2 true RU2617820C2 (ru) | 2017-04-27 |
Family
ID=58454473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015138933A RU2617820C2 (ru) | 2015-09-11 | 2015-09-11 | Способ определения максимальной длины горизонтального ствола в условиях каверново-трещинного карбонатного нефтегазонасыщенного пласта с аномально низким пластовым давлением |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2617820C2 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210348497A1 (en) * | 2020-05-11 | 2021-11-11 | Saudi Arabian Oil Company | Systems and Methods for Creating Hydrocarbon Wells |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011115600A1 (en) * | 2010-03-15 | 2011-09-22 | Landmark Graphics Corporation | Systems and methods for positioning horizontal wells within boundaries |
RU2474678C1 (ru) * | 2011-10-13 | 2013-02-10 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки нефтяной залежи горизонтальными скважинами |
WO2013165437A2 (en) * | 2012-05-04 | 2013-11-07 | Landmark Graphics Corporation | Systems and methods for optimal spacing of horizontal wells |
-
2015
- 2015-09-11 RU RU2015138933A patent/RU2617820C2/ru not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011115600A1 (en) * | 2010-03-15 | 2011-09-22 | Landmark Graphics Corporation | Systems and methods for positioning horizontal wells within boundaries |
RU2474678C1 (ru) * | 2011-10-13 | 2013-02-10 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки нефтяной залежи горизонтальными скважинами |
WO2013165437A2 (en) * | 2012-05-04 | 2013-11-07 | Landmark Graphics Corporation | Systems and methods for optimal spacing of horizontal wells |
Non-Patent Citations (2)
Title |
---|
АЛИЕВ З.С. и др., Определение необходимой длины горизонтального ствола газовой скважины в процессе разработки. Газовая промышленность, 2005, N12. АЛИЕВ З.С. и др., Обоснование и выбор оптимальной конструкции горизонтальных газовых скважин, Москва, Техника, 2001 с. 96. * |
ЛЕОНОВ Е.Г. и др., Совершенствование методики построения совмещенного графика давлений для скважин с наклонными и горизонтальными участками ствола, Строительство нефтяных и газовых скважин на суше и на море, N5, 2013, с. 15-21. * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210348497A1 (en) * | 2020-05-11 | 2021-11-11 | Saudi Arabian Oil Company | Systems and Methods for Creating Hydrocarbon Wells |
US11608734B2 (en) * | 2020-05-11 | 2023-03-21 | Saudi Arabian Oil Company | Systems and methods for creating hydrocarbon wells |
Also Published As
Publication number | Publication date |
---|---|
RU2015138933A (ru) | 2017-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2274747C2 (ru) | Методика оптимизации добычи из многослойных смешанных пластов с использованием данных о динамике изменения дебита смешанных пластов и данных геофизических исследований в эксплуатационных скважинах | |
CA2762261C (en) | Process for determining mobile water saturation in a reservoir formation | |
CN104863577A (zh) | 利用地震纵波传播时间预测地层孔隙压力的方法 | |
US10677036B2 (en) | Integrated data driven platform for completion optimization and reservoir characterization | |
CN110439519A (zh) | 一种基于极限限流设计的压裂方法及系统 | |
Khuzin et al. | Influence of hydraulic compression on porosity and permeability properties of reservoirs | |
Yehia et al. | Improving the shale gas production data using the angular-based outlier detector machine learning algorithm | |
RU2617820C2 (ru) | Способ определения максимальной длины горизонтального ствола в условиях каверново-трещинного карбонатного нефтегазонасыщенного пласта с аномально низким пластовым давлением | |
RU2413840C1 (ru) | Способ ликвидации межпластовых перетоков | |
RU2595112C1 (ru) | Способ разработки нефтяной залежи на поздней стадии разработки | |
CN115951422B (zh) | 构建天然裂缝漏失压力模型的方法 | |
CN116556934A (zh) | 一种含水致密气藏优质储量区域的开发方法、装置和设备 | |
RU2517674C1 (ru) | Способ разработки неоднородной нефтяной залежи | |
RU2734202C1 (ru) | Способ исследования горизонтальных скважин с многостадийным гидравлическим разрывом пласта в низкопроницаемых коллекторах | |
Syofyan et al. | A new approach to model the saturation below the free water level, a case study from giant reservoir in Middle East | |
RU2535545C1 (ru) | Способ разработки нефтяной залежи | |
RU2766482C1 (ru) | Способ разработки нефтяной залежи с межпластовыми перетоками | |
Bianchi et al. | Pressure Measurements Challenges in Low Permeability Reservoirs of Neuquén Basin, Argentina | |
Hasan et al. | Fractional flow curve construction using Buckley-Leverett method: A case study of the Masrab oilfield in Libya | |
Sarmah et al. | Characterization and production influence of geological facies in the Eagle Ford | |
Zhurilin et al. | SNL Application for Production Logging in Hard-to-Recover Gas Reserves Wells | |
RU2204700C1 (ru) | Способ добычи нефти | |
RU2760747C1 (ru) | Способ разработки неоднородного пласта сверхвязкой нефти | |
RU2808507C2 (ru) | Способ определения распределения объема закачанных в скважину жидкостей по зонам пласта вдоль ствола скважины | |
Zhu et al. | Lessons learned from existing horizontal fractured wells on university lands in the Midland Basin: rate transient analyses vs completion and field development optimization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20200912 |