[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

RU2611102C1 - Method for spectral analysis of polyharmonic signals - Google Patents

Method for spectral analysis of polyharmonic signals Download PDF

Info

Publication number
RU2611102C1
RU2611102C1 RU2015153710A RU2015153710A RU2611102C1 RU 2611102 C1 RU2611102 C1 RU 2611102C1 RU 2015153710 A RU2015153710 A RU 2015153710A RU 2015153710 A RU2015153710 A RU 2015153710A RU 2611102 C1 RU2611102 C1 RU 2611102C1
Authority
RU
Russia
Prior art keywords
signal
spectrum
spectral analysis
samples
zero
Prior art date
Application number
RU2015153710A
Other languages
Russian (ru)
Inventor
Иван Иванович Канатов
Дмитрий Владимирович Миненков
Вячеслав Викторович Гульванский
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)"
Priority to RU2015153710A priority Critical patent/RU2611102C1/en
Application granted granted Critical
Publication of RU2611102C1 publication Critical patent/RU2611102C1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis

Landscapes

  • Complex Calculations (AREA)

Abstract

FIELD: physics, measurement technology.
SUBSTANCE: method relates to digital signal processing, particularly to spectral analysis of signals in a Fourier basis, and can be used in radar, radio communication and measurement technology. The disclosed method comprises supplementing a sample of the analysed signal with zeros, performing Fourier transform, multiplying real and imaginary parts of spectrum readings with like parts of an adjacent reading, multiplying the sum vector with minus one and zeroing all readings less than zero.
EFFECT: invention enables to reduce the level of side lobes without deterioration of resolution of spectral analysis, and increase signal-to-noise ratio.
7 dwg, 1 tbl

Description

Изобретение относится к цифровой обработке сигналов, в частности к спектральному анализу сигналов в базисе Фурье, и может быть использовано в радиолокации, радиосвязи и измерительной технике.The invention relates to digital signal processing, in particular to spectral analysis of signals in the Fourier basis, and can be used in radar, radio communications and measuring equipment.

Известен способ спектрального анализа с использованием весовых окон Ханнинга, Кайзера, Дольфа-Чебышева и др. (Л. Рабинер, Б. Голд. Теория и применение цифровой обработки сигналов. М., 1978)A known method of spectral analysis using weighted windows of Hanning, Kaiser, Dolph-Chebyshev and others (L. Rabiner, B. Gold. Theory and application of digital signal processing. M., 1978)

Figure 00000001
Figure 00000001

где n=0, … N-1, - номер временного отсчета,where n = 0, ... N-1, is the number of time reference,

m=0, … M-1, - номер спектральной составляющей, M=N,m = 0, ... M-1, is the number of the spectral component, M = N,

Figure 00000002
Figure 00000002

Figure 00000003
Figure 00000003

Взвешивание сигнала используется для сокращения уровня боковых лепестков. Боковые лепестки влияют не только на растекание спектра, при котором моногармонический сигнал воспроизводится целой группой спектральных составляющих; их уровень означает коэффициент передачи в полосе подавления и от его величины зависит выигрыш в отношении сигнал/шум, получаемый при спектральном преобразовании сигнала.Signal weighting is used to reduce side lobe levels. The side lobes not only affect the spreading of the spectrum, in which the monoharmonic signal is reproduced by a whole group of spectral components; their level means the transmission coefficient in the suppression band, and the gain in the signal-to-noise ratio obtained by spectral transformation of the signal depends on its magnitude.

Лучшие из «классических» оконных функций, такие как Кайзера, Ханнинга, Дольфа-Чебышева, атомарные функции Кравченко и т.д., обеспечивают подавление «хвостов» частотной характеристики до уровней (-80 ÷ -100) дБ. Однако подавление боковых лепестков достигается ценой двукратного уменьшения разрешающей способности из-за расширения главного лепестка частотной характеристики спектроанализатора. Это общий недостаток для всех оконных функций: какова бы не была форма весового окна, оно сужает и без того короткий временной интервал сигнала, а сужение интервала во временной области неизбежно приводит к расширению спектра.The best of the "classical" window functions, such as Kaiser, Hanning, Dolph-Chebyshev, atomic functions of Kravchenko, etc., provide suppression of the "tails" of the frequency response to levels (-80 ÷ -100) dB. However, suppression of the side lobes is achieved at the cost of a twofold decrease in resolution due to the expansion of the main lobe of the frequency response of the spectrum analyzer. This is a common drawback for all window functions: whatever the shape of the weight window, it narrows the already short time interval of the signal, and narrowing the interval in the time domain inevitably leads to the expansion of the spectrum.

Двукратное расширение главного лепестка не только ухудшает разрешающую способность, но и двукратно увеличивает уровень шума. Эффективность выделения оконной функцией узкополосного сигнала из шума принято оценивать эквивалентной шумовой полосой (ЭШП), равной ширине полосы пропускания условного прямоугольного частотного фильтра, у которого площадь под кривой амплитудной частотной характеристики равна соответствующей площади оконной функции, а амплитуда равна эффективному значению коэффициента передачи ее главного лепестка:Twofold expansion of the main lobe not only degrades the resolution, but also doubles the noise level. The efficiency of isolating a narrow-band signal from noise by a window function is usually estimated by an equivalent noise band (ESR) equal to the bandwidth of a conventional rectangular frequency filter, whose area under the amplitude frequency response curve is equal to the corresponding area of the window function, and the amplitude is equal to the effective value of the transmission coefficient of its main lobe :

Figure 00000004
Figure 00000004

ЭШП измеряется в бинах - количестве шагов по частоте. Для идеальной (прямоугольной) частотной характеристики ЭШП=1. Для прямоугольного временного окна ЭШП=4.1, для окна Ханнинга ЭШП=4.01. Столь незначительная разница показывает неэффективность использования оконных функций для подавления шума. Для сравнения предлагаемый способ дает ЭШП в пределах 1.1÷1.5.ESR is measured in bins - the number of steps in frequency. For an ideal (rectangular) frequency response ESR = 1. For a rectangular time window ESR = 4.1, for a window of Hanning ESR = 4.01. Such a slight difference shows the inefficiency of using window functions to suppress noise. For comparison, the proposed method gives ESR within 1.1 ÷ 1.5.

На фиг. 1 представлены частотные характеристики двух соседних каналов быстрого преобразования Фурье (БПФ) - спектроанализатора. Жирной линией показаны желаемые (идеальные) характеристики. В идеальном случае прямоугольность характеристики обеспечивает независимость коэффициента передачи от частоты и гарантирует отсутствие пропуска сигнала на границе между каналами при отсутствии их перекрытия. Чем границы более пологи, тем большее перекрытие необходимо для воспроизведения «пограничных» частот. Для способа БПФ реальная характеристика по первым нулям в два раза шире идеальной. При использовании окна Ханнинга характеристика становится шире еще в два раза. Не намного меньшее расширение главного лепестка дают окна Дольфа-Чебышева и Кравченко-Гаусса.In FIG. Figure 1 shows the frequency characteristics of two adjacent channels of the fast Fourier transform (FFT) - a spectrum analyzer. The bold line shows the desired (ideal) characteristics. In the ideal case, the squareness of the characteristic ensures the independence of the transmission coefficient from the frequency and guarantees the absence of a signal skip at the boundary between the channels in the absence of their overlap. The more gentle the borders, the more overlap is necessary for reproducing the “boundary” frequencies. For the FFT method, the real characteristic of the first zeros is twice as wide as the ideal one. When using the Hanning window, the characteristic becomes twice as wider. Not much smaller expansion of the main petal is provided by the windows of Dolph-Chebyshev and Kravchenko-Gauss.

Известно также, что в случае, когда разрешение является главным параметром, приходится отказываться от способа непосредственного преобразования Фурье исходного сигнала, а использовать такие методы «сверхразрешения», как метод Писаренко, Прони, Кейпона (Современные методы спектрального анализа: Обзор. С.М. Кей, С.Л. Марпл, ТИИЭР, т. 69, №11, ноябрь 1981). Однако для этих методов характерно появление ложных частот и изменение амплитуды от количества анализируемых сигналов.It is also known that in the case where resolution is the main parameter, you have to abandon the method of direct Fourier transform of the original signal, and use such "superresolution" methods as the Pisarenko, Proni, and Kapon methods (Modern methods of spectral analysis: Review. S.M. Kay, S.L. Marple, TIIER, vol. 69, No. 11, November 1981). However, these methods are characterized by the appearance of false frequencies and a change in amplitude from the number of analyzed signals.

Известны также способы устранения эффекта растекания спектра подстройкой частоты дискретизации сигнала под частоту основной гармоники при анализе полигармонических сигналов. Так, в способе спектрального анализа полигармонических сигналов и устройстве для его реализации (RU 2363005) такая подстройка осуществляется путем домножения базисных функций Фурье на рассчитываемый коэффициент. Этот способ применим лишь при больших отношениях сигнал/шум, когда измерить основную частоту можно не прибегая к спектральной обработке.There are also known methods for eliminating the spreading effect of the spectrum by adjusting the sampling frequency of the signal to the fundamental frequency when analyzing polyharmonic signals. So, in the method of spectral analysis of polyharmonic signals and a device for its implementation (RU 2363005), such adjustment is carried out by multiplying the basic Fourier functions by the calculated coefficient. This method is applicable only for large signal-to-noise ratios, when the fundamental frequency can be measured without resorting to spectral processing.

Известен также способ спектрального анализа полигармонических сигналов (Мидлтон В. Введение в статистическую теорию связи. Т. 2. - М.: Сов. радио, 1962), в котором для анализа полигармонических сигналов в частотной области зачастую используется не амплитудный спектр - модуль комплексных отсчетов, полученых процедурой БПФ, - а мгновенная спектральная плотность мощности (СПМ):There is also a known method of spectral analysis of polyharmonic signals (Middleton V. Introduction to the statistical theory of communication. T. 2. - M .: Sov. Radio, 1962), in which for the analysis of polyharmonic signals in the frequency domain, the non-amplitude spectrum is often used - the complex samples module obtained by the FFT procedure, and the instantaneous power spectral density (SPM):

Figure 00000005
Figure 00000005

Учитывая комплексный характер S(m), операции вычисления СПМ представим в виде суммы произведений векторов реальной и мнимой части (перемножаем поэлементно комплексные и мнимые части спектров сигналов соответственно):Given the complex nature of S (m), the operations of calculating the PSD are represented as the sum of the products of vectors of the real and imaginary parts (we multiply the complex and imaginary parts of the signal spectra elementwise, respectively):

Figure 00000006
Figure 00000006

Перемножение вещественной и мнимой части отсчетов на свои копии не устраняет боковые лепестки частотной характеристики, однако по совокупности операций преобразования сигнала является наиболее близким аналогом-прототипом предлагаемого способа.Multiplying the material and imaginary parts of the samples by their copies does not eliminate the side lobes of the frequency response, however, in terms of the combination of signal conversion operations, it is the closest analogue to the prototype of the proposed method.

Техническим результатом предлагаемого способа является уменьшение уровня боковых лепестков без ухудшения разрешающей способности спектрального анализа, что влечет за собой и увеличение отношения сигнал/шум.The technical result of the proposed method is to reduce the level of the side lobes without compromising the resolution of the spectral analysis, which entails an increase in the signal-to-noise ratio.

Указанный технический результат достигается тем, что над выборкой анализируемого сигнала производят преобразование Фурье, полученные вещественные и мнимые части комплексных отсчетов спектра умножают на свои копии и суммируют произведения, при этом исходную выборку сигнала дополняют спереди и сзади нулевыми интервалами, а вещественные и мнимые части отсчетов спектра умножают на одноименные части соседнего отсчета и после сложения векторов-произведений суммарный вектор умножается на минус один и обнуляются все отсчеты меньше нуля.The indicated technical result is achieved by the fact that the Fourier transform is performed on the sample of the analyzed signal, the obtained real and imaginary parts of the complex spectrum samples are multiplied by their copies and the products are summed, while the original signal sample is supplemented with zero intervals in front and behind, and the real and imaginary parts of the spectrum samples multiplied by the same parts of the neighboring sample and after adding the product vectors, the total vector is multiplied by minus one and all the samples are reset to zero.

Сущность заявляемого технического решения поясняется на фиг. 2-8.The essence of the claimed technical solution is illustrated in FIG. 2-8.

На фиг. 2 сплошной линией приведена частотная характеристика двух соседних каналов, полученная по предлагаемому способу, а пунктирной - частотная характеристика канала БПФ. Черным цветом показана зона перекрытия, в которой спектр моногармонического сигнала будет содержать вместо одного два ненулевых отсчета. Ширина главного лепестка почти в два раза уже лепестка БПФ.In FIG. 2, the solid line shows the frequency response of two adjacent channels obtained by the proposed method, and the dotted line shows the frequency response of the FFT channel. Black color shows the overlap zone, in which the spectrum of the monoharmonic signal will contain two nonzero samples instead of one. The width of the main lobe is almost twice as narrow as the FFT lobe.

На фиг. 3 показаны частотные характеристики одного канала БПФ (пунктир) и полученного предлагаемым способом. Ширину главного лепестка можно регулировать изменением количества нулевых отсчетов.In FIG. 3 shows the frequency characteristics of one FFT channel (dotted line) and obtained by the proposed method. The width of the main lobe can be adjusted by changing the number of zero samples.

На фиг. 4а показан спектр синусоидального сигнала, полученный по предлагаемому способу (фиг. 4а) до операции обнуления отрицательных отсчетов спектра, а на фиг. 4б показан спектр полученный способом БПФ.In FIG. 4a shows the spectrum of a sinusoidal signal obtained by the proposed method (Fig. 4a) before the operation of zeroing negative samples of the spectrum, and in FIG. 4b shows the spectrum obtained by the FFT method.

На фиг. 5 показано изменение фазы в спектре моногармонического сигнала частоты 11.5 при наложении шума (БПФ с прямоугольным окном) - даже в шумах разность фаз 11 и 12 отсчетов остается равной π.In FIG. Figure 5 shows the phase change in the spectrum of a monoharmonic signal of frequency 11.5 when noise is applied (FFT with a rectangular window) - even in noise, the phase difference between 11 and 12 samples remains equal to π.

На фиг. 6а показан амплитудный спектр зашумленного сигнала, на фиг. 6б - спектр, полученный предлагаемым способом из этих же отсчетов БПФ.In FIG. 6a shows the amplitude spectrum of a noisy signal; FIG. 6b is a spectrum obtained by the proposed method from the same FFT samples.

На фиг. 7 представлены частотные характеристики взвешивающего окна Ханнинга и ПС.In FIG. 7 shows the frequency characteristics of the Hanning weighing window and PS.

Последовательность выполнения операций преобразования сигнала по предлагаемому способу представлена в пунктах 1-4:The sequence of signal conversion operations of the proposed method is presented in paragraphs 1-4:

1. Выборка сигнала x(n), n=1, 2, … N, дополняется с обеих сторон k нулями:1. The signal sample x (n), n = 1, 2, ... N, is supplemented on both sides by k zeros:

Figure 00000007
Figure 00000007

2. Выполняется преобразование Фурье (БПФ):2. The Fourier transform (FFT) is performed:

Figure 00000008
Figure 00000008

3. Вещественные и мнимые части каждого m-го спектрального отсчета умножаются на одноименные части следующего (m+1)-го отсчета, а произведения суммируются:3. The real and imaginary parts of each m-th spectral sample are multiplied by the same parts of the next (m + 1) -th sample, and the products are summed:

S(m)=a(m)+jb(m);S (m) = a (m) + jb (m);

P(m)=a(m)⋅a(m+1)+b(m)⋅b(m+1).P (m) = a (m) ⋅ a (m + 1) + b (m) ⋅ b (m + 1).

4. Знак вектора P меняется на обратный, после чего отсчетам, имеющим отрицательный знак, присваивается нулевое значение или значение выбранной малой величины в случае пересчета P в децибелы:4. The sign of the vector P is reversed, after which the samples with a negative sign are assigned a zero value or the value of the selected small value in the case of recalculation of P in decibels:

Figure 00000009
Figure 00000009

Сопоставляя результат с соотношением (4), можно перечисленные операции записать в форме:Comparing the result with relation (4), one can write the operations listed in the form:

Figure 00000010
Figure 00000010

Полученную характеристику назовем «произведением соседних отсчетов спектра (ПС)».We call the obtained characteristic "the product of neighboring samples of the spectrum (PS)."

В основе предлагаемого способа лежит следующая закономерность фазочастотной характеристики главного лепестка любого канала спектра Фурье: на всем интервале частот главного лепестка фаза изменяется линейно от -π до +π. Моногармонический сигнал, попавший из-за перекрытия в два соседних канала спектроанализатора, сформирует два спектральных коэффициента, которые можно представить в виде векторов на комплексной плоскости. Линейность фазочастотной характеристики обеспечивает взаимопротивоположное направление этих векторов - постоянный сдвиг фазы в 180 градусов. Наиболее эффективно выделить такие векторы позволяет их скалярное произведение, которое и формируется предлагаемым способом.The proposed method is based on the following regularity of the phase-frequency characteristic of the main lobe of any channel of the Fourier spectrum: on the entire frequency interval of the main lobe, the phase varies linearly from -π to + π. A monoharmonic signal that has got into two adjacent channels of a spectrum analyzer due to overlap will form two spectral coefficients, which can be represented as vectors on the complex plane. The linearity of the phase-frequency characteristic provides the opposite direction of these vectors - a constant phase shift of 180 degrees. The most efficient way to isolate such vectors is their scalar product, which is formed by the proposed method.

Независимо от фазы и частоты моногармонического сигнала и вещественные, и мнимые части комплексных коэффициентов соседних каналов спектра будут иметь противоположные знаки. Поэтому произведение их вещественных частей, также как и произведение их мнимых частей, будет отрицательным. Отрицательной будет и их сумма. Для приведения результата к привычной форме умножим сумму на -1. Теперь все отсчеты со знаком минус могут быть отброшены как не принадлежащие главному лепестку.Regardless of the phase and frequency of the monoharmonic signal, both the real and imaginary parts of the complex coefficients of adjacent spectrum channels will have opposite signs. Therefore, the product of their material parts, as well as the product of their imaginary parts, will be negative. Their sum will also be negative. To bring the result to its usual form, we multiply the sum by -1. Now all samples with a minus sign can be discarded as not belonging to the main lobe.

Данный способ может быть реализован с помощью вычислительных устройств.This method can be implemented using computing devices.

Основными преимуществами предлагаемого способа являются:The main advantages of the proposed method are:

1. Ширина главного лепестка наименьшая из всех известных оконных функций и даже в 1.42 раза уже прямоугольного окна. Это сводит к минимуму растекание спектра.1. The width of the main lobe is the smallest of all known window functions and even 1.42 times narrower than a rectangular window. This minimizes spreading of the spectrum.

2. Низкий уровень боковых лепестков - большая их часть нули, а суммарный вес всех боковых лепестков составляет 0.16% от главного лепестка.2. Low level of side lobes - most of them are zeros, and the total weight of all side lobes is 0.16% of the main lobe.

3. Прямоугольность главного лепестка (отношение ширины лепестка на уровне 0.5 к ширине на уровне нулей) значительно выше, чем у существующих окон (Таблица 1).3. The rectangularity of the main lobe (the ratio of the width of the lobe at 0.5 to the width at the level of zeros) is significantly higher than that of existing windows (Table 1).

Figure 00000011
Figure 00000011

4. Расположение максимума главного лепестка соответствует середине интервала между отсчетами спектра, что максимально удобно для комбинированной обработки БПФ-ПС, гарантирующей двукратное увеличение разрешающей способности.4. The location of the maximum of the main lobe corresponds to the middle of the interval between the samples of the spectrum, which is most convenient for the combined FFT-PS processing, which guarantees a twofold increase in resolution.

5. Ширину главного лепестка можно регулировать количеством добавляемых нулей, плавно увеличивая ее до ΔF=2 (фиг. 5). Поскольку добавление нулей приводит к увеличению временной базы анализа, одновременно в два раза может быть увеличена разрешающая способность.5. The width of the main lobe can be adjusted by the number of zeros added, gradually increasing it to ΔF = 2 (Fig. 5). Since the addition of zeros leads to an increase in the time base of the analysis, at the same time, the resolution can be doubled.

6. Это наиболее значимое свойство предлагаемого способа: он дает увеличение отношения сигнал/шум на 10-20 дБ;.6. This is the most significant property of the proposed method: it gives an increase in signal-to-noise ratio by 10-20 dB ;.

Этот результат объясняется совместным влиянием следующих факторов:This result is due to the combined influence of the following factors:

- сужение главного лепестка почти в два раза и резкое уменьшение боковых лепестков дает суммарный выигрыш, который можно оценить отношением ЭШП прямоугольного окна и ПС:- narrowing the main lobe almost twice and a sharp decrease in the side lobes gives a total gain, which can be estimated by the ratio of the ESR of the rectangular window and the PS:

Figure 00000012
Figure 00000012

- в основе способа формирования ПС лежит скалярное произведение двух векторов а*b=|а||b|cosϕ, которое позволяет резко увеличить амплитуду синфазных (противофазных) сомножителей и выкинуть (обнулить) около 50% шумов за счет использования различия форм законов распределения разности фаз соседних отсчетов спектра шума и моногармонического сигнала;- the basis of the method of PS formation is the scalar product of two vectors a * b = | a || b | cosϕ, which allows you to sharply increase the amplitude of the in-phase (antiphase) factors and throw out (zero) about 50% of the noise due to the use of the difference in the shapes of the laws of distribution of difference phases of adjacent samples of the noise spectrum and the monoharmonic signal;

- как и любая другая квадратичная характеристика (дисперсия, СПМ, корреляция), ПС контрастирует даже слабозаметную разницу амплитудных значений.- like any other quadratic characteristic (dispersion, PSD, correlation), the PS contrasts even the subtle difference in amplitude values.

Эффективность очистки сигнала от шума позволяет оценить спектры на фиг. 6а и 6б. На фиг. 6а показан амплитудный спектр зашумленного сигнала

Figure 00000013
, на фиг. 6б - спектр, полученный предлагаемым способом из этих же отсчетов БПФ.The efficiency of signal noise cleaning allows us to estimate the spectra in FIG. 6a and 6b. In FIG. 6a shows the amplitude spectrum of a noisy signal
Figure 00000013
in FIG. 6b is a spectrum obtained by the proposed method from the same FFT samples.

Еще более разительно различие спектров проявляется в логарифмическом масштабе. На фиг. 7 представлено наложение амплитудного спектра моногармонического сигнала, взвешенного окном Ханнинга, и спектра ПС.Even more striking is the difference in the spectra on a logarithmic scale. In FIG. 7 shows the superposition of the amplitude spectrum of the monoharmonic signal weighted by the Hanning window and the PS spectrum.

Claims (1)

Способ спектрального анализа полигармонических сигналов, заключающийся в том, что над выборкой анализируемого сигнала производят преобразование Фурье, полученные вещественные и мнимые части комплексных отсчетов спектра умножают на свои копии и суммируют произведения, отличающийся тем, что исходную выборку сигнала дополняют спереди и сзади нулевыми интервалами, а вещественные и мнимые части отсчетов спектра умножают на одноименные части соседнего отсчета и после сложения векторов-произведений суммарный вектор умножается на минус один и обнуляются все отсчеты меньше нуля.The method of spectral analysis of polyharmonic signals, namely, that the Fourier transform is performed on the sample of the analyzed signal, the obtained real and imaginary parts of the complex spectrum samples are multiplied by their copies and the products are summarized, characterized in that the original signal sample is supplemented with zero intervals in front and behind, and the real and imaginary parts of the spectrum samples are multiplied by the same parts of the neighboring sample, and after adding the product vectors, the total vector is multiplied by minus one in and zero all samples less than zero.
RU2015153710A 2015-12-14 2015-12-14 Method for spectral analysis of polyharmonic signals RU2611102C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015153710A RU2611102C1 (en) 2015-12-14 2015-12-14 Method for spectral analysis of polyharmonic signals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015153710A RU2611102C1 (en) 2015-12-14 2015-12-14 Method for spectral analysis of polyharmonic signals

Publications (1)

Publication Number Publication Date
RU2611102C1 true RU2611102C1 (en) 2017-02-21

Family

ID=58458876

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015153710A RU2611102C1 (en) 2015-12-14 2015-12-14 Method for spectral analysis of polyharmonic signals

Country Status (1)

Country Link
RU (1) RU2611102C1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2685972C1 (en) * 2017-12-01 2019-04-23 Акционерное общество "Всероссийский научно-исследовательский институт радиотехники" Method and device for filtering frequency-modulated signals
RU2702917C1 (en) * 2019-03-11 2019-10-14 Федеральное государственное бюджетное учреждение науки Институт проблем морских технологий Дальневосточного отделения Российской академии наук (ИПМТ ДВО РАН) Method of detecting noisy objects in shallow and deep sea

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1256044A1 (en) * 1985-02-19 1986-09-07 Рязанский Радиотехнический Институт Digital spectrum analyzer
SU1691852A1 (en) * 1986-12-05 1991-11-15 Предприятие П/Я В-8251 The spectrum analyzer
US6882947B2 (en) * 2001-12-31 2005-04-19 Teradyne, Inc. Discrete fourier transform (DFT) leakage removal
RU2363005C1 (en) * 2008-01-25 2009-07-27 Открытое акционерное общество ордена Трудового Красного Знамени Всесоюзный научно-исследовательский проектно-конструкторский институт "Тяжпромэлектропроект" имени Ф.Б. Якубовского Method of spectral analysis of polyharmonic signals and device to this end
US8321491B2 (en) * 2007-06-26 2012-11-27 The United States Of America As Represented By The Secretary Of The Army System and method for detecting a weak signal in a noisy environment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1256044A1 (en) * 1985-02-19 1986-09-07 Рязанский Радиотехнический Институт Digital spectrum analyzer
SU1691852A1 (en) * 1986-12-05 1991-11-15 Предприятие П/Я В-8251 The spectrum analyzer
US6882947B2 (en) * 2001-12-31 2005-04-19 Teradyne, Inc. Discrete fourier transform (DFT) leakage removal
US8321491B2 (en) * 2007-06-26 2012-11-27 The United States Of America As Represented By The Secretary Of The Army System and method for detecting a weak signal in a noisy environment
RU2363005C1 (en) * 2008-01-25 2009-07-27 Открытое акционерное общество ордена Трудового Красного Знамени Всесоюзный научно-исследовательский проектно-конструкторский институт "Тяжпромэлектропроект" имени Ф.Б. Якубовского Method of spectral analysis of polyharmonic signals and device to this end

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2685972C1 (en) * 2017-12-01 2019-04-23 Акционерное общество "Всероссийский научно-исследовательский институт радиотехники" Method and device for filtering frequency-modulated signals
RU2702917C1 (en) * 2019-03-11 2019-10-14 Федеральное государственное бюджетное учреждение науки Институт проблем морских технологий Дальневосточного отделения Российской академии наук (ИПМТ ДВО РАН) Method of detecting noisy objects in shallow and deep sea

Similar Documents

Publication Publication Date Title
US5874916A (en) Frequency selective TDOA/FDOA cross-correlation
Hewitt et al. An autoregressive approach to the identification of multipath ray parameters from field measurements
Boashash et al. Polynomial time–frequency distributions and time-varying higher order spectra: application to the analysis of multicomponent FM signals and to the treatment of multiplicative noise
RU2611102C1 (en) Method for spectral analysis of polyharmonic signals
Mohammadzadeh et al. Robust adaptive beamforming with improved interferences suppression and a new steering vector estimation based on spatial power spectrum
Nader et al. Reducing the analog and digital bandwidth requirements of RF receivers for measuring periodic sparse waveforms
US7061992B2 (en) Parallel correlator architecture
Le Kernec et al. Performances of multitones for ultra-wideband software-defined radar
Sloane Comparison of linearly and quadratically modified spectral estimates of Gaussian signals
Luo et al. Asymmetric windows and their application in frequency estimation
Putranto et al. Fast fourier transform (FFT) data sampling using hamming and blackman method for radar
El-Khamy et al. A new computationally efficient approach for high-resolution DOA estimation of wideband signals using compressive sensing
Kuzmin et al. Compensation of the pulse profiles of pulsars for interstellar scattering
Farina Digital equalisation in adaptive spatial filtering for radar systems: a survey
Nosov Methods for measuring the signal of the phase calibration of the VLBI radio telescopes
Ashtekar et al. Study of generalized cross correlation techniques for direction finding of wideband signals
Orović et al. A multiwindow time-frequency approach based on the concepts of robust estimate theory
Chiarucci et al. An end-to-end model for the correlator and beamformer of the Square Kilometer Array Low Frequency Aperture Array
Babic et al. Optimum low-order windows for discrete Fourier transform systems
Moriya et al. Impulse response measurement that maximizes signal-to-noise ratio against ambient noise
Winkler et al. Multiband radar signal processing
Shaghaghi et al. Finite-length and asymptotic analysis of averaged correlogram for undersampled data
CN116879627B (en) Nanosecond non-coherent narrow pulse sequence frequency measurement system
Kanatov et al. Method of decrease of discrete Fourier transform sidelobes without window functions
Baburaj et al. Compressive beamforming using greedy algorithms