RU2608616C2 - Каталитическая композиция и способ применения в селективном каталитическом восстановлении оксидов азота - Google Patents
Каталитическая композиция и способ применения в селективном каталитическом восстановлении оксидов азота Download PDFInfo
- Publication number
- RU2608616C2 RU2608616C2 RU2014120917A RU2014120917A RU2608616C2 RU 2608616 C2 RU2608616 C2 RU 2608616C2 RU 2014120917 A RU2014120917 A RU 2014120917A RU 2014120917 A RU2014120917 A RU 2014120917A RU 2608616 C2 RU2608616 C2 RU 2608616C2
- Authority
- RU
- Russia
- Prior art keywords
- component
- zeolite
- zro
- ceo
- beta
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 74
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 title claims abstract description 48
- 239000000203 mixture Substances 0.000 title claims abstract description 47
- 238000000034 method Methods 0.000 title claims abstract description 15
- 238000010531 catalytic reduction reaction Methods 0.000 title 1
- 239000010457 zeolite Substances 0.000 claims abstract description 87
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 81
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 78
- 239000007789 gas Substances 0.000 claims abstract description 32
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 20
- 230000002378 acidificating effect Effects 0.000 claims abstract description 20
- 230000003647 oxidation Effects 0.000 claims abstract description 18
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 18
- 239000004071 soot Substances 0.000 claims abstract description 15
- 238000006243 chemical reaction Methods 0.000 claims abstract description 12
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 10
- 230000009467 reduction Effects 0.000 claims abstract description 10
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 39
- 230000003197 catalytic effect Effects 0.000 claims description 28
- 229910001657 ferrierite group Inorganic materials 0.000 claims description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 3
- 239000003638 chemical reducing agent Substances 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 39
- 150000002736 metal compounds Chemical class 0.000 abstract description 8
- 229930195733 hydrocarbon Natural products 0.000 abstract description 4
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 4
- 239000002253 acid Substances 0.000 abstract 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 abstract 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract 1
- 229910052593 corundum Inorganic materials 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 1
- 239000002131 composite material Substances 0.000 description 21
- 239000000843 powder Substances 0.000 description 21
- 239000000523 sample Substances 0.000 description 21
- 239000010949 copper Substances 0.000 description 19
- 238000002156 mixing Methods 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 239000006229 carbon black Substances 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 238000000227 grinding Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000004570 mortar (masonry) Substances 0.000 description 5
- 239000008188 pellet Substances 0.000 description 5
- 230000002195 synergetic effect Effects 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 3
- 239000013068 control sample Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229910003465 moissanite Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910020203 CeO Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000010718 Oxidation Activity Effects 0.000 description 1
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
- B01D53/9418—Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/944—Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/72—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/7007—Zeolite Beta
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/20—Reductants
- B01D2251/206—Ammonium compounds
- B01D2251/2062—Ammonia
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/206—Rare earth metals
- B01D2255/2065—Cerium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/2073—Manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20738—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20761—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/209—Other metals
- B01D2255/2092—Aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/40—Mixed oxides
- B01D2255/407—Zr-Ce mixed oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/50—Zeolites
- B01D2255/502—Beta zeolites
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Crystallography & Structural Chemistry (AREA)
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Настоящее изобретение относится к каталитической композиции для применения в селективном восстановлении оксидов азота в отходящих газах по реакции с аммиаком, к монолитному структурированному телу, покрытому каталитической композицией, и к способу селективного окисления оксидов азота и окисления сажи в присутствии аммиака. Каталитическая композиция состоит из кислого цеолитного или цеотипного компонента ВЕА, физически смешанного с окислительно-восстановительным компонентом, состоящим из CeO2-ZrO2, или кислого цеолитного или цеотипного компонента FER, физически смешанного с Cu/Al2O3. Каталитическая композиция, содержащая кислые цеолитные или цеотипные компоненты, физически смешанные с соединениями металлов с окислительно-восстановительной активностью, показала улучшенную активность в селективном восстановлении оксидов азота и окислении углеводородов, CO и сажи, содержащихся в отходящих газах. 3 н. и 11 з.п. ф-лы, 7 ил., 6 пр.
Description
Настоящее изобретение относится к каталитической композиции для применения в селективном восстановлении оксидов азота в отходящих газах по реакции с аммиаком или его предшественником.
Катализаторы для NH3-СКВ, т.е. селективное восстановление оксидов азота (NOx) с использованием аммиака в качестве восстановителя, хорошо известны из уровня техники. Эти катализаторы включают цеолитный материал, необязательно усовершенствованный медью или железом.
Задача, которую следует решить с помощью настоящего изобретения, заключается в предоставлении каталитической композиции и способа восстановления оксидов азота с DeNOx активностью при температурах реакции между 150 и 550°C.
Отходящие газы экономичных двигателей внутреннего сгорания помимо NOx содержат углеводороды, CO и сажевые частицы, которые могут быть восстановлены или удалены путем каталитического окисления. Следовательно, соответствующие настоящему изобретению каталитическая композиция и способ должны также включать активность в отношении окисления сажи и углеводородов одновременно с DeNOx активностью.
Наши недавние исследования обнаружили несколько примеров ярко выраженного синергетического эффекта в составных катализаторах, полученных путем механического смешивания кислого цеолитного или цеотипного порошка и соединений металлов с окислительно-восстановительной активностью.
Авторы изобретения обнаружили, что каталитическая композиция, содержащая один или большее количество кислых цеолитных или цеотипных компонентов, физически смешанных с одним или большим количеством соединений металлов с окислительно-восстановительной активностью, показала улучшенную активность в селективном восстановлении оксидов азота и окислении углеводородов, CO и сажи, содержащихся в отходящих газах.
Термин "соединения металлов с окислительно-восстановительной активностью", используемый в настоящем описании, относится к соединениям металлов, которые обратимо могут быть окислены и восстановлены с точки зрения изменений степени окисления (состояния окисления) металлического атома или соединения.
В соответствии с изложенными выше открытиями настоящее изобретение обеспечивает каталитическую композицию для селективного восстановления оксидов азота и окисления сажи, содержащую один или большее количество кислых цеолитных или цеотипных компонентов, выбранных из группы, состоящей из BEA, MFI, FAU, FER, CHA, MOR или их смесей, физически смешанных с одним или большим количеством соединений металлов с окислительно-восстановительной активностью, выбранных из группы, состоящей из Cu/Al2O3, Mn/Al2O3, CeO2-ZrO2, Ce-Mn/Al2O3 и их смесей.
Каталитические композиции, полученные путем механического смешивания указанных выше цеолитных или цеотипных материалов и металлических компонентов с окислительно-восстановительной активностью, смешанных согласно настоящему изобретению, проявляют ярко выраженный синергетический эффект. DeNOx активность таких составных катализаторов значительно превышает активность их индивидуальных компонентов.
Кислый цеолитный или цеотипный компонент может использоваться в протонированной форме или быть усовершенствованным при помощи Fe.
Предпочтительно, массовое соотношение между цеолитными компонентами и окислительно-восстановительными компонентами находится между 1:1 и 1:50.
В одном варианте выполнения изобретения окислительно-восстановительные компоненты диспергированы по подложке, выбранной из группы, состоящей из Al2O3, TiO2, SiO2, CeO2, ZrO2 или их смесей.
Обычно предпочтительно, чтобы среднее молярное соотношение Si/Al цеолитных компонентов согласно изобретению составляло от 5 до 100.
Описанная выше каталитическая композиция согласно изобретению может быть использована как материал для покрытия или как оболочка на структурированных телах металлических, керамических, оксидметаллических, SiC или диоксидкремниевых материалов или волокон.
Таким образом, изобретение также обеспечивает монолитное структурированное тело, покрываемое каталитической композицией, соответствующей любому из раскрытых выше вариантов выполнения изобретения. Монолитное структурированное тело предпочтительно изготовлено из металлических, керамических, оксидметаллических, SiC или диоксидкремниевых материалов или волокон.
Монолитное структурированное тело может быть в форме фильтра частиц, например фильтр с сотовой структурой или фильтр закрытого типа («wall flow»).
В другом варианте выполнения изобретения каталитическая композиция наносится на тело двумя или несколькими отдельными каталитическими слоями последовательно или двумя несколькими каталитическими слоями параллельно и при этом слои имеют различные составы или толщины слоев. Конкретными преимуществами, вытекающими из настоящего изобретения, являются:
1) Добавление CeO2-ZrO2, Cu/Al2O3, Mn/Al2O3 или Ce-Mn/Al2O3 к кислому цеолиту или цеотипу в протонированной форме или усовершенствованному железом заметно увеличивает DeNOx активность при Treact<250°C без увеличения количества цеолитного компонента. В этом случае суммарный объем катализатора увеличивается на объем добавленного окислительно-восстановительного компонента.
2) В альтернативном варианте количество дорогостоящего цеолитного/цеотипного компонента в составном катализаторе может быть значительно снижено за счет замещения эквивалентным объемом окислительно-восстановительного компонента. В таком случае суммарный объем катализатора остается постоянным, но количество цеолитного компонента может снижаться в 2-5 раз, без заметной потери DeNOx эффективности. Когда для получения препарата катализатора используется компонент Ce-Mn/Al2O3, наблюдается заметное улучшение в степени превращения NOx при Treact<250°C несмотря на сниженное количество цеолитного компонента.
3) Помимо благоприятной DeNOx активности, композиции [CeO2-ZrO2 + цеолиты/цеотипы] или [Ce-Mn/Al2O3 + цеолиты/цеотипы] демонстрируют значительную активность в отношении окислении сажи, что делает их многообещающими кандидатами для развития комплексных DeNOx-DeSoot каталитических систем.
4) Помимо благоприятной DeNOx активности, композиции [CeO2-ZrO2 + цеолиты/цеотипы] или [Ce-Mn/Al2O3 + цеолиты/цеотипы] демонстрируют значительно более низкий проскок аммония при высокой температуре благодаря селективному окислению избыточного аммиака.
Изобретение обеспечивает дополнительно способ селективного восстановления оксидов азота и окисления сажи, содержащихся в отходящем газе, причем способ включает стадию контактирования отходящего газа в присутствии аммиака с каталитической композицией, содержащей один или большее количество кислых цеолитных или цеотипных компонентов, выбранных из группы, состоящей из BEA, MFI, FAU, FER, CHA, MOR или их смесей, физических смешанных с одним или большим количеством соединений металлов с окислительно-восстановительной активностью, выбранных из группы, состоящей из Cu/Al2O3, Mn/Al2O3, CeO2-ZrO2, Ce-Mn/Al2O3 и их смесей.
Кислый цеолитный или цеотипный компонент может использоваться в протонированной форме или быть усовершенствованным при помощи Fe.
В одном варианте выполнения способа, соответствующего настоящему изобретению, один или большее количество соединений металлов с окислительно-восстановительной активностью диспергируются по подложке, выбранной из группы, состоящей из Al2O3, TiO2, SiO2, ZrO2 или их смесей.
В еще одном варианте выполнения способа, соответствующего настоящему изобретению, каталитическая композиция подвергается контактированию с отходящим газом при температуре ниже 250°C. В другом варианте выполнения способа, соответствующего настоящему изобретению, избыток аммиака селективно окисляется до азота при контакте с каталитической композицией.
Примеры
Пример 1
Синергетический эффект в NH3-DeNOx над каталитическими композициями CeO2-ZrO2 + H-Beta цеолит.
Составной катализатор [CeO2-ZrO2 + H-Beta цеолит] был получен путем тщательного смешивания порошка 74% мас. CeO2 - 26% мас. ZrO2 с порошком H-Beta цеолита при массовом соотношении 10. Это массовое соотношение приводит к объемному соотношению компонентов CeO2-ZrO2/H-Beta = 3/1 благодаря разнице в плотностях этих материалов. Порошки полностью перемалывали в агатовой ступке в течение 10-15 мин и подвергали пеллетизации. Пеллеты дробили и просеивали, собирая фракцию 0,2-0,4 мм для теста на определение каталитической активности. Аналогичным образом пеллетизированные 74% мас. CeO2 - 26% мас. ZrO2, H-Beta и Fe-Beta цеолит использовали в качестве контрольных образцов.
Катализаторы тестировали на определение NH3-DeNOx активности в температурном диапазоне 150-550°C. Тест проводили при следующих условиях: уменьшение температуры реакции со скоростью 2°C/мин, подаваемая газовая композиция: 500 част./млн NO, 540 част./млн NH3, 10% об. O2, 6% об. H2O, сбалансированная при помощи N2, получая полный поток 300 мл/мин.
Каталитическая нагрузка и полученная объемная скорость подачи газа:
0,197 г с 74% мас. CeO2-ZrO2 + 0,02 г H-Beta цеолита, объем катализатора 0,134 мл, объемная скорость подачи газа = 135000 ч-1.
В этих условиях составной катализатор CeO2-ZrO2 + H-Beta цеолит показал DeNOx активность, которая значительно превысила активности индивидуальных 74% мас. CeO2-ZrO2 (0,131 г CeO2-ZrO2, объем катализатора 0,067 мл, объемная скорость подачи газа = 270000 ч-1) и Н-Beta цеолита (0,04 г, объем катализатора 0,067 мл, объемная скорость подачи газа = 270000 ч-1), что свидетельствует о ярко выраженном синергетическом эффекте между компонентами составного катализатора, как показано на Фиг. 1.
Степень превращения NOx над составным катализатором является сходной со степенью превращения NOx над коммерческим Fe-Beta цеолитом (Fe-Beta) при 230-550°C и превышает степень превращения NOx над Fe-Beta цеолитом при 150-200°C.
Пример 2
Увеличенная DeNOx эффективность составного катализатора [CeO2-ZrO2 + Fe-Beta] при Treact<250°C.
Два образца составного катализатора [CeO2-ZrO2 + Fe-Beta цеолит] были получены путем тщательного перемалывания порошков 74% мас. CeO2 - 26% мас. ZrO2 и Fe-Beta цеолита.
Первый образец получали путем смешивания порошков 74% мас. CeO2 - 26% мас. ZrO2 и Fe-Beta цеолита при массовом соотношении 3,3. Это массовое соотношение приводит к объемному соотношению компонентов 74% мас. CeO2 - 26% мас. ZrO2 / Fe-Beta в составном катализаторе = 1/1.
Второй образец получали путем смешивания порошков 74% мас. CeO2 - 26% мас. ZrO2 и Fe-Beta при массовом соотношении 10. Для второго образца объемное соотношение 74% мас. CeO2 - 26% мас. ZrO2 / Fe-Beta цеолита составляет 3/1.
После перемалывания в агатовой ступке в течение 10-15 мин полученные смеси были пеллетизированы. Пеллеты дробили и просеивали, собирая фракцию 0,2-0,4 мм для каталитического теста. Пеллетизированный аналогичным образом Fe-Beta цеолит использовали в качестве контроля.
Активности полученных образцов тестировали, используя следующие каталитические загрузки с одним и тем же количеством Fe-Beta цеолитного компонента в реакторе.
Первый образец с объемным соотношением 1/1 компонентов: [0,065 г 74% CeO2-ZrO2 + 0,02 г Fe-Beta цеолита].
Второй образец с объемным соотношением 3/1 компонентов: [0,197 г 74% CeO2-ZrO2 + 0,02 г Fe-Beta цеолита].
Контрольный образец: 0,02 г Fe-Beta цеолита.
Катализаторы тестировали на определение NH3-DeNOx активности в пределах температурного диапазона 150-550°C. Тест проводили при следующих условиях: уменьшение температуры реакции со скоростью 2°C/мин, подаваемая газовая композиция: 500 част./млн NO, 540 част./млн NH3, 10% об. O2, 6% об. H2O, сбалансированная при помощи N2, получая полный поток 300 мл/мин.
Содержание катализатора и полученная объемная скорость подачи газа:
[0,197 г 74% CeO2-ZrO2 + 0,02 г Fe-Beta цеолита], объем катализатора = 0,134 мл, объемная скорость подачи газа = 135000 ч-1;
[0,065 г 74% CeO2-ZrO2 + 0,02 г Fe-Beta цеолит], объем катализатора = 0,067 мл, объемная скорость подачи газа = 270000 ч-1;
0,02 Fe-Beta цеолит, объем катализатора = 0,034 мл, объемная скорость подачи газа = 540000 ч-1.
В этих условиях теста составные катализаторы [CeO2-ZrO2 + Fe-Beta цеолит] показали увеличенную DeNOx активность в пределах низкотемпературного диапазона (150-300°C), что значительно превысило активность индивидуального Fe-Beta цеолита, как показано на Фиг. 2. Важно отметить, что активность [CeO2-ZrO2 + Fe-Beta цеолит] улучшается, когда количество CeO2-ZrO2 компонента было увеличено.
Пример 3
Катализатор со сниженным количеством цеолитного компонента.
Три образца составного катализатора [CeO2-ZrO2 + Fe-Beta цеолита] были получены путем тщательного перемалывания порошка 74% мас. CeO2 - 26% мас. ZrO2 с порошком Fe-Beta цеолита.
Первый образец получали путем смешивания порошков 74% мас. CeO2 - 26% мас. ZrO2 и Fe-Beta при массовом соотношении 3,3. В этом случае объемное соотношение 74% мас. CeO2 - 26% мас. ZrO2 / Fe-Beta цеолит составляет 1/1.
Второй образец получали путем смешивания порошков 74% мас. CeO2 - 26% мас. ZrO2 и Fe-Beta цеолита при массовом соотношении 15,5. Для второго образца объемное соотношение компонентов 74% мас. CeO2 - 26% мас. ZrO2 и Fe-Beta цеолита составляет 5/1.
Третий образец получали путем смешивания порошков 74% мас. CeO2 - 26% мас. ZrO2 и Fe-Beta цеолита при массовом соотношении 30. Для третьего образца объемное соотношение компонентов 74% мас. CeO2 - 26% мас. ZrO2 и Fe-Beta цеолита составляет 10/1.
После перемалывания в агатовой ступке в течение 10-15 мин полученные смеси подвергались пеллетизации. Пеллеты дробили и просеивали, собирая фракцию 0,2-0,4 мм для каталитического теста. Пеллетизированный аналогичным образом Fe-Beta цеолит использовали в качестве контроля.
Активности полученных образцов определяли, используя следующую нагрузку катализатора с одним и тем же объемом катализатора в реакторе. Во всех экспериментах, описанных ниже, суммарный объем нагруженного катализатора составлял 0,067 мл, что приводит к объемной скорости подачи газа ~270000 ч-1.
Первый образец (1/1 об. соотношение компонентов): [0,065 г 74% мас. CeO2-ZrO2 + 0,02 г Fe-Beta цеолита].
Второй образец (5/1 об. соотношение компонентов): [0,109 г 74% мас. CeO2-ZrO2 + 0,007 г Fe-Beta цеолита].
Третий образец (10/1 об. соотношение компонентов): [0,119 г 74% мас. CeO2-ZrO2 + 0,0035 г Fe-Beta цеолита].
Контрольный образец: 0,02 г Fe-Beta цеолита.
Подаваемая газовая композиция: 540 част./млн NH3, 500 част./млн NO, 10% O2, 6% H2O, сбалансированная при помощи N2.
В этих условиях составные катализаторы [CeO2-ZrO2 + Fe-Beta цеолит] показали эффективности DeNOx активности, которые были по существу идентичными с эффективностью контрольного Fe-Beta цеолитного образца несмотря на значительно сниженное количество цеолитного катализатора (Fe-Beta цеолит), нагруженного в реактор как часть композита [CeO2-ZrO2 + Fe-Beta цеолит].
Данные на Фиг. 3 свидетельствуют о том, что количество цеолита может быть снижено по меньшей мере в 10 раз без потери в эффективности DeNOx активности [CeO2-ZrO2 + Fe-Beta цеолит] путем его замены на соответствующий объем CeO2-ZrO2.
Пример 4
Увеличенная эффективность DeNOx активности композитного катализатора [Ce-Mn/Al2O3 + Fe-Beta цеолит] при Treact<250°C.
Составные катализаторы [Ce-Mn/Al2O3 + Fe-Beta] получали путем тщательного смешивания порошка 15% мас. Ce - 15% мас. Mn / Αl2O3 с порошком Fe-Beta при массовом соотношении 0,8:1; 1,7:1 и 3,4:1, используя один и тот же суммарный объем катализатора. Эти массовые соотношения приводят к объемному соотношению компонентов Ce-Mn/Al2O3/Fe-Beta = 2/1; 1/1 и 1/2 из-за разницы плотностей этих материалов. Порошки тщательно перемалывали в агатовой ступке в течение 10-15 мин и затем пеллетизировали. Пеллеты дробили и просеивали, собирая фракцию 0,2-0,4 мм для определения каталитической активности. Пеллетизированный аналогичным образом Fe-Beta использовали в качестве контроля.
Катализаторы тестировали на определение NH3-DeNOx активности в температурном диапазоне 150-550°C. Тест проводили при следующих условиях: уменьшение температуры реакции со скоростью 2°C/мин, подаваемая газовая композиция: 500 част./млн NO, 540 част./млн NH3, 10% об. O2, 6% об. H2O, сбалансированная при помощи N2, получая суммарный поток 300 мл/мин.
Нагрузка катализатора: 0,04 г Fe-Beta и
[0,045 г Ce-Mn/Al2O3 + 0,013 г Fe-Beta] (соотношение 2/1), [0,034 г Ce-Mn/Al2O3 + 0,02 г Fe-Beta] (соотношение 1/1), [0,022 г Ce-Mn/Al2O3 + 0,027 г Fe-Beta] (соотношение 1/2).
В этих условиях все составные катализаторы [Ce-Mn/Al2O3 + Fe-Beta] показали DeNOx активность, которая значительно превысила активности индивидуальных Ce-Mn/Al2O3 и Fe-Beta при температурах ниже 350°C, что свидетельствует об ярко выраженном синергетическом эффекте между компонентами составного катализатора (Фиг. 4). Помимо этого проскок аммония на составных катализаторах был значительно ниже, чем для контрольного Fe-Beta катализатора, свидетельствуя о том, что эти составные системы могут использоваться в качестве объединенного DeNOx-ASC.
Пример 5
Увеличенная эффективность DeNOx активности составных катализаторов [10% мас. Cu/Al2O3 + H-цеолит].
Три образца составного катализатора [10% мас. Cu/Al2O3 + H-цеолит] были получены путем тщательного перемалывания 10% мас. Cu/Al2O3 и порошка H-Beta, H-ZSM-5 или H-ферриерита.
Первый образец получали путем смешивания порошков 10% мас. Cu/Al2O3 и H-Beta (Si/Al=20) при массовом соотношении 1/1.
Второй образец получали путем смешивания порошков 10% мас. Cu/Al2O3 и H-ZSM-5 (Si/Al=20) при массовом соотношении 1/1.
Третий образец получали путем смешивания порошков 10% мас. Cu/Al2O3 и H-ферриерита (Si/Al=32) при массовом соотношении 1/1.
После перемалывания в агатовой ступке в течение 10-15 мин полученные смеси пеллетизировали. Пеллеты дробили и просеивали, собирая фракцию 0,2-0,4 мм для теста на определение каталитической активности. Пеллетизированные аналогичным образом соответствующие цеолиты (H-Beta, H-ZSM-5 и H-ферриерит) использовали в качестве контроля.
Активности полученных образцов тестировали, используя следующую нагрузку катализатора с одним и тем же количеством цеолитного компонента в реакторе.
Первый образец с массовым соотношением компонентов 1/1: [0,040 г 10% мас. Cu/Al2O3 + 0,040 г H-Beta].
Второй образец с массовым соотношением компонентов 1/1: [0,040 г 10% мас. Cu/Al2O3 + 0,040 г H-ZSM-5].
Третий образец с массовым соотношением компонентов 1/1: [0,040 г 10% мас. Cu/Al2O3 + 0,040 г H-ферриерита].
Контрольные образцы: 0,040 г H-Beta; 0,040 г H-ZSM-5 или H-ферриерит или 0,040 г 10% мас. Cu/Al2O3.
Катализаторы тестировали на определение NH3-DeNOx активности в пределах температурного диапазона 150-550°C. Тест проводили при следующих условиях: уменьшение температуры реакции со скоростью 2°C/мин, подаваемая газовая композиция: 500 част./млн NO, 540 част./млн NH3, 10% об. 02, 6% об. H2O, уравновешенная при помощи N2, получая суммарный поток 300 мл/мин.
Загрузка катализатора и полученная объемная скорость подачи газа:
[0,040 г 10% мас. Cu/Al2O3 + 0,040 г H-Beta], объем катализатора = 0,134 мл, объемная скорость подачи газа = 135000 ч-1;
[0,040 г 10% мас. Cu/Al2O3 + 0,040 г H-ZSM-5], объем катализатора = 0,134 мл, объемная скорость подачи газа = 135000 ч-1;
[0,040 г 10% мас. Cu/Al2O3 + 0,040 г H-ферриерита], объем катализатора = 0,134 мл, объемная скорость подачи газа = 135000 ч-1.
Контрольные катализаторы
0,040 г H-Beta, объем катализатора = 0,067 мл,
объемная скорость подачи газа = 270000 ч-1;
0,040 г H-ZSM-5, объем катализатора = 0,067 мл,
объемная скорость подачи газа = 270000 ч-1;
0,040 г H-ферриерит, объем катализатора = 0,067 мл,
объемная скорость подачи газа = 270000 ч-1;
0,040 г Cu/Al2O3, объем катализатора = 0,067 мл,
объемная скорость подачи газа = 270000 ч-1.
В этих условиях теста составные катализаторы [10% мас. Cu/Al2O3 + H-цеолит] показали увеличенную DeNOx активность во всем температурном диапазоне (150-550°C), которая значительно превысила активность индивидуальных компонентов, что видно при сравнении Фиг. 5 и Фиг. 6.
Пример 6
Катализатор с увеличенной активностью в отношении окисления сажи [CeO2-ZrO2 + Fe-Beta] с объемным соотношением компонентов 3/1 получали, как описано в Примере 2. Для определения активности в отношении окисления сажи [CeO2-ZrO2 + Fe-Beta] часть пеллетизированного образца дробили и порошок катализатора смешивали с сажей ("Printex U", Degussa) при массовом соотношении катализатор/сажа = 1/10. Сажу и катализатор смешивали путем встряхивания в стеклянной бутылке в течение 5 мин, тем самым обеспечивая неплотный контакт между сажей и катализатором. Контрольный образец получали сходным образом, используя Fe-Beta порошок. Окисление сажи проводили при скорости изменения температуры = 10°C/мин в потоке сухого воздуха. Профили окисления сажи над [CeO2-ZrO2 + Fe-Beta] и Fe-Beta показаны на Фиг. 7. [CeO2-ZrO2 + Fe-Beta] имеет значительно более высокую активность в отношении окисления сажи, чем индивидуальный Fe-Beta, что подтверждается сдвигом максимума окисления сажи от ~600°C для (Fe-Beta + сажа) до ~420°C для ([CeO2-ZrO2 + Fe-Beta] + сажа).
Claims (14)
1. Каталитическая композиция для селективного восстановления оксидов азота реакцией с аммиаком в качестве восстановителя и для окисления сажи, причем указанная каталитическая композиция состоит из кислого цеолитного или цеотипного компонента ВЕА, физически смешанного с окислительно-восстановительным компонентом, состоящим из CeO2-ZrO2, или кислого цеолитного или цеотипного компонента FER, физически смешанного с Cu/Al2O3.
2. Каталитическая композиция по п. 1, в которой массовое соотношение между цеолитным или цеотипным компонентом и окислительно-восстановительным компонентом составляет между 1:1 и 1:50.
3. Каталитическая композиция по п. 1, в которой кислый цеолитный или цеотипный компонент находится в протонированной форме или является промотированным Fe.
4. Каталитическая композиция по п. 1, в которой среднее молярное соотношение Si/Al кислых цеолитных или цеотипных компонентов составляет от 5 до 100.
5. Каталитическая композиция по любому из пп. 1-4, в которой кислый цеолитный или цеотипный компонент ВЕА является бета-цеолитом и кислый цеолитный или цеотипный компонент FER является ферриеритом.
6. Монолитное структурированное тело, покрытое каталитической композицией по любому из пп. 1-5.
7. Монолитное структурированное тело по п. 6, где указанное монолитное структурированное тело находится в форме фильтра частиц.
8. Монолитное структурированное тело по п. 6 или 7, в котором каталитическая композиция нанесена в качестве покрытия на тело в два или несколько отдельных каталитических слоев последовательно или в два или несколько каталитических слоев параллельно и в котором слои имеют различные составы или толщины слоев.
9. Способ селективного восстановления оксидов азота и окисления сажи, которые содержатся в отходящем газе, включающий стадию приведения в контакт отходящего газа в присутствии аммиака с каталитической композицией из кислого цеолитного или цеотипного компонента ВЕА, физически смешанного с окислительно-восстановительным компонентом, состоящим из CeO2-ZrO2, или кислого цеолитного или цеотипного компонента FER, физически смешанного с Cu/Al2O3.
10. Способ по п. 9, в котором каталитическую композицию приводят в контакт с отходящим газом при температуре ниже 250°C.
11. Способ по п. 9, в котором избыток аммиака селективно окисляется до азота путем контакта с каталитической композицией.
12. Способ по п. 9, в котором кислые цеолитные или цеотипные компоненты находятся в протонированной форме или являются промотированными Fe.
13. Способ по п. 9, в котором среднее молярное соотношение Si/Al кислых цеолитных или цеотипных компонентов составляет от 5 до 100.
14. Способ по любому из пп. 9-13, в котором кислый цеолитный или цеотипный компонент ВЕА является бета-цеолитом и кислый цеолитный или цеотипный компонент FER является ферриеритом.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EPPCT/EP2011/005344 | 2011-10-24 | ||
PCT/EP2011/005344 WO2013060341A1 (en) | 2011-10-24 | 2011-10-24 | Catalyst composition for use in selective catalytic reduction of nitrogen oxides |
PCT/EP2012/058003 WO2013060487A1 (en) | 2011-10-24 | 2012-05-02 | Catalyst composition and method for use in selective catalytic reduction of nitrogen oxides |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2014120917A RU2014120917A (ru) | 2015-12-10 |
RU2608616C2 true RU2608616C2 (ru) | 2017-01-23 |
Family
ID=46085901
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014120917A RU2608616C2 (ru) | 2011-10-24 | 2012-05-02 | Каталитическая композиция и способ применения в селективном каталитическом восстановлении оксидов азота |
Country Status (11)
Country | Link |
---|---|
JP (1) | JP6112734B2 (ru) |
KR (1) | KR101789114B1 (ru) |
CN (1) | CN103889569B (ru) |
AU (1) | AU2012327482A1 (ru) |
BR (1) | BR112014008669B1 (ru) |
CA (1) | CA2853154C (ru) |
CL (1) | CL2014000993A1 (ru) |
IN (1) | IN2014CN02950A (ru) |
MX (1) | MX2014004494A (ru) |
RU (1) | RU2608616C2 (ru) |
WO (2) | WO2013060341A1 (ru) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104014324B (zh) * | 2014-05-14 | 2016-08-17 | 华东理工大学 | 氧化铈基负载型烟气脱硝催化剂及其制备方法 |
CN105435789A (zh) * | 2014-09-09 | 2016-03-30 | 中国石油化工股份有限公司 | 一种Cu基甲醇合成催化剂大比表面载体的制备方法 |
CN104525216B (zh) * | 2014-12-11 | 2017-01-04 | 清华大学 | 用于宽温度窗口高硫条件下的脱硝催化剂及其制备方法 |
CN104437540A (zh) * | 2014-12-31 | 2015-03-25 | 安徽省元琛环保科技有限公司 | 一种抗磷低温scr脱硝催化剂及其制备方法 |
MX2018002212A (es) * | 2015-08-21 | 2018-08-14 | Basf Corp | Catalizadores de tratamiento de gas de escape. |
BR112018006174A2 (pt) * | 2015-09-29 | 2018-10-09 | Johnson Matthey Plc | composição, filtro catalítico, sistema e método para tratar um gás de escape de queima pobre, usos de um filtro catalítico e de uma composição, e, métodos para melhorar a combustão de fuligem, para reduzir a suscetibilidade de um catalisador de scr contido em um filtro à deterioração, para diminuir a temperatura de combustão de fuligem, para melhorar a resistência de um catalisador de scr e para coletar material particulado do gás de escape emitido de um motor. |
CA3182231A1 (en) | 2015-10-30 | 2017-05-04 | Blueshift Materials, Inc. | Highly branched non-crosslinked aerogel, methods of making, and uses thereof |
CA3016132A1 (en) | 2016-06-08 | 2017-12-14 | Blueshift Materials, Inc. | Polymer aerogel with improved mechanical and thermal properties |
EP3281698A1 (de) | 2016-08-11 | 2018-02-14 | Umicore AG & Co. KG | Scr-aktives material |
EP3496854A1 (de) | 2016-08-11 | 2019-06-19 | Umicore AG & Co. KG | Scr-aktives material mit erhöhter thermischer stabilität |
TW201838708A (zh) * | 2017-03-02 | 2018-11-01 | 丹麥商托普索公司 | 用於移除來自工廠的廢氣所含有的硫氧化物和氮氧化物的方法 |
US11142622B2 (en) | 2017-12-05 | 2021-10-12 | Blueshift Materlals, Inc. | Thermally treated polyamic amide aerogel |
DE102018100834A1 (de) | 2018-01-16 | 2019-07-18 | Umicore Ag & Co. Kg | Verfahren zur Herstellung eines SCR-Katalysators |
DE102018100833A1 (de) | 2018-01-16 | 2019-07-18 | Umicore Ag & Co. Kg | Verfahren zur Herstellung eines SCR-Katalysators |
CN111742121B (zh) * | 2018-02-19 | 2022-08-16 | 巴斯夫公司 | 具有上游scr催化剂的排气处理系统 |
CN109126817B (zh) * | 2018-11-07 | 2021-07-16 | 东北大学 | 一种铁、钨、锌改良氧化铈/氧化锰scr脱硝催化剂及其制备方法 |
EP3791955A1 (de) | 2019-09-10 | 2021-03-17 | Umicore Ag & Co. Kg | Kupfer-zeolith- und kupfer/alumina-haltiges katalytisches material für die scr, abgasreinigungsverfahren mit diesem material und verfahren zur herstellung dieses materials |
CN110586176B (zh) * | 2019-09-27 | 2020-11-17 | 中国环境科学研究院 | 一种电解锰渣基微介孔zsm-5催化剂及制备方法 |
CN110917829A (zh) * | 2019-12-13 | 2020-03-27 | 西安润川环保科技有限公司 | 一种脱硫脱硝的烟气深度处理方法 |
CN111111429A (zh) * | 2019-12-16 | 2020-05-08 | 山东金城柯瑞化学有限公司 | 一种利用单活性中心多相催化剂技术治理乙酰呋喃氧化尾气的方法 |
CN111389454B (zh) * | 2020-04-29 | 2022-09-20 | 陕西延长石油(集团)有限责任公司 | 一种合成气与甲苯制备对甲基苯甲醛的催化剂及方法 |
US11989661B1 (en) * | 2023-07-24 | 2024-05-21 | Morgan Stanley Services Group Inc. | Dynamic rules for rules engines |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0557196A (ja) * | 1991-08-29 | 1993-03-09 | Toyota Motor Corp | 排気ガス浄化用触媒の製造方法 |
WO2001047634A1 (en) * | 1999-12-28 | 2001-07-05 | Corning Incorporated | Zeolite/alumina catalyst support compositions and method of making the same |
US6770251B2 (en) * | 2000-06-28 | 2004-08-03 | Ict. Co., Ltd. | Exhaust gas purifying catalyst |
JP2006136776A (ja) * | 2004-11-10 | 2006-06-01 | Toyota Central Res & Dev Lab Inc | NOx選択還元触媒 |
WO2008085280A2 (en) * | 2007-01-09 | 2008-07-17 | Catalytic Solutions, Inc. | High temperature ammonia scr catalyst and method of using the catalyst |
WO2008132452A2 (en) * | 2007-04-26 | 2008-11-06 | Johnson Matthey Public Limited Company | Transition metal/zeolite scr catalysts |
EP2075063A1 (en) * | 2006-10-18 | 2009-07-01 | Cataler Corporation | Exhaust gas purifying catalyst |
US20090263297A1 (en) * | 2007-09-19 | 2009-10-22 | General Electric Company | Catalyst and method of manufacture |
US20090304566A1 (en) * | 2007-01-09 | 2009-12-10 | Golden Stephen J | Ammonia scr catalyst and method of using the catalyst |
RU2407584C2 (ru) * | 2006-03-21 | 2010-12-27 | Родиа Операсьон | Состав на основе оксида циркония и оксида церия с повышенной восстановительной способностью и стабильной удельной поверхностью, способ получения и использование для обработки выхлопных газов |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3917541B2 (ja) * | 2003-03-20 | 2007-05-23 | 日産ディーゼル工業株式会社 | ディーゼルエンジンの排気浄化装置 |
US7527776B2 (en) * | 2007-01-09 | 2009-05-05 | Catalytic Solutions, Inc. | Ammonia SCR catalyst and method of using the catalyst |
WO2009141894A1 (ja) * | 2008-05-20 | 2009-11-26 | イビデン株式会社 | ハニカム構造体 |
CN101722059B (zh) * | 2008-10-31 | 2011-12-21 | 中国石油化工股份有限公司 | 脱除烟气中硫和/或氮氧化物的吸附剂组合物再生方法 |
EP2335810B1 (de) * | 2009-12-11 | 2012-08-01 | Umicore AG & Co. KG | Selektive katalytische Reduktion von Stickoxiden im Abgas von Dieselmotoren |
-
2011
- 2011-10-24 WO PCT/EP2011/005344 patent/WO2013060341A1/en active Application Filing
- 2011-10-24 MX MX2014004494A patent/MX2014004494A/es not_active Application Discontinuation
-
2012
- 2012-05-02 BR BR112014008669-9A patent/BR112014008669B1/pt not_active IP Right Cessation
- 2012-05-02 CN CN201280052240.5A patent/CN103889569B/zh active Active
- 2012-05-02 KR KR1020147013999A patent/KR101789114B1/ko not_active Expired - Fee Related
- 2012-05-02 CA CA2853154A patent/CA2853154C/en not_active Expired - Fee Related
- 2012-05-02 RU RU2014120917A patent/RU2608616C2/ru not_active IP Right Cessation
- 2012-05-02 WO PCT/EP2012/058003 patent/WO2013060487A1/en active Application Filing
- 2012-05-02 JP JP2014537523A patent/JP6112734B2/ja not_active Expired - Fee Related
- 2012-05-02 AU AU2012327482A patent/AU2012327482A1/en not_active Abandoned
- 2012-05-02 IN IN2950CHN2014 patent/IN2014CN02950A/en unknown
-
2014
- 2014-04-17 CL CL2014000993A patent/CL2014000993A1/es unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0557196A (ja) * | 1991-08-29 | 1993-03-09 | Toyota Motor Corp | 排気ガス浄化用触媒の製造方法 |
WO2001047634A1 (en) * | 1999-12-28 | 2001-07-05 | Corning Incorporated | Zeolite/alumina catalyst support compositions and method of making the same |
US6770251B2 (en) * | 2000-06-28 | 2004-08-03 | Ict. Co., Ltd. | Exhaust gas purifying catalyst |
JP2006136776A (ja) * | 2004-11-10 | 2006-06-01 | Toyota Central Res & Dev Lab Inc | NOx選択還元触媒 |
RU2407584C2 (ru) * | 2006-03-21 | 2010-12-27 | Родиа Операсьон | Состав на основе оксида циркония и оксида церия с повышенной восстановительной способностью и стабильной удельной поверхностью, способ получения и использование для обработки выхлопных газов |
EP2075063A1 (en) * | 2006-10-18 | 2009-07-01 | Cataler Corporation | Exhaust gas purifying catalyst |
WO2008085280A2 (en) * | 2007-01-09 | 2008-07-17 | Catalytic Solutions, Inc. | High temperature ammonia scr catalyst and method of using the catalyst |
US20090304566A1 (en) * | 2007-01-09 | 2009-12-10 | Golden Stephen J | Ammonia scr catalyst and method of using the catalyst |
WO2008132452A2 (en) * | 2007-04-26 | 2008-11-06 | Johnson Matthey Public Limited Company | Transition metal/zeolite scr catalysts |
US20090263297A1 (en) * | 2007-09-19 | 2009-10-22 | General Electric Company | Catalyst and method of manufacture |
Also Published As
Publication number | Publication date |
---|---|
WO2013060341A1 (en) | 2013-05-02 |
CN103889569B (zh) | 2017-02-15 |
KR20140095512A (ko) | 2014-08-01 |
CN103889569A (zh) | 2014-06-25 |
AU2012327482A1 (en) | 2014-05-15 |
KR101789114B1 (ko) | 2017-10-23 |
IN2014CN02950A (ru) | 2015-07-03 |
RU2014120917A (ru) | 2015-12-10 |
CA2853154A1 (en) | 2013-05-02 |
JP2015501210A (ja) | 2015-01-15 |
CA2853154C (en) | 2018-04-03 |
WO2013060487A1 (en) | 2013-05-02 |
JP6112734B2 (ja) | 2017-04-12 |
MX2014004494A (es) | 2014-07-11 |
BR112014008669A2 (pt) | 2017-04-18 |
BR112014008669B1 (pt) | 2019-07-02 |
CL2014000993A1 (es) | 2014-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2608616C2 (ru) | Каталитическая композиция и способ применения в селективном каталитическом восстановлении оксидов азота | |
US20150290632A1 (en) | IRON AND COPPER-CONTAINING CHABAZITE ZEOLITE CATALYST FOR USE IN NOx REDUCTION | |
JP6294126B2 (ja) | Scr用触媒及び排ガス浄化触媒システム | |
CN110494205B (zh) | 用于排放处理系统中的具有scr活性基材、氨泄漏催化剂层和scr层的催化剂制品 | |
KR20160091394A (ko) | Scr 촉매 | |
WO2004045766A1 (ja) | 排ガス浄化用触媒および排ガスの浄化方法 | |
US20190314801A1 (en) | Scr catalyst device containing vanadium oxide and molecular sieve containing iron | |
CN104772162A (zh) | 低温NH3还原NOx的Zr-Ce-Mn-Fe/ZSM-5复合氧化物催化剂及其制备方法 | |
CN105828933A (zh) | Co泄漏催化剂和使用方法 | |
US9168517B2 (en) | Catalyst composition and method for use in selective catalytic reduction of nitrogen oxides | |
US9527071B2 (en) | SCR catalyst and method of preparation thereof | |
US20150231620A1 (en) | IRON-ZEOLITE CHABAZITE CATALYST FOR USE IN NOx REDUCTION AND METHOD OF MAKING | |
US20150258537A1 (en) | Exhaust gas purifying catalyst | |
KR20170018914A (ko) | 배기 가스 처리 시스템 | |
CN104772163A (zh) | 低温NH3还原NOx的Ce-Mn-Fe/ZSM-5复合氧化物催化剂及其制备方法 | |
JP2015196116A (ja) | Scr用触媒及び排ガス浄化触媒システム | |
KR20170063596A (ko) | 열적으로 안정한 nh3-scr 촉매 조성물 | |
JP2009061394A (ja) | 排ガス中の窒素酸化物の接触還元除去方法 | |
CN113694924B (zh) | 铂-铑/钡基催化材料、稀燃氮氧化物催化剂及制备方法 | |
CN104349839B (zh) | Scr催化剂及其制备方法 | |
JPH0557196A (ja) | 排気ガス浄化用触媒の製造方法 | |
CN104801336A (zh) | 低温NH3还原NOx的Zr-Mn-Fe/ZSM-5复合氧化物催化剂及其制备方法 | |
CN118475405A (zh) | 含有共混的氧化物和h-沸石的scr催化剂 | |
KR20230147151A (ko) | 암모니아 산화 촉매 및 이의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PD4A | Correction of name of patent owner | ||
PC41 | Official registration of the transfer of exclusive right |
Effective date: 20180731 |
|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20200503 |