RU2689786C1 - Control method of multi-zone rectifier-inverter converter of single-phase alternating current - Google Patents
Control method of multi-zone rectifier-inverter converter of single-phase alternating current Download PDFInfo
- Publication number
- RU2689786C1 RU2689786C1 RU2018121872A RU2018121872A RU2689786C1 RU 2689786 C1 RU2689786 C1 RU 2689786C1 RU 2018121872 A RU2018121872 A RU 2018121872A RU 2018121872 A RU2018121872 A RU 2018121872A RU 2689786 C1 RU2689786 C1 RU 2689786C1
- Authority
- RU
- Russia
- Prior art keywords
- converter
- rectifier
- transistor
- inverter
- voltage
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 239000004065 semiconductor Substances 0.000 claims description 2
- 230000003137 locomotive effect Effects 0.000 abstract description 13
- 238000004870 electrical engineering Methods 0.000 abstract description 3
- 238000005096 rolling process Methods 0.000 abstract description 2
- 238000006243 chemical reaction Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 238000004804 winding Methods 0.000 description 21
- 230000001276 controlling effect Effects 0.000 description 15
- 238000009499 grossing Methods 0.000 description 13
- 230000001105 regulatory effect Effects 0.000 description 9
- 230000005284 excitation Effects 0.000 description 6
- 230000001419 dependent effect Effects 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 230000033228 biological regulation Effects 0.000 description 4
- 230000001172 regenerating effect Effects 0.000 description 3
- 230000001364 causal effect Effects 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical group CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P7/00—Arrangements for regulating or controlling the speed or torque of electric DC motors
- H02P7/06—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
- H02P7/18—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
- H02P7/24—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
- H02P7/28—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
- H02P7/285—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
- H02P7/292—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using static converters, e.g. AC to DC
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Rectifiers (AREA)
Abstract
Description
Изобретение относится к электротехнике, в частности, к преобразовательной технике, и может быть использовано в качестве способа управления многозонным выпрямительно-инверторным преобразователем на электроподвижном составе (электровозах и электропоездах), получающем питание от контактной сети однофазного переменного тока.The invention relates to electrical engineering, in particular, to converter equipment, and can be used as a method of controlling a multi-zone rectifier-inverter converter on an electric rolling stock (electric locomotives and electric trains), powered by a single-phase AC contact network.
Эксплуатация многозонных выпрямительно-инверторных преобразователей (ВИЛ) на электровозах переменного тока, построенных на управляемых вентилях - тиристорах, сопровождается низким энергетическим показателем - коэффициентом мощности в режимах тяги при выпрямлении переменного тока сети в постоянный ток двигателя и рекуперативного торможения при инвертировании постоянного тока генератора в переменный ток сети. Снижение коэффициента мощности электровоза происходит за счет достаточно большого угла сдвига фаз ϕ между первой гармоникой тока и напряжения в первичной обмотке трансформатора. Это вызывает значительное потребление электровозом реактивной и снижение использования активной составляющих энергии сети.Operation of multi-zone rectifier-inverter converters (VIL) on AC electric locomotives built on controlled thyristor valves is accompanied by a low energy indicator - power factor in thrust modes when rectifying AC mains to DC motor and regenerative braking when inverting generator DC into AC network current. The reduction in the power factor of an electric locomotive occurs due to a sufficiently large phase angle ϕ between the first harmonic of the current and voltage in the primary winding of the transformer. This causes a significant consumption of reactive electric locomotive and a reduction in the use of active components of the network’s energy.
Для повышения коэффициента мощности в силовую схему ВИЛ, а именно к его выходным выводам (к катодной и анодной шинам) подключают силовой неуправляемый вентиль - диод, с помощью которого уменьшается реактивная и увеличивается активная составляющие полной энергии переменного тока, потребляемой из сети двигателями постоянного тока в режиме тяги электровоза при выпрямлении переменного тока в постоянный и возвращаемой в сеть генераторами постоянного тока в режиме рекуперативного торможения электровоза при инвертировании постоянного тока в переменный. С целью исключения образования короткого замыкания (чего нельзя допустить) при подключении диода к шинам преобразователя диод в режиме выпрямителя надо подключить катодом к катодной и анодом к анодной шинам, а в режиме инвертора, наоборот, катодом к анодной и анодом к катодной шинам. В этом случае между катодной и анодной шинами надо подключать избирательно два диода - один для режима выпрямителя, а другой для режима инвертора, причем при переходе преобразователя из режима выпрямителя в инвертор и наоборот потребуется один из диодов выключать, что потребует в каждой цепи диода иметь выключающее устройство. Если подключение диода в режиме инвертора сделать таким же, как и в режиме выпрямителя, то это потребует последовательного подключения к диоду одного контактного или бесконтактного устройства, способного как включать, так и выключать диод в нужные моменты времени на интервалах полупериодов переменного напряжения сети в режимах работы как выпрямителя, так и инвертора.To increase the power factor in the VIL power circuit, namely, to its output terminals (to the cathode and anode busbars) a power uncontrolled valve is connected - a diode with which the reactive component is reduced and the active components of the total AC energy consumed from the mains electric locomotive traction mode when rectifying alternating current to direct current and returned to the network by direct current generators in regenerative braking mode of electric locomotive at direct current inversion in alternating. In order to avoid the formation of a short circuit (which cannot be allowed), when connecting a diode to the converter buses, the diode in the rectifier mode must be connected to the cathode and anode by the cathode anode bus and cathode to the anode and cathode bus in the inverter mode. In this case, between the cathode and anode tires, two diodes must be connected selectively - one for the rectifier mode and the other for the inverter mode, and when the converter goes from rectifier mode to the inverter and vice versa, one of the diodes will need to be turned off, which will require device. If the diode connection in the inverter mode is made the same as in the rectifier mode, this will require a serial connection to the diode of a single contact or contactless device capable of both turning the diode on and off at the required time points at half-intervals of the AC mains voltage in the operation modes as a rectifier and inverter.
Известны различные способы включения диода между катодной и анодной шинами ВИЛ при его работе в режимах выпрямителя и инвертора с целью повышения их коэффициентов мощности, а также различные способы выключения диода при переводе преобразователя из режима выпрямителя в режим инвертора и наоборот. Одним из таких способов включения и выключения диода является последовательное подключение к диоду управляемого полупроводникового прибора - транзистора, который своим открытием включает диод и закрытием отключает.There are various ways to turn on the diode between the cathode and anode buses of VIL during its operation in rectifier and inverter modes in order to increase their power factors, as well as various ways to turn off the diode when converting the converter from rectifier mode to inverter mode and vice versa. One of such methods of switching the diode on and off is a series connection to the diode of a controlled semiconductor device - a transistor, which by its opening turns on the diode and turns it off by closing.
Известен способ управления многозонным выпрямителем однофазного переменного тока [Патент на изобретение №2322749. Заявка №2006140957/09 от 20.11.2006, опубликовано: 20.04.2008, Бюл. №11], содержащим четыре зоны на основе параллельных тиристорных мостов. Способ заключается в регулировании выпрямленного напряжения выпрямителя на всех зонах регулирования и в переводе накопленной в индуктивности цепи выпрямленного тока электромагнитной энергии в нагрузку путем шунтирования цепи выпрямленного тока неуправляемым вентилем - диодом, катод которого присоединен к катодной, а анод к анодной шинам выпрямителя. Благодаря диоду уменьшается реактивная и увеличивается активная составляющие полной энергии переменного тока, потребляемой двигателями из сети при выпрямлении переменного тока в режиме тяги, что повышает коэффициент мощности выпрямителя, а значит, и электровоза. Отключение диода от анодной шины при прекращении режима выпрямления производится с помощью силового контакта тормозного переключателя. Достоинством данного способа управления многозонным выпрямителем является повышение коэффициента мощности электровоза на всех четырех зонах регулирования напряжения за счет перевода накопленной в индуктивности цепи выпрямленного тока электромагнитной энергии в нагрузку путем шунтирования цепи выпрямленного тока неуправляемым вентилем - диодом. Недостатком данного способа управления многозонным выпрямителем является то, что отключение диода от анодной шины при прекращении режима выпрямления производится с помощью механического силового контакта тормозного переключателя, снижающего надежность работы выпрямителя.A known method of controlling a multi-zone single-phase AC rectifier [Patent for invention No. 2322749. Application No. 2006140957/09 dated November 20, 2006, published: April 20, 2008, Byul. No. 11], containing four zones based on parallel thyristor bridges. The method consists in regulating the rectified rectifier voltage in all control zones and converting the electromagnetic energy accumulated in the inductance of the rectified current circuit into the load by shunting the rectified current circuit with an uncontrolled valve - a diode whose cathode is connected to the cathode and the anode to the rectifier anode busbars. Thanks to the diode, the reactive component is reduced and the active components of the total energy of the alternating current consumed by the motors from the network are increased when rectifying the alternating current in the thrust mode, which increases the power factor of the rectifier, and hence the electric locomotive. Disconnection of the diode from the anode bus when termination of the rectification mode is performed using the power contact of the brake switch. The advantage of this method of controlling a multi-zone rectifier is to increase the power factor of an electric locomotive in all four voltage regulation zones by transferring the rectified current of electromagnetic energy accumulated in the circuit to the load by shunting the circuit of the rectified current by an uncontrolled valve-diode. The disadvantage of this method of controlling a multi-zone rectifier is that the disconnection of the diode from the anode bus when termination of the rectifying mode is performed using a mechanical power contact of the brake switch, which reduces the reliability of the rectifier.
Известен зависимый многозонный инвертор однофазного переменного тока [Патент на изобретение №2561068. Заявка №2014119292/07 от 13.05.2014, опубликовано: 20.08.2015, Бюл. №23], содержащий четыре зоны на основе параллельных тиристорных мостов с шунтированием цепи выпрямленного тока инвертора неуправляемым вентилем - диодом, катод которого присоединен к анодной, а анод к катодной шинам инвертора. Включение диода позволяет уменьшить угол запаса δ инвертора, обусловленный уменьшением угла коммутации γ инвертора, что уменьшает угол сдвига фаз ϕ. Уменьшение угла ϕ снижает реактивную и повышает активную составляющие полной энергии переменного тока, возвращаемой генераторами в сеть при инвертировании постоянного тока в переменный при рекуперативном торможении, что приводит к повышению коэффициента мощности инвертора. Отключение диода от анодной шины при прекращении режима инвертирования производится с помощью силового контакта тормозного переключателя. Достоинством такого зависимого многозонного инвертора является повышение его коэффициента мощности на всех четырех зонах регулирования напряжения при сохранении регулирования напряжения на этих зонах в широком диапазоне. Недостаток такого зависимого многозонного инвертора заключается в том, что даже при увеличенном коэффициенте мощности на всех зонах регулирования отключение диода от анодной шины при прекращении режима инвертирования производится с помощью силового контакта тормозного переключателя, снижающего надежность работы инвертора.Known dependent multi-zone inverter single-phase AC [Patent for invention No. 2561068. Application No. 2014119292/07 dated May 13, 2014, published on: August 20, 2015, Bull. No. 23], containing four zones on the basis of parallel thyristor bridges with shunting of the inverter rectified current circuit by an uncontrolled valve - a diode, the cathode of which is connected to the anode one, and the anode to the cathode busses of the inverter. The inclusion of the diode allows to reduce the stock angle δ of the inverter, due to a decrease in the switching angle γ of the inverter, which reduces the phase shift angle ϕ. Reducing the angle ϕ reduces the reactive and increases the active components of the total energy of alternating current returned by generators to the network when inverting DC to AC during regenerative braking, which leads to an increase in inverter power factor. Disconnection of the diode from the anode bus when the inversion mode is terminated is performed using the power contact of the brake switch. The advantage of such a dependent multi-zone inverter is to increase its power factor in all four voltage control zones while maintaining the voltage control on these zones in a wide range. The disadvantage of such a dependent multi-zone inverter is that even with an increased power factor in all control zones, disconnecting the diode from the anode bus when the inversion mode is terminated is performed using the power contact of the brake switch, which reduces the reliability of the inverter.
Наиболее близким к заявляемому решению по совокупности существенных признаков и достигаемому результату является способ управления многозонным выпрямительно-инверторным преобразователем однофазного переменного тока [Патент на изобретение №2561913. Заявка №2014115762/07 от 18.04.2014, опубликовано: 10.09.2015, Бюл. №25] с высоким коэффициентом мощности на всех зонах регулирования, в котором осуществляется шунтирование цепи выпрямленного тока преобразователя двумя цепочками, каждая из которых выполнена из последовательно соединенных силовых неуправляемого вентиля - диода и управляемого вентиля - тиристора и подключена между катодной и анодной шинами. В первой цепочке катод диода подключают к катодной шине, а анод тиристора к анодной шине преобразователя. Во второй цепочке катод диода подключают к анодной шине, а анод тиристора к катодной шине преобразователя. Бесконтактное отключение диода каждой цепочки при переходе преобразователя из режима выпрямителя в инвертор и наоборот производится с помощью управляемого вентиля - тиристора, который своим запертым состоянием отключает соответствующую цепочку. Достоинством данного способа управления многозонным выпрямительно-инверторным преобразователем является повышение коэффициента мощности преобразователя в режимах выпрямителя и инвертора на всех четырех зонах регулирования напряжения за счет шунтирования цепи выпрямленного тока одной из двух (первой или второй) цепочек и бесконтактное отключение каждой из них с помощью тиристора от анодной или катодной шины при переходе преобразователя из режима выпрямителя в режим инвертора и наоборот, что повышает надежность работы преобразователя по сравнению с предыдущими контактными схемами перехода. Недостатком данного способа управления многозонным выпрямительно-инверторным преобразователем является то, что для каждого режима работы преобразователя нужна своя отдельная цепочка из последовательно соединенных диода и тиристора, шунтирующая цепь выпрямленного тока и присоединенная к катодной и анодной шинам преобразователя, т.е. необходимо иметь две цепочки согласно двум режимам работы преобразователя. В режиме выпрямителя работает только первая цепочка и не работает вторая, причем первая цепочка присоединена катодом диода к катодной и анодом тиристора к анодной шинам преобразователя, а в режиме инвертора работает только вторая цепочка и не работает первая, причем вторая цепочка присоединена анодом диода к катодной и катодом тиристора к анодной шинам преобразователя. Кроме того, в каждой цепочке находится управляемый вентиль - тиристор, который включается на период работы преобразователя в режиме выпрямителя или инвертора и выключается при окончании работы преобразователя в одном из этих режимов. Таким образом, тиристор выступает только в роли бесконтактного ключа на время работы преобразователя, но не выполняет роли регулятора, способного влиять на величину коэффициента мощности преобразователя в режимах выпрямителя или инвертора.The closest to the claimed solution for the combination of essential features and the achieved result is the method of controlling a multi-zone rectifier-inverter converter of single-phase alternating current [Patent for invention №2561913. Application No. 2014115762/07 dated 04.18.2014, published: 09/10/2015, Byul. No. 25] with a high power factor in all control zones, in which the converter rectifies the current of the converter by two chains, each of which is made of a series-connected power uncontrolled valve - a diode and a controlled valve - thyristor and connected between the cathode and anode buses. In the first chain, the cathode of the diode is connected to the cathode bus, and the anode of the thyristor to the anode bus of the converter. In the second chain, the cathode of the diode is connected to the anode bus and the anode of the thyristor to the cathode bus of the converter. Contactless disconnection of the diode of each chain when the converter goes from rectifier mode to inverter and vice versa is performed using a controlled thyristor valve, which, with its locked state, turns off the corresponding chain. The advantage of this method of controlling a multi-zone rectifier-inverter converter is to increase the power factor of the converter in the rectifier and inverter modes in all four voltage control zones by shunting the rectified current circuit of one of the two (first or second) chains and contactlessly disconnecting each of them using a thyristor from anode or cathode bus when the converter goes from rectifier mode to inverter mode and vice versa, which increases the reliability of operation A comparison with previous contact transfer schemes. The disadvantage of this method of controlling a multi-zone rectifier-inverter converter is that for each mode of operation of the converter, a separate chain of series-connected diode and thyristor is needed, shunting the rectified current circuit and connected to the cathode and anode buses of the converter, i.e. It is necessary to have two chains according to two modes of operation of the converter. In the rectifier mode, only the first chain works and the second one does not work, the first chain is connected to the cathode diode and the thyristor anode to the anode bus of the converter, and only the second chain works in the inverter mode and the first chain does not work, and the second chain is connected to the cathode anode. the thyristor cathode to the anode bus of the converter. In addition, in each chain there is a controlled valve - thyristor, which is turned on for the period of converter operation in the rectifier or inverter mode and turns off at the end of the converter operation in one of these modes. Thus, the thyristor acts only as a contactless key for the operating time of the converter, but does not play the role of a regulator that can influence the value of the power factor of the converter in rectifier or inverter modes.
Задача, решаемая изобретением, заключается в разработке способа управления многозонным выпрямительно-инверторным преобразователем однофазного переменного тока с высоким коэффициентом мощности и высокой надежностью работы преобразователя на всех зонах регулирования выпрямленного напряжения в режимах выпрямителя и инвертора, в которых осуществляется шунтирование цепи выпрямленного тока преобразователя цепочкой, состоящей из последовательно соединенных силовых диода и транзистора (или другого полностью управляемого электронного ключа) и присоединенной катодом диода к катодной, а коллектором транзистора к анодной шинам преобразователя, а также управление включением и выключением транзистора в необходимые моменты времени на интервале каждого полупериода напряжения сети.The problem solved by the invention is to develop a method for controlling a multi-zone single-phase alternating current rectifier-inverter converter with a high power factor and high reliability of the converter in all zones of rectified voltage regulation in rectifier and inverter modes, in which the converter rectified current chain is shunted. from a series-connected power diode and transistor (or other fully controlled electronic key) and a cathode-connected diode to the cathode, and a collector of the transistor to the anode bus of the converter, as well as controlling the on and off of the transistor at the required time points in the interval of each half-period of the mains voltage.
Для решения поставленной задачи в известном способе управления многозонным выпрямительно-инверторным преобразователем однофазного переменного тока, содержащем несколько зон на основе параллельных тиристорных мостов, заключающемся в регулировании выпрямленного напряжения преобразователя на всех зонах в режимах выпрямителя и инвертора и шунтировании цепи выпрямленного тока преобразователя одной из двух цепочек, состоящих из последовательно включенных силовых диода и тиристора, и бесконтактном отключении каждой из них с помощью своего тиристора от анодной или катодной шины при переходе преобразователя из режима выпрямителя в инвертор и наоборот, увеличение коэффициента мощности и повышение надежности работы преобразователя в режимах выпрямителя и инвертора при регулировании их выпрямленного напряжения осуществляют путем шунтирования цепи выпрямленного тока преобразователя цепочкой, состоящей из последовательно соединенных силовых диода и транзистора и присоединенной катодом диода к катодной и коллектором транзистора к анодной шинам преобразователя, и управления включением транзистора с помощью подачи на его базу отпирающего сигнала управления в режиме выпрямителя в момент времени ωt=0 в первом полупериоде напряжения сети, ωt=π во втором полупериоде напряжения сети и т.д., а в режиме инвертора в моменты времени соответственно ωt=π-20° в первом полупериоде, ωt=2π-20° во втором полупериоде напряжения и выключением транзистора с помощью подачи на его базу запирающего сигнала управления в режиме выпрямителя на первой зоне регулирования в моменты времени ωt=αрег в первом полупериоде, ωt=π+αрег во втором полупериоде напряжения и на остальных зонах выше первой в моменты времени ωt=10° в первом полупериоде, ωt=π+10° во втором полупериоде напряжения, а в режиме инвертора на всех зонах в моменты времени ωt=π в первом полупериоде, ωt=2π во втором полупериоде напряжения.To solve this problem in a well-known method of controlling a multi-zone single-phase AC rectifier-inverter converter containing several zones based on parallel thyristor bridges, which consists in regulating the rectified voltage of the converter in all zones in the rectifier and inverter modes and shunting the rectified current circuit of the converter in one of two chains consisting of a series-connected power diode and thyristor, and contactless disconnecting each of them with the help of its thyristor from the anode or cathode bus when converting the converter from rectifier mode to inverter and vice versa, increasing the power factor and increasing the reliability of the converter in rectifier and inverter modes when adjusting their rectified voltage is performed by shunting the rectified current circuit of the converter with a chain consisting of series-connected power diode and transistor and cathode-connected diode to the cathode and collector of the transistor to the anode bus of the converter, and control of turning on the transistor by supplying the unlocking control signal to its base in the rectifier mode at the time ωt = 0 in the first half-period of the mains voltage, ωt = π in the second half-period of the supply voltage, etc., and in the inverter mode at the time, respectively ωt = π-20 ° in the first half-period, ωt = 2π-20 ° in the second half-period of voltage and turning off the transistor by applying a control locking signal to its base in rectifier mode in the first control zone at times ωt = α reg in the first half-period, ωt = π + α reg during WTO Ωt = 10 ° in the first half-period, ωt = π + 10 ° in the second half-period of voltage, and in the inverter mode on all zones at times ωt = π in the first half-period, ωt = 2π in the second half-period of voltage.
Шунтирование в режимах выпрямителя и инвертора цепи выпрямленного тока преобразователя цепочкой, состоящей из последовательно соединенных силовых диода и транзистора и присоединенной катодом диода к катодной и коллектором транзистора к анодной шинам преобразователя, и управление в каждом полупериоде напряжения сети включением транзистора с помощью подачи на его базу отпирающего сигнала управления в режиме выпрямителя в моменты времени ωt=0, ωt=π, а в режиме инвертора в моменты времени ωt=π-20°, ωt=2π-20° и выключением транзистора с помощью подачи на его базу запирающего сигнала управления в режиме выпрямителя на первой зоне регулирования в моменты времени ωt=αper, ωt=π+αрег и на остальных зонах выше первой в моменты времени ωt=10°, ωt=π+10°, а в режиме инвертора на всех зонах в моменты времени ωt=π, ωt=π, отличают заявляемое решение от прототипа. Наличие существенных отличительных признаков свидетельствует о соответствии заявляемого решения критерию патентоспособности «новизна».Shunting in the modes of a rectifier and inverter of a rectified current circuit of a converter with a chain consisting of a series-connected power diode and transistor and a cathode diode connected to the cathode and collector of the transistor to the anode bus of the converter, and controlling the transistor in each half-period by turning on the transistor by supplying unlocking control signal in the rectifier mode at times ωt = 0, ωt = π, and in the inverter mode at times ωt = π-20 °, ωt = 2π-20 ° and turning off the transistor using odachi at its latch control signal base in the rectifier mode to the first control zone at timings ωt = αper, ωt = π + α registration and other areas above the first instants ωt = 10 °, ωt = π + 10 °, and the inverter mode in all zones at times ωt = π, ωt = π, distinguish the proposed solution from the prototype. The presence of significant distinctive features indicates the compliance of the proposed solution to the patentability criterion of "novelty."
Благодаря шунтированию в режимах выпрямителя и инвертора цепи выпрямленного тока преобразователя цепочкой, состоящей из последовательно соединенных силовых диода и транзистора и присоединенной катодом диода к катодной и коллектором транзистора к анодной шинам преобразователя, и управлению в каждом полупериоде напряжения сети включением транзистора с помощью подачи на его базу отпирающего сигнала управления в режиме выпрямителя в моменты времени ωt=0, ωt=π, а в режиме инвертора в моменты времени ωt=π-20°, ωt=2π-20°, и выключением транзистора с помощью подачи на его базу запирающего сигнала управления в режиме выпрямителя на первой зоне регулирования в моменты времени ωt=αрег, ωt=π+αрег и на остальных зонах выше первой в моменты времени ωt=10°, ωt=π+10°, а в режиме инвертора на всех зонах в моменты времени ωt=π, ωt=2π, осуществляется увеличение коэффициента мощности преобразователя на всех зонах регулирования и повышение надежности его работы.Due to shunting in rectifier and inverter modes of a rectified current converter circuit, a chain consisting of a series-connected power diode and transistor and a cathode diode connected to the cathode and collector of the transistor to the anode bus of the converter, and controlling the transistor by applying to its base in each half-period of the network unlocking control signal in the rectifier mode at times ωt = 0, ωt = π, and in the inverter mode at times ωt = π-20 °, ωt = 2π-20 °, and turning off the transistor by applying to its base a locking control signal in the rectifier mode in the first control zone at times ωt = α reg , ωt = π + α reg and in the remaining zones above the first at times ωt = 10 °, ωt = π + 10 ° , and in the inverter mode on all zones at times ωt = π, ωt = 2π, the power factor of the converter is increased in all control zones and the reliability of its operation is increased.
Это обусловлено следующим. Шунтирование цепи выпрямленного тока преобразователя цепочкой, состоящей из последовательно соединенных силовых диода и транзистора и присоединенной катодом диода к катодной и коллектором транзистора к анодной шинам преобразователя, и управление в каждом полупериоде напряжения сети включением транзистора с помощью подачи на его базу отпирающего сигнала управления в режиме выпрямителя в моменты времени ωt=0, ωt=π, а в режиме инвертора в моменты времени ωt=π-20°, ωt=2π-20° и выключением транзистора с помощью подачи на его базу запирающего сигнала управления в режиме выпрямителя на первой зоне регулирования в моменты времени ωt=αрег, ωt=π+αрег и на остальных зонах выше первой в моменты времени ωt=10°, ωt=π+10°, а в режиме инвертора на всех зонах в моменты времени ωt=π, ωt=2π, приводит к уменьшению угла ф, что уменьшает реактивную и увеличивает активную составляющие полной энергии переменного тока. В результате это ведет к увеличению коэффициента мощности преобразователя на всех зонах регулирования. Последовательное подключение к диоду транзистора, который своим выключением с помощью подачи на его базу запирающего сигнала управления в режиме выпрямителя на первой зоне регулирования в моменты времени ωt=αрег, ωt=π+αрег и на остальных зонах выше первой в моменты времени ωt=10°, ωt=π+10°, а в режиме инвертора на всех зонах в моменты времени ωt=π, ωt=2π, бесконтактно отключает цепочку от анодной шины преобразователя, что повышает его надежность работы.This is due to the following. Shunting the rectifier circuit of the converter by a chain consisting of a series-connected power diode and transistor and a cathode connected to the cathode and collector of the transistor to the anode bus of the converter, and controlling the transistor in each half-period of the network by turning on the transistor control in rectifier mode at times ωt = 0, ωt = π, and in the inverter mode at times of time ωt = π-20 °, ωt = 2π-20 ° and turning off the transistor by supplying a blocking signal to its base ala control in rectifier mode, the first control zone at timings ωt = α reg, ωt = π + α registration and other areas above the first instants ωt = 10 °, ωt = π + 10 °, and an inverter at all zones at time points ωt = π, ωt = 2π, leads to a decrease in the angle φ, which reduces the reactive and increases the active components of the total energy of the alternating current. As a result, this leads to an increase in the power factor of the converter in all control zones. Serial connection to the diode of the transistor, which is turned off by supplying a control locking signal to the base in the rectifier mode at the first control zone at times ωt = α reg , ωt = π + α reg and at other zones above the first at times ωt = 10 °, ωt = π + 10 °, and in the inverter mode, in all zones at times ωt = π, ωt = 2π, disconnects the chain from the anode bus of the converter without contact, which increases its reliability.
Причинно-следственная связь «шунтирование в режимах выпрямителя и инвертора цепи выпрямленного тока преобразователя цепочкой, состоящей из последовательно соединенных силовых диода и транзистора и присоединенной катодом диода к катодной и коллектором транзистора к анодной шинам преобразователя - управление в каждом полупериоде напряжения сети включением транзистора с помощью подачи на его базу отпирающего сигнала управления в режиме выпрямителя в моменты времени ωt=0, ωt=π, а в режиме инвертора в моменты времени ωt=π-20°, ωt=2π-20° и выключением транзистора с помощью подачи на его базу запирающего сигнала управления в режиме выпрямителя на первой зоне регулирования в моменты времени ωt=αрег, ωt=π+αрег и на остальных зонах выше первой в моменты времени ωt=10°, ωt=π+10°, а в режиме инвертора на всех зонах в моменты времени ωt=π, ωt=2π - уменьшение угла сдвига фаз ср -уменьшение реактивной и увеличение активной составляющих полной энергии переменного тока - увеличение коэффициента мощности на всех зонах регулирования», а также «последовательное подключение к диоду транзистора, который своим выключением бесконтактно отключает цепочку от анодной шины преобразователя - повышение надежности работы преобразователя в режимах выпрямителя и инвертора» явно не вытекает из существующего уровня техники и является новой.Causal connection “shunting in the modes of a rectifier and inverter of a converter rectified current circuit by a chain consisting of a series-connected power diode and transistor and a cathode diode connected to the cathode and collector of the transistor to the anode bus of the converter - control in each half-period of the mains voltage by turning on the transistor using feed on its base of the unlocking control signal in the rectifier mode at times ωt = 0, ωt = π, and in the inverter mode at times ωt = π-20 °, ωt = 2π-20 ° and off transistor by supplying to its base a locking control signal in the rectifier mode on the first control zone at times ωt = α reg , ωt = π + α reg and on the remaining zones above the first at times ωt = 10 °, ωt = π + 10 °, and in the inverter mode in all zones at times ωt = π, ωt = 2π - a decrease in the phase angle cf — reduction of the reactive and increase in the active components of the total AC energy - an increase in the power factor in all control zones, as well as “ serial connection to the transistor diode, which By its switching off, the contactless circuit from the anode bus of the converter is disconnected - increasing the reliability of the converter in the rectifier and inverter modes does not clearly follow from the existing level of technology and is new.
Наличие новых причинно-следственных связей «существенные отличительные признаки - результат» свидетельствует о соответствии заявленного решения критерию патентоспособности «изобретательский уровень».The presence of new causal relationships "significant distinctive features - result" indicates the compliance of the declared decision with the patentability criterion of "inventive step".
На фиг. 1 представлена принципиальная электрическая схема четырехзонного выпрямительно-инверторного преобразователя по заявляемому способу управления.FIG. 1 shows a circuit diagram of a four-zone rectifier-inverter converter according to the present control method.
На фиг. 2 показаны процессы работы на первой и четвертой зонах регулирования четырехзонного выпрямительно-инверторного преобразователя в режиме выпрямителя по заявляемому способу управления.FIG. 2 shows the processes of operation in the first and fourth control zones of the four-zone rectifier-inverter converter in the rectifier mode by the present control method.
На фиг. 3 показаны процессы работы на первой и четвертой зонах регулирования четырехзонного выпрямительно-инверторного преобразователя в режиме инвертора по заявляемому способу управления.FIG. 3 shows the processes of operation in the first and fourth control zones of a four-zone rectifier-inverter converter in the inverter mode by the present control method.
Заявляемый способ управления многозонным выпрямительно-инверторным преобразователем однофазного переменного тока осуществляется, например, в устройстве, содержащем однофазный трансформатор, четырехзонный выпрямительно-инверторный преобразователь на основе параллельных тиристорных мостов, цепочку из диода и транзистора, цепь выпрямленного тока преобразователя (потребитель тока в режиме выпрямителя или источник напряжения в режиме инвертора).The inventive method of controlling a multi-zone single-phase alternating current rectifier-inverter converter is carried out, for example, in a device containing a single-phase transformer, a four-zone rectifier-inverter converter based on parallel thyristor bridges, a chain of a diode and a transistor, a rectified converter current circuit (current in rectifier mode or voltage source in inverter mode).
Однофазный трансформатор имеет первичную обмотку 1, подключенную к источнику 2 питающего напряжения сети, и вторичную обмотку, выполненную в виде трех последовательно соединенных секций 3, 4, 5 с выводами 6, 7, 8, 9 от каждой из них. Первые две малые секции 3 и 4 имеют равное количество витков, а третья большая секция 5 имеет в два раза большее количество витков по сравнению с ними, т.е. равна сумме первых двух секций 3 и 4.A single-phase transformer has a
Четырехзонный выпрямительно-инверторный преобразователь выполнен из параллельных тиристорных мостов, состоящих из нескольких цепочек тиристорных плеч. Каждая цепочка содержит пару 10-11, 12-13, 14-15 и 16-17 последовательно соединенных тиристорных плеч. Все четные 10, 12, 14 и 16 тиристорные плечи образуют катодную 18, а все нечетные 11, 13, 15 и 17 тиристорные плечи анодную 19 группы плеч преобразователя. Катоды всех тиристорных плеч катодной группы 18, соединенные в одну общую точку схемы, образуют катодную шину 20, а аноды всех тиристорных плеч анодной группы 19, соединенные в другую общую точку схемы, образуют анодную шину 21 преобразователя. Средние точки цепочек подключены к соответствующим выводам секций 3, 4, 5 вторичной обмотки трансформатора.Four-zone rectifier-inverter converter is made of parallel thyristor bridges, consisting of several chains of thyristor arms. Each chain contains a pair of 10-11, 12-13, 14-15 and 16-17 series-connected thyristor arms. All even 10, 12, 14, and 16 thyristor shoulders form a
Неуправляемый вентиль - диод 22 и транзистор 23 образуют цепочку 24, в которой диод 22 и транзистор 23 последовательно соединены между собой, т.е. эмиттер транзистора 23 соединен с анодом диода 22. Катод диода 22 подключен к катодной 20, а коллектор транзистора 23 к анодной 21 шинам преобразователя.Uncontrolled valve - the
Цепь 25 выпрямленного тока преобразователя включает в себя сглаживающий реактор 26 и электрическую машину 27 постоянного тока, включенные между собой последовательно. Цепь 25 подключена со стороны сглаживающего реактора 26 к катодной 20, а со стороны электрической машины 27 к анодной 21 шинам преобразователя.The rectifier converter
Способ управления многозонным выпрямительно-инверторным преобразователем заключается в увеличении коэффициента мощности и повышении надежности работы преобразователя в режимах выпрямителя и инвертора при регулировании им выпрямленного напряжения путем шунтирования цепи выпрямленного тока преобразователя цепочкой, состоящей из последовательно соединенных силовых диода и транзистора и присоединенной катодом диода к катодной и коллектором транзистора к анодной шинам преобразователя, и управления в каждом полупериоде напряжения сети включением транзистора с помощью подачи на его базу отпирающего сигнала управления в режиме выпрямителя в моменты времени ωt=0, ωt=π, а в режиме инвертора в моменты времени ωt=π-20°, ωt=2π-20°, и выключением транзистора с помощью подачи на его базу запирающего сигнала управления в режиме выпрямителя на первой зоне регулирования в моменты времени ωt=αрег, ωt=π+αрег и на остальных зонах выше первой в моменты времени ωt=10°, ωt=π+10°, а в режиме инвертора на всех зонах в моменты времени ωt=π, ωt=2π.The method of controlling a multi-zone rectifier-inverter converter is to increase the power factor and increase the reliability of the converter in the rectifier and inverter modes when it regulates the rectified voltage by shunting the converter's rectified current circuit with a chain consisting of a series-connected power diode and transistor and a cathode-connected diode to the cathode and the collector of the transistor to the anode bus transducer, and control in each half-period of the voltage with This is done by turning on the transistor by supplying the unlocking control signal to its base in the rectifier mode at times ωt = 0, ωt = π, and in the inverter mode at times ωt = π-20 °, ωt = 2π-20 °, and turning off the transistor by applying to its base a locking control signal in the rectifier mode in the first control zone at times ωt = α reg , ωt = π + α reg and in the remaining zones above the first at times ωt = 10 °, ωt = π + 10 ° , and in the inverter mode on all zones at times ωt = π, ωt = 2π.
Так, на 1-й зоне увеличение коэффициента мощности и повышение надежности работы преобразователя в режимах выпрямителя и инвертора при регулировании его выпрямленного напряжения осуществляют путем шунтирования цепи 25 выпрямленного тока преобразователя цепочкой 24, состоящей из последовательно соединенных силовых диода 22 и транзистора 23 и присоединенной катодом диода 22 к катодной шине 20 и коллектором транзистора 23 к анодной шине 21 преобразователя, и управления в каждом полупериоде напряжения сети включением транзистора 23 путем подачи на его базу отпирающего сигнала управления в режиме выпрямителя с фазой α=0, α=π и в режиме инвертора с фазой β=π-20°, β=2π-20° и выключением транзистора 23 с помощью подачи на его базу запирающего сигнала управления в режиме выпрямителя в моменты времени ωt=αрег, ωt=π+αрег, а в режиме инвертора в моменты времени ωt=π, ωt=2π.Thus, in the 1st zone, an increase in the power factor and an increase in the operational reliability of the converter in the rectifier and inverter modes when regulating its rectified voltage is performed by shunting the converter rectified
На 2, 3 и 4-й зонах регулирования в режиме выпрямителя увеличение коэффициента мощности и повышение надежности работы преобразователя при регулировании его выпрямленного напряжения осуществляют путем шунтирования цепи 25 выпрямленного тока преобразователя цепочкой 24, состоящей из последовательно соединенных силовых диода 22 и транзистора 23 и присоединенной катодом диода 22 к катодной шине 20 и коллектором транзистора 23 к анодной шине 21 преобразователя, и управления в каждом полупериоде напряжения сети включением транзистора с помощью подачи на его базу отпирающего сигнала управления в моменты времени ωt=0, ωt=π и выключением транзистора с помощью подачи на его базу запирающего сигнала управления в ωt=10°, ωt=π+10°.In the 2nd, 3rd and 4th control zones in the rectifier mode, an increase in the power factor and an increase in the operating reliability of the converter while regulating its rectified voltage is performed by shunting the converter rectified
На 2, 3 и 4-й зонах регулирования в режиме инвертора увеличение коэффициента мощности и повышение надежности работы преобразователя при регулировании его выпрямленного напряжения осуществляют путем шунтирования цепи 25 выпрямленного тока преобразователя цепочкой 24, состоящей из последовательно соединенных силовых диода 22 и транзистора 23 и присоединенной катодом диода 22 к катодной шине 20 и коллектором транзистора 23 к анодной шине 21 преобразователя, и управления в каждом полупериоде напряжения сети включением транзистора 23 с помощью подачи на его базу отпирающего сигнала управления в моменты времени ωt=π-20°, ωt=2π-20° и выключением транзистора с помощью подачи на его базу запирающего сигнала управления в моменты времени ωt=π, ωt=2π.In the 2nd, 3rd and 4th control zones in the inverter mode, the power factor is increased and the converter operation reliability is increased while regulating its rectified voltage by shunting the rectified
Работа выпрямителя на 1-й зоне осуществляется путем подачи однофазного переменного напряжения от источника питания сети 2 на первичную обмотку 1 трансформатора. Далее секция 4 его вторичной обмотки подает напряжение на средние точки цепочек тиристорных плеч 12-13 и 14-15. Процесс регулирования выпрямленного напряжения выпрямителя на 1-й зоне начинается с конца первого и второго полупериодов, обозначенных на фиг. 1 соответственно сплошной и пунктирной стрелками, т.е. с момента времени ωt=π, ωt=2π, в которые начинают подаваться отпирающие сигналы управления с фазой αрег на управляющие электроды тиристоров плеч 12, 15 в первом полупериоде и 13, 14 во втором. В дальнейшем по мере перемещения фазы отпирающих импульсов указанных плеч от конца полупериода к его началу величина выпрямленного напряжения на выходе выпрямителя (шины 20 и 21) регулируется путем увеличения от 0 до 270 В. Благодаря этому напряжению в двигатель поступает выпрямленный ток.The operation of the rectifier in the 1st zone is carried out by applying a single-phase alternating voltage from the power source of the
На фиг. 2, а в качестве примера представлены процессы работы выпрямителя на 1-й зоне регулирования в момент времени ωt=90°, когда на тиристоры плеч 12, 15 в первом и 13, 14 во втором полупериодах подаются отпирающие импульсы с фазой αрег=90°. В каждом полупериоде напряжения сети выпрямленный ток выпрямителя поступает не только в двигатель для его преобразования в механическое вращение колесной пары электровоза, но и в индуктивность обмоток сглаживающего реактора и двигателя, в которых накапливается в виде электромагнитной энергии (реактивной энергии), поступившей из сети. В момент времени ωt=0, ωt=π подается отпирающий сигнал на базу транзистора 23, который открывается благодаря приложению к коллектору транзистора 23 в цепочке 24 положительного потенциала ЭДС самоиндукции, наведенной в индуктивности цепи 25 выпрямленного тока. В свою очередь открытие транзистора 23 и диода 22 заставляет коммутировать (закрывать) тиристоры плеч 13, 14 в полупериоде по сплошной стрелке и плеч 12, 15 в полупериоде по пунктирной стрелке. Когда транзистор 23 открывается, то через него происходит разряд электромагнитной энергии в двигатель, а не в сеть, как происходило бы, если бы отсутствовала цепочка 24. В результате через открытые транзистор 23 и диод 22 на интервале времени от ωt=0, ωt=π до ωt=αрег+γр, ωt=π+αрег+γp происходит перевод накопленной энергии в индуктивности цепи 25 выпрямленного тока в потребитель -электрическую машину 27, работающую двигателем при выпрямительном режиме преобразователя. Это приводит к снижению потребления сетью реактивной и увеличению потребления двигателем активной составляющей полной энергии переменного тока, а, следовательно, к уменьшению угла ср и повышению коэффициента мощности выпрямителя. Выпрямленное напряжение, полученное на шинах 20 и 21 благодаря открытию однофазных тиристоров плеч 12, 15 и 13, 14, является обратным (отрицательным) для цепочки 24 (диода 22 и транзистора 23), способным запереть цепочку 24 из диода 22 и транзистора 23. Несмотря на приложение к цепочке 24 обратного напряжения для надежного выключения транзистора 23 на его базу подают запирающий сигнал в моменты времени ωt=αрег, ωt=π+αрег, в результате чего транзистор 23 начнет закрываться (коммутировать) на интервале времени, равном углу γр регулируемой коммутации. Подобный процесс выпрямления на 1-й зоне происходит в каждом полупериоде напряжения сети.FIG. 2, and as an example, the processes of the rectifier operation in the 1st control zone at the time instant ωt = 90 ° are presented, when the thyristors of the
Работа выпрямителя на 2, 3 и 4-й зонах регулирования осуществляется путем подачи напряжения от источника 2 на первичную обмотку 1 трансформатора. Далее секции 3, 4 и 5 подают напряжение на средние точки цепочек тиристорных плеч 10-11, 12-13, 14-15, 16-17 (см. фиг. 1). Процесс регулирования выпрямленного напряжения выпрямителя на этих зонах происходит благодаря подаче в первом и втором полупериодах напряжения сети сигналов управления с фазой α=0, α=π на однофазные тиристоры, соответствующие этим полупериодам и номеру зоны двух плеч моста каждой предыдущей зоны (например, на 2-й зоне - плечи 12, 15 и 13, 14, на 3-й зоне - плечи 14, 17 и 15, 16, на 4-й зоне - плечи 12, 17 и 13, 16), а также сигналов управления с фазой αрег на тиристоры одного плеча другого моста, образующего последующую зону (на 2-й зоне - плечо 10 и 11, на 3-й зоне - плечо 12 и 13, на 4-й зоне - плечо 10 и 11). Несмотря на подачу сигналов управления с фазой α=0 (т.е. в момент времени ωt=0) однофазные тиристоры двух плеч моста каждой предыдущей зоны отпираются несколько позже по времени (примерно в момент времени ωt=3°), в силу того, что приложенное на аноды тиристоров напряжение секций вторичной обмотки трансформатора при ωt=0 равно нулю и только при ωt=3° достигнет необходимой величины, при которой тиристоры начнут открываться и начнется процесс регулирования выпрямленного напряжения выпрямителя.The operation of the rectifier at 2, 3 and 4th zones of regulation is carried out by applying voltage from
На фиг. 2, б представлены процессы работы выпрямителя на 4-й зоне. Открытие на 4-й зоне в первом и втором полу периодах напряжения тиристоров плеч 12, 17 и 13, 16, на которые подаются сигналы управления с фазой α=0, α=π, приводит к возникновению на шинах 20 и 21 (выходные выводы) выпрямителя выпрямленного напряжения, положительный потенциал которого находится на шине 20, а отрицательный на шине 21. Выпрямленное напряжение, полученное на шинах 20 и 21 является обратным (отрицательным) для цепочки 24 (диода 22 и транзистора 23), способным запереть цепочку 24 из диода 22 и транзистора 23. Несмотря на приложение к цепочке 24 обратного напряжения для надежного выключения транзистора 23 на его базу подают запирающий сигнал в моменты времени ωt=10°, ωt=π+10°, в результате чего транзистор 23 начнет закрываться (коммутировать) на интервале времени, равном углу γр регулируемой коммутации. Открытие диода 22 и транзистора 23 происходит благодаря подаче на коллектор транзистора 23 положительного потенциала ЭДС самоиндукции, наведенной в индуктивности цепи 25 выпрямленного тока, и подаче на базу транзистора 23 отпирающего сигнала управления с фазой α=0, π. В свою очередь открытие диода 22 и транзистора 23 заставляет коммутировать (закрываться) тиристоры плеч 11, 16 в первом полупериоде и плеч 10, 17 во втором полупериоде, которые были открыты ранее в предыдущем полупериоде напряжения благодаря подаче на них соответственно импульсов управления с фазой αрег и α=0. Через открытые диод 22 и транзистор 23 на интервале времени, равном углу γ, происходит перевод накопленной в индуктивности цепи 25 энергии выпрямленного тока в потребитель - электрическую машину 27, работающую двигателем при выпрямительном режиме преобразователя. Это приводит также, как и на 1-й зоне, к увеличению коэффициента мощности выпрямителя на 2, 3 и 4-й зонах выпрямителя. Последовательное подключение к диоду 22 транзистора 23, который своим выключением в каждом полупериоде бесконтактно отключает цепочку 24 от анодной шины 21 преобразователя, приводит к повышению надежности работы преобразователя в режиме выпрямителя на 2, 3 и 4-й зонах.FIG. 2b shows the processes of operation of the rectifier in the 4th zone. Opening on the 4th zone in the first and second floor voltage periods of the thyristors of the
Работа инвертора на 1-й зоне осуществляется путем перевода цепи 25 выпрямленного тока преобразователя из режима потребителя (двигатель 27 постоянного тока с последовательным возбуждением и сглаживающий реактор 26) в режим источника напряжения постоянного тока (генератор 27 постоянного тока с независимым возбуждением, вращение якоря которого осуществляется через механический редуктор от вращения колесных пар электровоза, и сглаживающий реактор 26). Положительный потенциал «+» напряжения генератора 27 прикладывается к анодной шине 21, а его отрицательный потенциал «-» через сглаживающий реактор 26 прикладывается к катодной шине 20. От источника питания сети 2 на первичную обмотку 1 трансформатора подается однофазное переменное напряжение. Далее секция 4 его вторичной обмотки подает напряжение на средние точки цепочек тиристорных плеч 12-13 и 14-15 инвертора. Благодаря соответствующему управлению тиристорами указанных плеч на шинах 20 и 21 возникает выпрямленное напряжение с положительным потенциалом на шине 21 и отрицательным потенциалом на шине 20. В результате преобразователь приобретает режим работы однофазного зависимого от частоты напряжения сети (ведомого сетью) инвертора, в котором напряжение генератора по величине должно быть несколько больше выпрямленного напряжения инвертора. За счет этой разницы величин напряжений постоянный ток генератора 27 через тиристоры плеч 13, 14 в первом полупериоде и 12, 15 во втором полупериоде напряжения сети поступает в обмотку секции 4, а затем путем трансформации в первичную обмотку 1 трансформатора и далее в сеть. С помощью независимого возбуждения генератора такое условие всегда выполняется и через инвертор происходит преобразование (инвертирование) постоянного тока генератора в переменный ток сети.The operation of the inverter in the 1st zone is carried out by transferring the rectified
Рассмотрим процесс регулирования выпрямленного напряжения инвертора на 1-й зоне (см. фиг. 3, а). В первом полупериоде напряжения сети, обозначенном на фиг. 1 сплошной стрелкой, происходит подача отпирающих сигналов управления с фазой β=0 на однофазные тиристоры плеч 13 и 14, на аноды которых поступает положительный потенциал «+» напряжения генератора 27. В результате открытия в первом полупериоде, соответствующем сплошной стрелке, плеч 13 и 14 возникает режим инвертирования по контуру тока: «+» генератора 27 - тиристорное плечо 13 - секция 4 - тиристорное плечо 14 - сглаживающий реактор 26 - «-» генератора 27. Далее в этом полупериоде подается отпирающий сигнал управления с фазой βрег на однофазное тиристорное плечо 15, которое своим открытием закрывает плечо 13, т.е. происходит процесс фазовой коммутации на интервале γр между плечами 15 (открывается) и 13 (закрывается). Благодаря открытию плеча 15 на интервале γбуф образуется буферный контур разряда электромагнитной энергии сглаживающего реактора 26 и генератора 27: «+» генератора 27 - плечо 15 - плечо 14 - сглаживающий реактор 26 - «-» генератора 27. Затем происходит подача отпирающего сигнала управления с фазой β=π-20° на базу транзистора 23. В результате открытия транзистора 23 и диода 22 через цепочку 24 возникает новая цепь разряда энергии сглаживающего реактора 26 и генератора 27, которая является параллельной цепи буферного контура, образованного ранее открытыми плечами 14 и 15. Через цепочку 24 начинает протекать значительный ток в силу малого сопротивления цепи, который увеличивает ток в генераторе 27. Включение цепочки 24 также приводит к закрытию плеч 14 и 15. Далее в момент времени ωt=π происходит подача запирающего сигнала на базу транзистора 23, в результате чего цепочка 24 выключается и через нее прекращается протекание тока. Выключение цепочки 24 создает потенциальные условия для включения тиристорных плеч 12 и 15. Для этого на плечи 12 и 15 подаются отпирающие сигналы управления с фазой β=π, в результате чего они открываются. С этого момента во втором полупериоде, соответствующем пунктирной стрелке, начинается второй цикл инвертирования постоянного тока генератора в переменный ток секции 4 трансформатора и далее в ток сети. Процессы работы инвертора в этом втором цикле подобны описанному выше с той лишь разницей, что процесс инвертирования происходит через плечи 12 и 15, а процесс протекания тока по буферному контуру происходит через плечи 12 и 13. Последовательное подключение к диоду 22 транзистора 23, который своим выключением в каждом полупериоде напряжения бесконтактно отключает цепочку 24 от анодной шины 21 преобразователя, приводит к повышению надежности работы преобразователя в режиме инвертора на 1-й зоне.Consider the process of regulating the rectified voltage of the inverter in the 1st zone (see Fig. 3, a). In the first half period of the mains voltage, indicated in FIG. 1 solid arrow, supplying unlocking control signals with phase β = 0 to single-phase thyristors of
Работа инвертора на 2, 3 и 4-й зонах осуществляется путем перевода цепи 25 выпрямленного тока преобразователя из режима потребителя (двигатель 27 постоянного тока с последовательным возбуждением и сглаживающий реактор 26) в режим источника напряжения постоянного тока (генератор 27 постоянного тока с независимым возбуждением, вращение якоря которого осуществляется через механический редуктор от вращения колесных пар электровоза, и сглаживающий реактор 26). Положительный потенциал «+» напряжения генератора 27 прикладывается к анодной шине 21, а его отрицательный потенциал «-» через сглаживающий реактор 26 прикладывается к катодной шине 20. От источника питания сети 2 на первичную обмотку 1 трансформатора подается однофазное переменное напряжение. Далее секции 3, 4 и 5 вторичной обмотки трансформатора подают напряжение на средние точки цепочек тиристорных плеч 10-11, 12-13, 14-15, 16-17 инвертора. Благодаря соответствующему управлению тиристорами указанных плеч на шинах 21 и 20 возникает выпрямленное напряжение инвертора с положительным потенциалом на шине 21 и отрицательным потенциалом на шине 20. В результате инвертор приобретает режим работы однофазного зависимого от частоты напряжения сети (ведомого сетью) инвертора, в котором напряжение генератора по величине должно быть несколько больше выпрямленного напряжения инвертора. За счет этой разницы величин напряжений постоянный ток генератора 27 через тиристоры плеч инвертора поступает в обмотки секций вторичной обмотки, а затем путем трансформации в первичную обмотку 1 трансформатора и далее в сеть. С помощью независимого возбуждения генератора такое условие всегда выполняется и через инвертор происходит преобразование (инвертирование) постоянного тока генератора в переменный ток сети.The operation of the inverter in
Рассмотрим процесс регулирования выпрямленного напряжения инвертора, например, на 4-й зоне (см. фиг. 3, б). В первом полупериоде напряжения по сплошной стрелке начинается первый цикл работы инвертора, заключающийся в том, в момент времени ωt=0 отпираются тиристоры плеч 11 и 16 путем подачи на них отпирающих сигналов управления с фазой β=0. В момент времени ωt=π-βрег открывается тиристор плеча 13 благодаря подачи на его управляющий электрод отпирающего сигнала с фазой βрег. В результате открытия тиристора плеча 13 происходит закрытие (коммутация) тиристора плеча 11 и процесс инвертирования продолжается уже через тиристоры плеч 13 и 16. В момент времени ωt=π-20° транзистор 23 открывается под действием прямого напряжения генератора и подачи на его базу отпирающего сигнала управления с фазой β=π-20° и через цепочку 24 возникает новая цепь с малым сопротивлением (сумма прямых сопротивлений транзистора и диода), которая является параллельной цепи инвертора, состоящей из тиристоров плеч 13, 16 и обмоток секций 4, 5 трансформатора (эта цепь имеет значительно большее сопротивление). Через цепочку 24 начнет протекать значительно больший ток генератора в силу малого сопротивления цепи, чем через цепь инвертора. В тоже время ток в цепи тиристоров плеч 13, 16 и обмоток секций 4, 5 начнет резко снижаться в силу ее большого сопротивления, чем в цепи цепочки 24, что будет способствовать более быстрому закрытию тиристоров плеч 13, 16. Это позволяет устанавливать в инверторе малую величину опережающего угла β, который уменьшает величину угла ϕ, а значит, увеличивает величину коэффициента мощности инвертора. В момент времени ωt=π подается запирающий сигнал на базу транзистора 23. В результате диод 22 и транзистор 23, которые были открыты с момента времени ωt=π-20°, начинают закрываться. Также в момент времени ωt=π на тиристоры плеч 10 и 17 подаются отпирающие сигналы, в результате чего они открываются и во втором полупериоде начинает осуществляться новый цикл процесса инвертирования тока генератора в сеть через тиристоры плеч 10, 17 и обмотки секций 3, 4, 5 трансформатора. В момент времени ωе=2π-βрег открывается тиристор плеча 12 благодаря подачи на его управляющий электрод отпирающего сигнала с фазой βрег. В результате открытия тиристора плеча 12 происходит закрытие (коммутация) тиристора плеча 10 и процесс инвертирования продолжается уже через тиристоры плеч 12 и 17. Далее в момент времени ωt=2π-20° на базу транзистора 23 подается отпирающий сигнал, в результате которого включается цепочка 24. Включение цепочки приводит к выключению плеч 12 и 17. Далее в момент времени ωt=2π на базу транзистора 23 подается запирающий сигнал управления, в результате которого цепочка 24 выключается. С этого момента начинается следующий цикл инвертирования, процессы которого подобны описанным выше. Последовательное подключение к диоду 22 транзистора 23, который своим выключением бесконтактно отключает цепочку 24 от анодной шины 21 преобразователя, приводит к повышению надежности работы преобразователя в режиме инвертора на 4-й зоне.Consider the process of regulating the rectified voltage of the inverter, for example, in the 4th zone (see Fig. 3, b). In the first half-period of the voltage along the solid arrow, the first cycle of the inverter begins, consisting in that, at the time ωt = 0, the thyristors of the
Процессы работы преобразователя в режимах выпрямителя и инвертора на всех зонах регулирования, описанные в заявочных материалах, были получены путем математического моделирования силовой схемы электровоза типа ВЛ80Р.The processes of operation of the converter in the rectifier and inverter modes on all control zones described in the application materials were obtained by mathematical modeling of a VL80R type electric locomotive power circuit.
Процессы моделирования показали, что по сравнению с преобразователем-прототипом коэффициент мощности предлагаемого преобразователя на 4-й зоне регулирования при номинальной нагрузке в режиме выпрямителя увеличился с 0,86 до 0,89, а в режиме инвертора с 0,82 до 0,87.Simulation processes showed that, compared with the prototype converter, the power factor of the proposed converter in the 4th control zone at nominal load in rectifier mode increased from 0.86 to 0.89, and in inverter mode from 0.82 to 0.87.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018121872A RU2689786C1 (en) | 2018-06-13 | 2018-06-13 | Control method of multi-zone rectifier-inverter converter of single-phase alternating current |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018121872A RU2689786C1 (en) | 2018-06-13 | 2018-06-13 | Control method of multi-zone rectifier-inverter converter of single-phase alternating current |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2689786C1 true RU2689786C1 (en) | 2019-05-29 |
Family
ID=67037552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018121872A RU2689786C1 (en) | 2018-06-13 | 2018-06-13 | Control method of multi-zone rectifier-inverter converter of single-phase alternating current |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2689786C1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2728891C1 (en) * | 2019-12-16 | 2020-07-31 | Федеральное государственное бюджетное образовательное учреждение высшего образования Иркутский государственный университет путей сообщения (ФГБОУ ВО ИрГУПС) | Rectifier-inverter converter of electric stock and method of its control in regenerative braking mode |
RU2813219C1 (en) * | 2023-02-03 | 2024-02-08 | Общество с ограниченной ответственностью "Электромеханика и диагностика машин и механизмов" | Rectifier converter and method for controlling rectifier converter |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1577049A1 (en) * | 1988-05-30 | 1990-07-07 | Новосибирский электротехнический институт | Dc electric drive |
RU2322749C1 (en) * | 2006-11-20 | 2008-04-20 | ГОУ ВПО Дальневосточный государственный университет путей сообщения МПС России (ДВГУПС) | Method for control of multizone rectifier of single-phase alternating current |
US20120227616A1 (en) * | 2009-12-18 | 2012-09-13 | Mitsubishi Electric Corporation | Electric train drive control device |
GB2493308A (en) * | 2012-11-06 | 2013-01-30 | Sevcon Ltd | Controlling a DC series motor using a three phase inverter |
RU2487458C2 (en) * | 2008-03-19 | 2013-07-10 | Сименс Акциенгезелльшафт | Method of control for multiphase alternating-current rectifier with distributed energy storage units at low output frequencies |
RU2561068C1 (en) * | 2014-05-13 | 2015-08-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Дальневосточный государственный университет путей сообщения" (ДВГУПС) | Method to control dependent inverter of single-phase ac current |
RU2561913C1 (en) * | 2014-04-18 | 2015-09-10 | Станислав Васильевич Власьевский | Control method for multizone reversible converter of single-phase direct current |
-
2018
- 2018-06-13 RU RU2018121872A patent/RU2689786C1/en not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1577049A1 (en) * | 1988-05-30 | 1990-07-07 | Новосибирский электротехнический институт | Dc electric drive |
RU2322749C1 (en) * | 2006-11-20 | 2008-04-20 | ГОУ ВПО Дальневосточный государственный университет путей сообщения МПС России (ДВГУПС) | Method for control of multizone rectifier of single-phase alternating current |
RU2487458C2 (en) * | 2008-03-19 | 2013-07-10 | Сименс Акциенгезелльшафт | Method of control for multiphase alternating-current rectifier with distributed energy storage units at low output frequencies |
US20120227616A1 (en) * | 2009-12-18 | 2012-09-13 | Mitsubishi Electric Corporation | Electric train drive control device |
GB2493308A (en) * | 2012-11-06 | 2013-01-30 | Sevcon Ltd | Controlling a DC series motor using a three phase inverter |
RU2561913C1 (en) * | 2014-04-18 | 2015-09-10 | Станислав Васильевич Власьевский | Control method for multizone reversible converter of single-phase direct current |
RU2561068C1 (en) * | 2014-05-13 | 2015-08-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Дальневосточный государственный университет путей сообщения" (ДВГУПС) | Method to control dependent inverter of single-phase ac current |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2728891C1 (en) * | 2019-12-16 | 2020-07-31 | Федеральное государственное бюджетное образовательное учреждение высшего образования Иркутский государственный университет путей сообщения (ФГБОУ ВО ИрГУПС) | Rectifier-inverter converter of electric stock and method of its control in regenerative braking mode |
RU2813219C1 (en) * | 2023-02-03 | 2024-02-08 | Общество с ограниченной ответственностью "Электромеханика и диагностика машин и механизмов" | Rectifier converter and method for controlling rectifier converter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2322749C1 (en) | Method for control of multizone rectifier of single-phase alternating current | |
US8824179B2 (en) | Soft-switching high voltage power converter | |
US9252681B2 (en) | Power converter with a first string having controllable semiconductor switches and a second string having switching modules | |
US20170179836A1 (en) | Power conversion device | |
CN102379081B (en) | Power conversion apparatus | |
RU2561913C1 (en) | Control method for multizone reversible converter of single-phase direct current | |
RU2689786C1 (en) | Control method of multi-zone rectifier-inverter converter of single-phase alternating current | |
RU2716493C1 (en) | Control method of multi-zone rectifier-inverter converter of single-phase alternating current | |
RU192613U1 (en) | DEVICE FOR INCREASING POWER RECTIFIER OF RECTIFIER-INVERTER CONVERTER OF SINGLE-PHASE AC | |
RU2341002C1 (en) | Method of inverter control | |
RU2418354C1 (en) | Grid-controlled inverter of single-phase alternating current | |
RU2740639C1 (en) | Control method of multi-zone rectifier-inverter converter of single-phase alternating current | |
RU2561068C1 (en) | Method to control dependent inverter of single-phase ac current | |
RU54704U1 (en) | MULTI-ZONE AC SINGLE RECTIFIER | |
RU2737075C1 (en) | Method for control of network switching of thyristor arms of rectifier-inverter converter | |
RU2534749C1 (en) | Reversible frequency converter | |
Vlas’ evskii et al. | Emergency operation processes in the thyristor rectifier of an alernating current electric locomotive | |
RU2540110C2 (en) | Reversible frequency converter | |
RU2368060C1 (en) | Monophase direct current converter | |
RU2454782C1 (en) | Frequency converter control method | |
JP2618931B2 (en) | Power converter | |
Raju | An SCR-based regenerative converter for VSI drives | |
RU2728891C1 (en) | Rectifier-inverter converter of electric stock and method of its control in regenerative braking mode | |
RU2573821C2 (en) | Method of control in mode of regenerative braking of multizonal rectifying and inverting converter | |
SU1328904A1 (en) | Three-rhase controllable ac-to-dc voltage converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20200614 |