[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

RU2688700C2 - Способ планирования эксплуатационных и нагнетательных скважин - Google Patents

Способ планирования эксплуатационных и нагнетательных скважин Download PDF

Info

Publication number
RU2688700C2
RU2688700C2 RU2016147112A RU2016147112A RU2688700C2 RU 2688700 C2 RU2688700 C2 RU 2688700C2 RU 2016147112 A RU2016147112 A RU 2016147112A RU 2016147112 A RU2016147112 A RU 2016147112A RU 2688700 C2 RU2688700 C2 RU 2688700C2
Authority
RU
Russia
Prior art keywords
fracturing fluid
proppant
fluid
propping agent
injection
Prior art date
Application number
RU2016147112A
Other languages
English (en)
Other versions
RU2016147112A3 (ru
RU2016147112A (ru
Inventor
Данил Сергеевич Панцуркин
САБО Геза ХОРВАТ
Чад КРАМЕР
Мохан Панга
Original Assignee
Шлюмберже Текнолоджи Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шлюмберже Текнолоджи Б.В. filed Critical Шлюмберже Текнолоджи Б.В.
Publication of RU2016147112A3 publication Critical patent/RU2016147112A3/ru
Publication of RU2016147112A publication Critical patent/RU2016147112A/ru
Application granted granted Critical
Publication of RU2688700C2 publication Critical patent/RU2688700C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • C09K8/805Coated proppants
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B28/00Vibration generating arrangements for boreholes or wells, e.g. for stimulating production
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/04Hulls, shells or bark containing well drilling or treatment fluids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/08Fiber-containing well treatment fluids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/26Gel breakers other than bacteria or enzymes

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Изобретение относится к горному делу и может быть применено для гидроразрыва пласта. Способ включает этапы, на которых: осуществляют закачивание в ствол скважины текучей среды гидроразрыва, не содержащей расклинивающий агент, с образованием трещины в пласте, вводят в импульсном режиме в ствол скважины текучую среду гидроразрыва, причем импульсный режим закачки предусматривает наличие, по меньшей мере, одного импульса закачки текучей среды гидроразрыва, содержащей расклинивающий агент, и, по меньшей мере, одного импульса закачки текучей среды гидроразрыва, не содержащей расклинивающий агент, причем во время импульса закачки текучей среды гидроразрыва, содержащей расклинивающий агент, дополнительно вводят укрепляющий и/или консолидирующий материал в текучую среду гидроразрыва, при этом увеличивают концентрацию укрепляющего и/или консолидирующего материала в импульсе закачки текучей среды гидроразрыва, содержащей расклинивающий агент, при этом произведение объемной скорости текучей среды (V) гидроразрыва (л/с) на вязкость (μ) текучей среды гидроразрыва (Па*с) не превышает 0,003 Па*л при проведении гидроразрыва. Технический результат заключается в повышении эффективности гидроразрыва пласта за счет снижения воздействия жидкости на стенки трещины и кластеры расклинивающего агента. 9 з.п. ф-лы, 3 ил.

Description

Настоящее изобретение относится к области неоднородного размещения расклинивающего агента (НРРА) и является новым подходом к гидравлическому разрыву пласта. Неоднородная упаковка из расклинивающего агента образуется, когда в трещине размещаются несколько отдельных кластеров из расклинивающего агента. Такая (неоднородная) упаковка из отдельных кластеров удерживает трещину от смыкания, одновременно формируя сеть каналов, полностью открытых для тока углеводородов.
Проводимость трещины является параметром, который влияет на производительность скважины или ее приемистость. Для трещины с НРРА проводимость определяется наличием каналов. Проводимость трещины с НРРА выше, чем у обычной трещины, пока протоки для движения углеводородов (каналы) остаются открытыми.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
В патенте US 6,776,235 «Способ гидроразрыва», поданном компанией «Шлюмберже» 23 июля 2002 года, раскрывается способ и средства оптимизации проводимости трещины. Продуктивность скважины увеличивается путем последовательной закачки чередующимися фазами в ствол скважины в целях улучшения размещения расклинивающего агента жидкостей для гидроразрыва, различающихся либо по своей способности транспортировать расклинивающие агенты в трещину, либо по количеству доставляемых расклинивающих агентов. Полученные в результате такого процесса расклиненные трещины характеризуются наличием скоплений кластеров расклинивающего агента, расположенных по всей длине трещины. Другими словами, кластеры твердых частиц образуют «островки», которые держат трещину открытой по всей ее длине и создают множество каналов для движения пластовых жидкостей.
В патенте US 7,281,581 «Способы гидравлического разрыва и расклинивания трещин в подземных формациях», поданном компанией «Халлибертон» 1 декабря 2004 года, раскрываются способы неоднородного размещения расклинивающего агента, включающие формирование многочисленных агрегатов расклинивающего агента, отдельный из которых содержит связующую жидкость и наполнитель, и закачку большого количество таких агрегатов как минимум в одну трещину.
В патенте US 7,044,220 «Состав и спосбобы повышения проницаемости барьера из расклинивающего агента и проводимости трещины в подземной скважине», поданном компанией «Халлибертон» 27 июля 2003 года, раскрывается проведение операций по гидроразрыву с составом расклинивающего агента, содержащим твердые частицы расклинивающего наполнителя и материал, способный необратимо разлагаться в стволе скважины; доставка состава расклинивающего агента в трещину; а также обеспечение составу расклинивающего агента возможности сформировать в трещине матрицу расклинивающего агента, имеющую пустоты в своей структуре.
В заявке на патент US 2008/0135242 «Неоднородное размещение в трещине расклинивающего агента с удаляемым каналообразующим наполнителем», поданной компанией «Шлюмберже» 8 декабря 2006 года, (патент US 7,581,590 (В2), патент US 8,066,068 (В2), раскрывается способ, включающий в себя закачку через ствол скважины в трещину жидкости гидроразрыва, содержащей расклинивающий агент и каналообразующий материал-наполнитель, называемый «каналообразователь»; неоднородное размещение расклинивающего агента в трещине в виде множества кластеров или островков агента, отделенных друг от друга каналообразователем; а также удаление каналообразующего материала-наполнителя и создания открытых каналов вокруг расклинивающих стержней для обеспечения притока жидкости из пласта через трещину в ствол скважины.
В заявке на патент US 2008/0128131 «Способы повышения проводимости трещины в подземных пластах», поданной компанией «Халлибертон» 5 декабря 2006 (патент US 8,082,994 (В2)), раскрывается закачка в расклиненную трещину в подземном пласте вытесняющей жидкости и формирование в расклиненной трещине как минимум одного канала.
В заявке на патент WO 2007/086771 «Способы гидроразрыва подземного пласта», поданной компанией «Шлюмберже» 5 декабря 2006 года (патент US 8,061,424 (В2)), раскрываются экономически эффективные способы гидравлического разрыва подземного пласта, обеспечивающие улучшение проводимости трещины гидроразрыва благодаря формированию твердых кластеров расклинивающего агента, равномерно распределенных по всей длине трещины. Один из этих способов содержит: первый этап, который предусматривает закачку в ствол скважины жидкости гидроразрыва, содержащей загустители, для создания трещины в пласте, и второй этап, который включает периодическое добавление расклинивающего агента в закачиваемую жидкость гидроразрыва в целях доставки агента в образованную трещину и создания в ней расклинивающих кластеров, предотвращающих смыкание трещины, а также каналов, обеспечивающих движение пластовых жидкостей между кластерами. При этом на втором этапе или его подэтапах дополнительно закачивается либо армирующий, либо уплотняющий материал, либо сразу оба. Тем самым увеличивается прочность кластеров расклинивающего агента, образованных в жидкости гидроразрыва.
В решениях, известных из уровня техники, основным является обеспечение возможности создания гетерогенной упаковки расклинивающего агента (проппанта), в то время как увеличение срока эксплуатации скважины за счет снижения воздействия жидкости гидроразрыва на стенки трещины и кластеры (островки) проппанта не принимается во внимание.
Соответственно в уровне техники имеется необходимость в создании механизма увеличения срока эксплуатации скважины за счет снижения воздействия жидкости на стенки трещины и кластеры расклинивающего агента.
СУЩНОСТЬ
В настоящем изобретении раскрывается подход к проектированию операций по НРРА для добывающих и нагнетательных скважин. Этот подход разработан для горизонтальных и вертикальных скважин, и использует геометрию трещины и проектирование завершающей фазы гидроразрыва для оптимизации производительности скважины или ее приемистости. Также предложены несколько подходов к выбору применяющегося в данной фазе расклинивающего агента.
В соответствии с заявленным изобретением предложен способ гидроразрыва пласта, пересекаемого стволом скважины, в котором осуществляют закачивание в ствол скважины текучей среды гидроразрыва не содержащей расклинивающий агент, с образованием трещины в пласте, вводят в импульсном режиме в ствол скважины текучую среду гидроразрыва, причем импульсный режим закачки предусматривает наличие, по меньшей мере, одного импульса закачки текучей среды гидроразрыва, содержащей расклинивающий агент и, по меньшей мере, одного импульса закачки текучей среды гидроразрыва, не содержащей расклинивающий агент, причем во время импульса закачки текучей среды гидроразрыва, содержащей расклинивающий агент, дополнительно вводят укрепляющий и/или консолидирующий материал в текучую среду гидроразрыва, при этом увеличивают, по меньшей мере, одно из концентрации расклинивающего агента или концентрации укрепляющего и/или консолидирующего материала в импульсе закачки текучей среды гидроразрыва, содержащей расклинивающий агент.
В соответствии с заявленным изобретением предложен способ гидроразрыва пласта, пересекаемого стволом скважины, в котором осуществляют закачивание в ствол скважины текучей среды гидроразрыва не содержащей расклинивающий агент, с образованием трещины в пласте, вводят в импульсном режиме в ствол скважины текучую среду гидроразрыва, причем импульсный режим предусматривает наличие, по меньшей мере, одного импульса закачки текучей среды гидроразрыва, содержащей расклинивающий агент и, по меньшей мере, одного импульса закачки текучей среды гидроразрыва, не содержащей расклинивающий агент, причем импульсный режим предусматривает наличие завершающего импульса закачки текучей среды гидроразрыва, содержащей расклинивающий агент, предназначенного для увеличения глубины размещения последней порции расклинивающего агента в трещине.
В соответствии с заявленным изобретение также предложен способ гидроразрыва пласта, пересекаемого стволом скважины, в котором осуществляют закачивание в ствол скважины текучей среды гидроразрыва не содержащей расклинивающий агент, с образованием трещины в пласте, вводят в импульсном режиме в ствол скважины текучую среду гидроразрыва, причем импульсный режим предусматривает наличие, по меньшей мере, одного импульса закачки текучей среды гидроразрыва, содержащей расклинивающий агент и, по меньшей мере, одного импульса закачки текучей среды гидроразрыва, не содержащей расклинивающий агент, причем импульсный режим предусматривает проведение операций по снижению вязкости текучей среды гидроразрыва.
Под термином «текучая среда» в вышепредставленных вариантах способа гидроразрыва настоящего изобретения подразумевают жидкость гидроразрыва.
В соответствии с заявленным изобретение также предложен способ добычи текучей среды из пласта, пересекаемого стволом скважины, в котором осуществляют гидроразрыв пласта в соответствии с одним из способов способом гидроразрыва указанных выше; и обеспечивают канал добычи текучей среды на поверхность; добывают текучую среду из пласта посредством канала добычи.
Под термином «текучая среда» в вышепредставленном способе настоящего изобретения подразумевают одно из нефти, газа, воды или их комбинации.
В соответствии с заявленным изобретение также предложен способ откачки отработанной текучей среды гидроразрыва из пласта, пересекаемого стволом скважины, после осуществления гидроразрыва пласта в соответствии с одним из способов способом гидроразрыва указанных выше, в котором обеспечивают канал для отработанной текучей среды гидроразрыва на поверхность; откачивают отработанной текучей среды гидроразрыва из пласта посредством канала для отработанной текучей среды гидроразрыва.
Под термином «текучая среда» в вышепредставленном способе настоящего изобретения подразумевают отработанную текучую среду гидроразрыва.
В соответствии с заявленным изобретение также предложен способ нагнетания текучей среды в пласт, пересекаемый стволом скважины, в котором осуществляют гидроразрыв пласта в соответствии в соответствии с одним из способов гидроразрыва указанных выше; и нагнетают текучую среду в пласт.
Под термином «текучая среда» в вышепредставленном способе настоящего изобретения подразумевают текучую среду, нагнетаемую в пласт, и представляющую собой одно из воды, пара, газа, бурового раствора, жидких отходов, или их комбинации.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Далее варианты осуществления заявленного изобретения описываются более подробно, посредством чертежей, на которых показано:
Фиг. 1 - изменение коэффициента покрытия трещины расклинивающим агентом.
Фиг. 2 - сжатие и расползание кластера из расклинивающего агента.
Фиг. 3 - изменение глубины размещения завершающей порции расклинивающего агента.
ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
В соответствии с предложенной методикой на Фиг. 1 представлена скважина 100, пересекающая нефтегазоносный пласт 101, в которую с поверхности 102 нагнетается жидкость 103 гидроразрыва, которая формирует, по меньшей мере, одну трещину 104.
Затем жидкость 103 гидроразрыва нагнетают в скважину 100 в импульсном режиме для формирования трещины, причем импульсный режим предусматривает наличие, по меньшей мере, одного импульса закачки жидкости гидроразрыва, содержащей расклинивающий агент и, по меньшей мере, одного импульса закачки жидкости гидроразрыва, не содержащей расклинивающий агент. В качестве жидкости гидроразрыва, не содержащей расклинивающий агент используется чистая жидкость гидроразрыва, либо жидкость гидроразрыва с добавками, которые не относятся к расклинивающему агенту.
Посредством применения импульсного режима закачки жидкости гидроразрыва в трещине 104 формируются кластеры 105, 106 расклинивающего агента и каналы 107, через которые осуществляют добычу текучей среды 108 из пласта 101 на поверхность 102.
Основная идея раскрываемого ниже подхода в том, чтобы увеличить срок эксплуатации скважины за счет снижения воздействия жидкости на стены трещины и кластеры (островки) расклинивающего агента. А также, с одной стороны, для того чтобы уменьшить падение давления в трещине при поддержании стабильной объемной скорости жидкости (здесь и далее по тексту под «жидкостью» понимается закачиваемая/нагнетаемая жидкость гидроразрыва, добываемая жидкость или жидкость, используемая на этапе отработки скважины). С другой стороны, падение давления может оставаться на том же уровне при одновременном увеличении объемной скорости жидкости. Упомянутое падение давления может быть либо вызванным (то есть, спровоцированным в ходе операций по гидроразрыву), либо естественным.
Общеизвестно, что основными определяющими факторами перепада давления являются линейная скорость жидкости и ее вязкость - большая скорость или вязкость вызовет больший перепад давления:
Figure 00000001
Здесь μ - это вязкость жидкости, а V - средняя линейная скорость жидкости. Вязкость является заданным свойством жидкости, и ее можно легко измерить. Средняя линейная скорость жидкости является функцией нескольких переменных, и ее можно рассчитать.
Ниже приведен список альтернативных способов увеличения срока эксплуатации скважины, как на этапе нагнетания жидкости гидроразрыва, так и на этапе добычи текучей среды пласта или отбора из скважины жидкости, закаченной во время гидроразрыва.
Снижение вязкости жидкости.
В то время как изменить вязкость добываемой жидкости весьма непросто, изменение вязкости закачиваемой жидкости или жидкости, применяемой на этапе отработки скважины, является вполне реализуемым решением. Неограничивающие примеры включают:
a) в случае использования в качестве текучей среды текучей среды на полимерной основе (например геля) измененяют концентрацию полимеров в жидкостях гидроразрыва, в частности снижают концентрацию полимеров до 0,1-3 грамм/литр текучей среды гидроразрыва, например, до 1-2,5 г/л.
b) повышение эффективности разжижителя геля гидроразрыва;
Эффективность разжижителя геля гидроразрыва обеспечивают следующими способами, без ограничения: повышением концентрации разжижителя, например, использование большой концентрации капсулированных разжижителей не повлияет на свойство жидкости гидроразрыва при закачке, однако, после размещения проппанта и разрыва капсул с разжижителем, снизит вязкость жидкости;
c) использование не полимерных жидкостей с низкой вязкостью;
d) задержка начала отработки скважины в целях увеличения температуры жидкости, закаченной в скважину, задержка составляет не менее чем на 24 часа, например, от 24-72 часа.
Эффективность разжижителя повышается при повышении температуры; использование химически более активных разжижителей, например, вместо органических пероксидов или энзимов используют персульфатные разжижители.
e) добавление понизителей трения, в частности изменение их концентрации;
f) повышение температуры закачиваемой жидкости на поверхности до 20-100°C.
Увеличение ширины трещины.
Неограничивающие примеры изменения ширины трещины включают:
a) Увеличение толщины кластера из расклинивающего агента, что может быть достигнуто путем увеличения концентрации расклинивающего агента в импульсах закачки, как в импульсе закачки жидкости гидроразрыва, содержащей расклинивающий агент, а также как в импульсе закачки жидкости гидроразрыва, содержащей расклинивающий агент, так и в импульсе закачки жидкости гидроразрыва, не содержащей расклинивающий агент. В частности заявленный способ предусматривает увеличивают концентрацию расклинивающего агента до 200-1800 грамм/литр текучей среды гидроразрыва.
b) На фиг. 2 представлен вариант осуществления изобретения, предусматривающий увеличение концентрации укрепляющего и/или консолидирующего материала, например, органических или неорганических волокон, или их комбинаций, предотвращающее расползание кластеров расклинивающего агента под действием давления породы можно добиться увеличения толщины кластера из расклинивающего агента (это также может привести к снижению коэффициента покрытия трещины расклинивающим агентом). В рамках настоящего изобретения возможно увеличение концентрации укрепляющего и/или консолидирующего материала в жидкости гидроразрыва в импульсе, содержащем расклинивающий агент от 5 до 500 грамм/литр жидкости гидроразрыва. Возможно использование волокон, изготовленных из металла, стекла, углерода, полимеров.
На фиг. 2 показано сжатие и расползание кластера из расклинивающего агента, где А - начальный кластер - давление не приложено, В - кластер без добавок - под давлением, С - кластер с волокнами - под давлением. Чтобы достичь уменьшенного расползания (случай С), также используют деформируемые частицы, резинопокрытый расклинивающий агент и т.д.
Однако следует принять во внимание фактор разложения волокон, поскольку как только разложение завершится, кластер из расклинивающего агента начнет расползаться дальше и преимущества использования волокон потеряются. В качестве неограничивающего варианта, возможно применение не разлагаемых волокон. В зависимости от условий (температура, среда) не разлагаемыми могут считаться различные волокна: нейлон, металлические волокна, полиуретановые волокна, стекловолокно, углеродное волокно, или их комбинации.
Уменьшение коэффициента покрытия трещины расклинивающим агентом. Коэффициент покрытия трещины расклинивающим агентом Ар определяется как соотношение между площадью трещины покрытой расклинивающим агентом к общей площади трещины. На фиг. 1 за счет уменьшения коэффициента покрытия трещины 104 расклинивающим агентом от Ap1 106 до Ар2 105 увеличивается сечение каналов 107, а, следовательно, уменьшается скорость жидкости в каналах при постоянной объемной скорости жидкости.
Неограничивающие примеры изменения этого параметра включают:
а) изменение соотношения между длительностью (временем импульса) импульсов закачки жидкости гидроразрыва, содержащей расклинивающий агент, и жидкости гидроразрыва, не содержащей расклинивающий агент, в пользу импульсов закачки жидкости гидроразрыва, не содержащей расклинивающий агент. Причем соотношение между длительностью импульса закачки текучей среды гидроразрыва, содержащей расклинивающий агент, и длительностью импульса закачки текучей среды гидроразрыва, не содержащей расклинивающий агент составляет от 1:1,2 до 1:5.
b) увеличение концентрации волокон или деформируемого наполнителя, что препятствует расползанию кластеров (Фиг. 2), и приводит к уменьшению занятой ими площади трещины, т.е. площадь кластера 106 больше, чем площадь кластера 105, в то время как сечение канала 107 увеличивается при уменьшении занятой площади (это также может привести к увеличению толщины кластера из расклинивающего агента). Причем концентрацию деформируемого наполнителя увеличивают в импульсе закачки жидкости гидроразрыва, содержащей расклинивающий агент от 0,1 до 50% от массы расклинивающего агента. Также возможно увеличение концентрации волокон в импульсе закачки текучей среды гидроразрыва, не содержащей расклинивающий агент.
В качестве деформируемого наполнителя в зависимости от условий (приложенное давление) используют, без ограничения, частички смолы или пластика, металлические гранулы, скорлупа орехов, мягкие минералы вроде талька или их комбинации. Также в качестве деформируемого материала могут использоваться частицы имеющие форму сферы, либо они могут иметь несимметричную форму, с отношением размеров сторон от 1:1,1 до 1:10, либо частицы деформируемого наполнителя могут иметь наименьший линейный размер 20 мкм и более, например, 100-1000 мкм.
c) Использование расклинивающих агентов с покрытием, например, использование резинопокрытого проппанта, предотвращает расползание кластеров (Фиг. 2), что приведет к уменьшению занятой ими площади трещины (это также может привести к увеличению толщины кластера из расклинивающего агента). В качестве покрытия используют смолы, резины, полимерные оболочки, металлические оболочки или оболочки из хрупкой кермики или стекла.
На Фиг. 3 представлен вариант осуществления, предусматривающий увеличение глубины размещения завершающей порции расклинивающего агента для горизонтальной скважины. При закачке жидкости 103 гидроразрыва через скважину 100 формируется трещина 104, затем посредством применения импульсного режима закачки жидкости гидроразрыва в трещине формируются кластеры (островки) 112 расклинивающего агента, между которыми образуются каналы 107. Увеличение глубины размещения завершающей порции расклинивающего агента от А до В приводит к увеличению площади контакта этой порции расклинивающего агента с остальной трещиной (от линии 110 до линии 111). При постоянной объемной скорости жидкости линейная скорость жидкости через единицу поверхности границы раздела меньше в случае линии 111.
Следующие подходы являются неограничивающими примерами изменения глубины размещения завершающей порции расклинивающего агента:
a) увеличение длины импульса закачки завершающей порции 109 расклинивающего агента. Другими словами, в завершающей фазе гидроразрыва можно закачать дополнительное количество расклинивающего агента от 5000-50000 л (сохранение неизменной его концентрации в жидкости желательно, но необязательно, т.е. возможно изменение концентрации в жидкости гидроразрыва, например, увеличение концентрации расклинивающего агента во время завершающего импульса закачки текучей среды гидроразрыва, содержащей расклинивающий агент возможно до 200-1800 г/л жидкости гидроразрыва).
b) закачка продавочной жидкости. Сохраняя неизменным количество и концентрацию расклинивающего агента в завершающей фазе гидроразрыва, обеспечивается возможность протолкнуть расклинивающий агент глубже в трещину путем закачки порции жидкости гидроразрыва, не содержащей расклинивающий агент, причем объем дополнительной закачки жидкости гидроразрыва, не содержащей расклинивающий агент после завершающего импульса закачки текучей среды гидроразрыва, содержащей расклинивающий агент, составляет от 1000 до 30000 л. Однако при этом существует вероятность возникновения рядом со стволом скважины зоны защемления.
Выбору расклинивающего агента для завершающей фазы гидроразрыва уделяют особое внимание, потому что применяемый в данной фазе расклинивающий агент препятствует движению жидкости и его проницаемость может оказать влияние на падение давления. Для того чтобы минимизировать эффект падения давления, используют следующий подход:
a) прежде всего, в завершающей фазе гидроразрыва используют высококачественные керамические расклинивающие агенты, такие как коммерчески доступные высокопрочные расклинивающие агенты (HSP - высокопрочный, ISP - средней прочности и LWP - легкий расклинивающий агент).
b) используют достаточно прочный расклинивающий агент, способный выдержать давление породы без дробления/раскрошения.
c) размер гранул расклинивающего агента для завершающей фазы гидроразрыва выбирают таким образом, чтобы минимизировать ущерб проводимости упаковки расклинивающего агента, наносимый частицами (или их обломками) расклинивающего агента или породы, выносимыми в ствол скважины на этапе добычи или отбора. В зависимости от распределения выносимых частиц по размерам следует использовать соответствующий способ выбора гранул расклинивающего агента для завершающей фазы гидроразрыва. Выносимые частицы проппанта - это частицы проппанта, закачанного в трещину, которые образуются за счет раскрашивания проппанта под действием давления породы
Причем выносимые частицы породы в данном случае это частицы породы, образовавшиеся во время гидроразрыва пласта (разрыв трещины, закачка проппанта) за счет раскалывания породы, откалывания при взаимодействии с проппантом; а также частицы, которые образуются на протяжении всего жизненного цикла трещины, за счет процессов эрозии породы.
Размер гранул расклинивающего агента для завершающей стадии выбирают таким образом, чтобы выносимые частицы (породы или раскрошившегося расклинивающего агента, из которого сформированы кластеры раслинивающего агента в трещине) удовлетворяли критерию: D>14*d, где D и d это 50-й перцентиль размеров гранул расклинивающего агента для завершающей стадии и размеров выносимых частиц соответственно, т.е. 50% частиц имеют размер не больше D (или d), а другие не меньше 50%.
Альтернативой и дополнением к вышеперечисленным подходам является использование расклинивающего агента с максимальным размером частиц, которые могут быть закачаны в данную конкретную скважину, используя данное конкретное оборудование, и который может быть закачан в данную скважину/трещину, что обеспечивает увеличение пор, образующихся в упаковке расклинивающего агента, закаченного на завершающей стадии, после закрытия трещины, что доступны, в завершающей фазе гидроразрыва. Это обеспечит максимальную вероятность прохождения выносимых частиц через упаковку из агента применяемого в завершающей фазе гидроразрыва, и следовательно, сводит к минимуму риск закупоривания этой упаковки.
Рекомендуется выбирать наибольший крупный размер расклинивающего агента (например, 6/10 (здесь и далее Американская шкала для измерения размера частиц), или 8/14). В данном случае наиболее крупным размером считаются частицы с максимальным размером, которые могут быть закачены в данную конкретную скважину и с использованием имеющегося оборудования. Например, если максимальный размер частиц, который может быть прокачан в данном случае 3 мм, то использовать частицы с размером 3 мм, или с размером 2,5 мм. В частности, могут использоваться частицы с размером гранул от 0,4 до 8 мм или 0,8-3,5 мм, или 1,2-2,4 мм, или 1,4-1,6 мм, или 1,50±0,01 мм.
Эффективность расклинивающего агента более выражена в случае более узкого распределения по размерам (например, агент с частицами размером 8/10 более эффективен, чем агент с частицами размером 8/14).
Узкое распределение здесь означает такое распределение, в котором частицы наиболее близки (однородны) к одному размеру. Следовательно, частицы с распределением 8/10 подходят более, чем с распределением 8/14. В распределении 8/10 размер пор в упаковке расклинивающего агента больше, чем в упаковке с распределением 8/14. Во-первых, потому что в 8/10 частицы крупнее; во-вторых, потому что частицы более однородны по размеру. Таким образом, упаковка частиц с распределением 8/10 пропускает выносимые частицы эффективнее, чем упаковка с распределением 8/14. Размеры 8/10 и 8/14 здесь приводятся для примера. Наиболее узкое распределение характеризует разницу между размерами наибольших и наименьших гранул проппанта не более 50%, или не более 25%, или еще не более 10%.
В предложенном изобретении выбирают частицы расклинивающего агента с асимметричным отношением ширины к толщине или длине, в частности не менее 1:2 (например, расклинивающий агент со стержневидными частицами);
В рамках завершающей фазы гидроразрыва обеспечивают формирование каналов (либо посредством НРРА, либо иным образом) в упаковке расклинивающего агента. Такое формирование каналов обеспечивают, по меньшей мере, одним из способов:
закачивают жидкость гидроразрыва с расклинивающим агентом и наполнителем, который со временем разложится и образует пустоты/каналы;
после закачки жидкости гидроразрыва с расклинивающим агентом закачивают жидкость с вязкостью меньшей, чем вязкость жидкости гидроразрыва. Менее вязкая жидкость проникает в более вязкую жидкость, разделяя расклинивающий агент на отдельные кластеры и образуя каналы, причем отношение вязкостей текучей среды гидроразрыва и текучей среды с меньшей вязкостью составляет 1:10-1:1000.
формируют каналы в уже размещенной упаковке расклинивающего агента за счет изменения формы волокон (распрямление/свертывание), добавленных в расклинивающий агент на стадии закачки.
Возможные примеры формирования каналов раскрыты в источниках информации «Способ гидроразрыва подземного пласта (варианты)» RU 2404359 или US 8,061,424 (В2) и «Неоднородное размещение в трещине расклинивающего агента с удаляемым каналообразующим наполнителем» US 7,581,590 (В2), патент № US 8,066,068 (B2).
Для добывающих скважин, а также скважин на этапе отработки (на этапе отбора из скважины жидкости закачанной во время гидроразрыва), снижение скорости жидкости обеспечивают путем искусственного ограничения объемной скорости добычи или отбора за счет частичного перекрывания канала добычи (отбора) на поверхности, например с помощью вентиля 113 на фиг. 1. Причем такое снижение может основываться на следующем отношении: произведение объемной скорости текучей среды (V) пласта/отработки (л/с) на вязкость (μ) текучей среды пласта/отработки (Па*с) не превышает 0,003 Па*л (например, не превышает 0,002 Па*л).
Другим способом снижения скорости добычи или отбора является увеличение участка трещины, занятого завершающей в рамках операций по гидроразрыву порцией жидкости гидроразрыва с расклинивающим агентом, которая не содержит каналов (для этого увеличивают длину импульса закачки завершающей порции расклинивающего агента).
Предложенная методика также может использоваться для нагнетания в трещины отработанного бурового раствора и бурового шлама при разработке месторождений скважинными системами, а также позволяет нагнетать жидкие промышленные отходы в пласты для захоронения. Причем на этапе нагнетания снижают объемную скорость нагнетаемой текучей среды так, чтобы произведение объемной скорости текучей среды пласта (V) (л/с) на вязкость μ (Па* с) нагнетаемой текучей среды не превышало 0,003 Па*л, например, не превышало 0,002 Па*л. Также возможно осуществлять снижение вязкости нагнетаемой текучей среды до 0,0003-0,001 Па*с, либо повышение температуры нагнетаемой текучей среды на поверхности 20-100°С.
В частности предложенная методика позволяет закачивать углекислый газ, предназначенный для утилизации в пласт. В случае использования этой методики для захоронения таких текучих сред, после завершения нагнетания текучей среды в пласт, предотвращают возврат нагнетаемой текучей среды обратно на поверхность, с целью захоронения в пласте нагнетаемой текучей среды. Такое прекращение поступления может быть реализовано посредством герметизации устья скважины либо закачки раствора, затвердевающего в пласте.
Хотя приведенное выше описание относится к способам для добычи нефти, тем не менее, применение этой методики также возможно для добычи и нагнетания других текучих сред (жидкостей или газов).
Описанные выше варианты осуществления не рассматриваются в качестве ограничения объема патентных притязаний изобретения. Для любого специалиста в данной области техники понятно, что есть возможность внести множество изменений в описанные выше методику и, без отхода от принципов изобретения, заявленного в формуле изобретения.
Хотя приведенное выше описание относится к способам для добычи нефти, тем не менее, применение этой методики также возможно для добычи и нагнетания других текучих сред (жидкостей или газов).
Описанные выше варианты осуществления не рассматриваются в качестве ограничения объема патентных притязаний изобретения. Для любого специалиста в данной области техники понятно, что есть возможность внести множество изменений в описанные выше методику и, без отхода от принципов изобретения, заявленного в формуле изобретения.

Claims (14)

1. Способ гидроразрыва пласта, пересекаемого стволом скважины, включающий этапы, на которых:
осуществляют закачивание в ствол скважины текучей среды гидроразрыва, не содержащей расклинивающий агент, с образованием трещины в пласте,
вводят в импульсном режиме в ствол скважины текучую среду гидроразрыва, причем импульсный режим закачки предусматривает наличие, по меньшей мере, одного импульса закачки текучей среды гидроразрыва, содержащей расклинивающий агент, и, по меньшей мере, одного импульса закачки текучей среды гидроразрыва, не содержащей расклинивающий агент,
причем во время импульса закачки текучей среды гидроразрыва, содержащей расклинивающий агент, дополнительно вводят укрепляющий и/или консолидирующий материал в текучую среду гидроразрыва, при этом увеличивают концентрацию укрепляющего и/или консолидирующего материала в импульсе закачки текучей среды гидроразрыва, содержащей расклинивающий агент,
при этом произведение объемной скорости текучей среды (V) гидроразрыва (л/с) на вязкость (μ) текучей среды гидроразрыва (Па*с) не превышает 0,003 Па*л при проведении гидроразрыва.
2. Способ по п. 1, в котором импульсный режим предусматривает наличие завершающего импульса закачки текучей среды гидроразрыва, содержащей расклинивающий агент, предназначенного для увеличения глубины размещения последней порции расклинивающего агента в трещине.
3. Способ по п. 1, в котором дополнительно увеличивают концентрацию расклинивающего агента до 200-1800 г/л текучей среды гидроразрыва.
4. Способ по п. 1, в котором увеличивают концентрацию укрепляющего и/или консолидирующего материала в текучей среде гидроразрыва в импульсе, содержащем расклинивающий агент от 5 до 500 г/л текучей среды гидроразрыва.
5. Способ по п. 1, в котором укрепляющий и/или консолидирующий материал представляет собой органические и неорганические волокна.
6. Способ по п. 1, в котором дополнительно вводят в текучую среду гидроразрыва деформируемый наполнитель в импульсы закачки текучей среды гидроразрыва, содержащей расклинивающий агент.
7. Способ по п. 6, в котором в качестве деформируемого наполнителя используют частицы металла, смолы, резины, скорлупы орехов или их комбинации.
8. Способ по п. 6, в котором частицы деформируемого наполнителя имеют линейный размер 20-1000 мкм.
9. Способ по п. 1, в котором во время импульса закачки текучей среды гидроразрыва, содержащей расклинивающий агент, используют расклинивающий агент с покрытием.
10. Способ по п. 1, в котором соотношение между длительностью импульса закачки текучей среды гидроразрыва, содержащей расклинивающий агент, и длительностью импульса закачки текучей среды гидроразрыва, не содержащей расклинивающий агент, составляет от 1:1,2 до 1:5.
RU2016147112A 2014-06-30 2014-06-30 Способ планирования эксплуатационных и нагнетательных скважин RU2688700C2 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2014/000473 WO2016003303A1 (ru) 2014-06-30 2014-06-30 Способ планирования эксплуатационных и нагнетательных скважин

Publications (3)

Publication Number Publication Date
RU2016147112A3 RU2016147112A3 (ru) 2018-07-30
RU2016147112A RU2016147112A (ru) 2018-07-30
RU2688700C2 true RU2688700C2 (ru) 2019-05-22

Family

ID=55019696

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016147112A RU2688700C2 (ru) 2014-06-30 2014-06-30 Способ планирования эксплуатационных и нагнетательных скважин

Country Status (7)

Country Link
US (1) US10240082B2 (ru)
AU (1) AU2014399993B2 (ru)
CA (1) CA2953923A1 (ru)
MX (1) MX387900B (ru)
RU (1) RU2688700C2 (ru)
SA (1) SA516380616B1 (ru)
WO (1) WO2016003303A1 (ru)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017188842A1 (ru) 2016-04-29 2017-11-02 Шлюмберже Канада Лимитед Способ гидроразрыва пласта с использованием нестандартного проппанта
US10067230B2 (en) * 2016-10-31 2018-09-04 Gerard Dirk Smits Fast scanning LIDAR with dynamic voxel probing
US10100245B1 (en) 2017-05-15 2018-10-16 Saudi Arabian Oil Company Enhancing acid fracture conductivity
US10655443B2 (en) * 2017-09-21 2020-05-19 Saudi Arabian Oil Company Pulsed hydraulic fracturing with geopolymer precursor fluids
US20190177606A1 (en) * 2017-12-08 2019-06-13 Saudi Arabian Oil Company Methods and materials for generating conductive channels within fracture geometry
WO2021046294A1 (en) 2019-09-05 2021-03-11 Saudi Arabian Oil Company Propping open hydraulic fractures
US11352548B2 (en) 2019-12-31 2022-06-07 Saudi Arabian Oil Company Viscoelastic-surfactant treatment fluids having oxidizer
CN111808582A (zh) * 2020-08-07 2020-10-23 西南石油大学 钻井液用堵漏剂及其制备方法
US11867028B2 (en) 2021-01-06 2024-01-09 Saudi Arabian Oil Company Gauge cutter and sampler apparatus
US11585176B2 (en) 2021-03-23 2023-02-21 Saudi Arabian Oil Company Sealing cracked cement in a wellbore casing
US12071589B2 (en) 2021-10-07 2024-08-27 Saudi Arabian Oil Company Water-soluble graphene oxide nanosheet assisted high temperature fracturing fluid
US11867012B2 (en) 2021-12-06 2024-01-09 Saudi Arabian Oil Company Gauge cutter and sampler apparatus
US12025589B2 (en) 2021-12-06 2024-07-02 Saudi Arabian Oil Company Indentation method to measure multiple rock properties
US12012550B2 (en) 2021-12-13 2024-06-18 Saudi Arabian Oil Company Attenuated acid formulations for acid stimulation
US12203366B2 (en) 2023-05-02 2025-01-21 Saudi Arabian Oil Company Collecting samples from wellbores
WO2024259409A1 (en) * 2023-06-16 2024-12-19 Schlumberger Technology Corporation A method for hydraulic fracturing of conventional and unconventional reservoirs by introducing energized fluid

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004005671A1 (en) * 2002-07-09 2004-01-15 Schlumberger Canada Limited Compositions and methods for treating a subterranean formation
RU2312212C1 (ru) * 2006-11-24 2007-12-10 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ разработки залежи нефти с карбонатным коллектором
RU2404359C2 (ru) * 2006-01-27 2010-11-20 Шлюмберже Текнолоджи Б.В. Способ гидроразрыва подземного пласта (варианты)
WO2011081546A1 (en) * 2009-12-30 2011-07-07 Schlumberger Canada Limited A method of fluid slug consolidation within a fluid system in downhole applications
RU2453694C1 (ru) * 2011-09-06 2012-06-20 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ гидроразрыва пласта
RU2484243C2 (ru) * 2007-07-03 2013-06-10 Шлюмберже Текнолоджи Б.В. Способ гетерогенного размещения расклинивающего наполнителя в трещине гидроразрыва разрываемого слоя

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3066118A (en) 1958-05-08 1962-11-27 Goodrich Co B F Cross-linked carboxylic polymers of triallyl cyanurate and alkenoic acids
US3426004A (en) 1965-01-13 1969-02-04 Goodrich Co B F Crosslinked acrylic acid interpolymers
US3951926A (en) 1974-08-05 1976-04-20 Monsanto Company Cross-linked ethylene-maleic anhydride interpolymers
WO2001094744A1 (en) 2000-06-06 2001-12-13 T R Oil Services Limited Microcapsule well treatment
US6776235B1 (en) 2002-07-23 2004-08-17 Schlumberger Technology Corporation Hydraulic fracturing method
US7044220B2 (en) 2003-06-27 2006-05-16 Halliburton Energy Services, Inc. Compositions and methods for improving proppant pack permeability and fracture conductivity in a subterranean well
AU2005233167A1 (en) 2004-04-12 2005-10-27 Carbo Ceramics, Inc. Coating and/or treating hydraulic fracturing proppants to improve wettability, proppant lubrication, and/or to reduce damage by fracturing fluids and reservoir fluids
US7325608B2 (en) 2004-12-01 2008-02-05 Halliburton Energy Services, Inc. Methods of hydraulic fracturing and of propping fractures in subterranean formations
US7281581B2 (en) 2004-12-01 2007-10-16 Halliburton Energy Services, Inc. Methods of hydraulic fracturing and of propping fractures in subterranean formations
AU2006294332B2 (en) 2005-09-23 2013-01-31 Trican Well Service Ltd. Slurry compositions and methods for making same
US8082994B2 (en) 2006-12-05 2011-12-27 Halliburton Energy Services, Inc. Methods for enhancing fracture conductivity in subterranean formations
US7581590B2 (en) 2006-12-08 2009-09-01 Schlumberger Technology Corporation Heterogeneous proppant placement in a fracture with removable channelant fill
US7451812B2 (en) * 2006-12-20 2008-11-18 Schlumberger Technology Corporation Real-time automated heterogeneous proppant placement
US8960293B2 (en) 2007-05-30 2015-02-24 Schlumberger Technology Corporation Method of propping agent delivery to the well
US9080440B2 (en) 2007-07-25 2015-07-14 Schlumberger Technology Corporation Proppant pillar placement in a fracture with high solid content fluid
RU2376455C2 (ru) 2007-11-09 2009-12-20 Закрытое акционерное общество "РЕНФОРС" Способ реагентно-импульсно-имплозионной обработки призабойной зоны пласта, установка для его осуществления, депрессионный генератор импульсов
WO2009096805A1 (en) 2008-01-31 2009-08-06 Schlumberger Canada Limited Method of hydraulic fracturing of horizontal wells, resulting in increased production
US9945220B2 (en) * 2008-10-08 2018-04-17 The Lubrizol Corporation Methods and system for creating high conductivity fractures
US9279077B2 (en) 2012-11-09 2016-03-08 Halliburton Energy Services, Inc. Methods of forming and placing proppant pillars into a subterranean formation
US9523268B2 (en) 2013-08-23 2016-12-20 Schlumberger Technology Corporation In situ channelization method and system for increasing fracture conductivity
US20180044576A1 (en) 2015-03-03 2018-02-15 Schlumberger Technology Corporation Stabilized pillars for hydraulic fracturing field of the disclosure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004005671A1 (en) * 2002-07-09 2004-01-15 Schlumberger Canada Limited Compositions and methods for treating a subterranean formation
RU2404359C2 (ru) * 2006-01-27 2010-11-20 Шлюмберже Текнолоджи Б.В. Способ гидроразрыва подземного пласта (варианты)
RU2312212C1 (ru) * 2006-11-24 2007-12-10 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ разработки залежи нефти с карбонатным коллектором
RU2484243C2 (ru) * 2007-07-03 2013-06-10 Шлюмберже Текнолоджи Б.В. Способ гетерогенного размещения расклинивающего наполнителя в трещине гидроразрыва разрываемого слоя
WO2011081546A1 (en) * 2009-12-30 2011-07-07 Schlumberger Canada Limited A method of fluid slug consolidation within a fluid system in downhole applications
RU2453694C1 (ru) * 2011-09-06 2012-06-20 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ гидроразрыва пласта

Also Published As

Publication number Publication date
AU2014399993B2 (en) 2019-07-11
MX2016016569A (es) 2017-04-25
SA516380616B1 (ar) 2021-10-11
RU2016147112A3 (ru) 2018-07-30
US10240082B2 (en) 2019-03-26
CA2953923A1 (en) 2016-01-07
MX387900B (es) 2025-03-19
RU2016147112A (ru) 2018-07-30
US20170121593A1 (en) 2017-05-04
WO2016003303A1 (ru) 2016-01-07
AU2014399993A1 (en) 2017-01-05

Similar Documents

Publication Publication Date Title
RU2688700C2 (ru) Способ планирования эксплуатационных и нагнетательных скважин
US7644761B1 (en) Fracturing method for subterranean reservoirs
US7559373B2 (en) Process for fracturing a subterranean formation
US8596362B2 (en) Hydraulic fracturing methods and well casing plugs
US8061427B2 (en) Well product recovery process
AU2010205479B2 (en) Methods of setting particulate plugs in horizontal well bores using low-rate slurries
CN104712303B (zh) 最小化压裂处理中支撑剂的过度驱替的方法
US10267133B2 (en) Systems and methods for fracturing a subterranean formation
MXPA05000443A (es) Metodo de fracturacion hidraulica de formacion subterranea.
WO2010068128A1 (en) Hydraulic fracture height growth control
CN101539007A (zh) 磨料喷射装置及磨料射流射孔、分层压裂方法
CN103080469A (zh) 以用于增强裂缝网连通性的应力卸荷进行非常规气藏模拟的方法
US20180298272A1 (en) Polymeric and elastomeric proppant placement in hydraulic fracture network
US11008844B2 (en) Method for hydraulic fracturing (variants)
CA2997709A1 (en) Enhancing propped complex fracture networks in subterranean formations
CN112253074B (zh) 一种深层水平井压裂提高桥塞泵送效率的方法
RU2608380C1 (ru) Способ гидроразрыва подземного пласта
Humoodi et al. Implementation of Hydraulic Fracturing Operation for a Reservoir in KRG
CA2517497C (en) Well product recovery process
RU2759247C1 (ru) Способ проведения многостадийного гидроразрыва пласта в условиях тонких перемычек
Chuprakov et al. SPE-203879-MS
RU2464410C1 (ru) Способ крепления призабойной зоны пласта с неустойчивыми породами
WO2024137707A9 (en) Flushing of injection wellbore for slurried waste
Gu et al. A Practical and Economic Fracturing Solution for Low Permeability Shallow Reservoirs
Farhutdinova Analysis of the influence of geological and technological parameters of wells and hydraulic fracturing on its efficiency