[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

RU2681074C1 - Способ производства коррозионностойкого проката из низколегированной стали - Google Patents

Способ производства коррозионностойкого проката из низколегированной стали Download PDF

Info

Publication number
RU2681074C1
RU2681074C1 RU2018118729A RU2018118729A RU2681074C1 RU 2681074 C1 RU2681074 C1 RU 2681074C1 RU 2018118729 A RU2018118729 A RU 2018118729A RU 2018118729 A RU2018118729 A RU 2018118729A RU 2681074 C1 RU2681074 C1 RU 2681074C1
Authority
RU
Russia
Prior art keywords
temperature
rolling
steel
thickness
followed
Prior art date
Application number
RU2018118729A
Other languages
English (en)
Inventor
Николай Владимирович Филатов
Алексей Андреевич Огольцов
Сергей Иванович Новоселов
Original Assignee
Публичное акционерное общество "Северсталь" (ПАО "Северсталь")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "Северсталь" (ПАО "Северсталь") filed Critical Публичное акционерное общество "Северсталь" (ПАО "Северсталь")
Priority to RU2018118729A priority Critical patent/RU2681074C1/ru
Application granted granted Critical
Publication of RU2681074C1 publication Critical patent/RU2681074C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Изобретение относится к области металлургии, в частности к производству термически обработанного листового проката из штрипсовых сталей, предназначенных для изготовления электросварных нефтегазопроводных и нефтепромысловых труб, используемых в условиях пониженных температур для транспортировки агрессивных сред. Для повышения хладостойкости и коррозионной стойкости листового проката толщиной 10-30 мм получают сляб из стали, содержащей, мас. %: углерод 0,10-0,20, марганец 0,5-1,0, кремний 0,01-0,40, хром 0,05- 0,40, никель 0,05-0,40, медь 0,05-0,40, ниобий 0,01-0,08, фосфор не более 0,020, серу не более 0,006, алюминий 0,01-0,06, железо и неизбежные примеси - остальное, проводят черновую прокатку до промежуточной толщины, затем чистовую прокатку при температуре конца прокатки равной Ar+(20÷80)°С с последующим охлаждением на воздухе, листовой прокат нагревают до Ас+(10÷50)°С с выдержкой 2h мин/мм, где h - толщина проката, с последующим ускоренным охлаждением со скоростью 15÷70°С/с до температуры не более 40°С, после чего прокат подвергают повторному нагреву до температуры 700÷750°С с выдержкой (1,0÷4,5)h, при этом обеспечивается мелкодисперсная феррито-бейнитная структура с баллом зерна феррита не крупнее 9 и ферритной полосчатостью 0 баллов и имеет чистоту по коррозионно-активным неметаллическим включениям не более 2-х включений на 1 мм. 1 з.п. ф-лы, 3 табл.

Description

Изобретение относится к металлургии, в частности к производству термически обработанного листового проката из штрипсовых сталей, предназначенных для изготовления электросварных нефтегазопроводных и нефтепромысловых труб, используемых в условиях пониженных температур для транспортировки агрессивных сред, содержащих повышенную концентрацию сероводорода, большую долю водной составляющей и взвесей.
Для изготовления вышеуказанного сортамента используют горячекатаные листы толщиной 10-30 мм из низколегированной свариваемой стали повышенной хладостойкости и коррозионной стойкости.
Figure 00000001
Известен способ производства листового проката, включающий выплавку низкоуглеродистой низколегированной стали, получение заготовки, предварительную и окончательную деформации в реверсивном режиме, контролируемое охлаждение проката, отпуск и окончательное охлаждение на воздухе до температуры окружающей среды, при этом контролируемое охлаждение проката осуществляют с температуры конца деформации, находящейся в интервале (Ас3+20)÷(Ас3+40)°С, до температуры 530-570°С со скоростью 30-40°С/сек, а отпуск проводят при температуре 665-695°С с выдержкой 0,2-4,0 мин/мм, а сталь выплавляют следующего химического состава при соотношении ингредиентов, мас. %: углерод 0,07-0,15; кремний 0,50-0,70; марганец 0,50-0,70; ванадий 0,04-0,12; хром не более 0,70; молибден не более 0,25; ниобий не более 0,08; никель не более 0,30; титан не более 0,03; алюминий 0,02-0,05; сера не более 0,005; фосфор не более 0,015; железо и неизбежные примеси - остальное (патент РФ №2430978, C21D 9/46, 2011).
Недостатком данного способа является то, что металлопрокат, произведенный по нему, имеет повышенную плостность коррозионно активных неметаллических включений, в результате чего прокат (трубы) имеют «обычные» показатели стойкости против локальной коррозии, что не дает никаких преимуществ по коррозионной стойкости над прокатом из обычных, рядовых марок сталей типа 17Г1С.
Наиболее близким является способ производства низколегированного хладостойкого свариваемого листового проката повышенной коррозионной стойкости, включающий выплавку стали, непрерывную разливку в слябы, нагрев слябов и горячую прокатку, отличающийся тем, что выплавляют сталь следующего химического состава, мас. %: углерод - 0,06-0,12, марганец - 0,30-0,60, кремний - 0,15-0,60, азот - не более 0,008, алюминий - 0,02-0,05, хром - не более 1,0, никель -не более 0,30, молибден - 0,08-0,20, ванадий - 0,04-0,10, кальций - 0,001-0,006, медь - не более 0,30, титан - не более 0,03, ниобий - не более 0,04, сера - не более 0,003, фосфор - не более 0,012, бор - не более 0,0005, железо - остальное, при этом
Сэ=C+Mn/6+(Cr+V+Nb+Ti)/5+(Ni+Cu)/15≤0,43%,
Pcm=C+(Mn+Cu+Cr)/20+Si/30+Ni/60+V/10+Мо/15+5В≤0,26%, V+Nb+Ti≤0,15%, где Сэ - углеродный эквивалент, %; С, Mn, Cr, V, Nb, Ti, Ni, Cu, Si, Mo, В - содержание в стали углерода, марганца, хрома, ванадия, ниобия, титана, никеля, меди, кремния, молибдена, бора, в мас. %, Pcm - коэффициент трещиностойкости, %, при этом сталь после выплавки подвергают внепечной обработке и вакуумированию для обеспечения массовой доли водорода и кислорода не более 2 и 25 ppm соответственно, балла неметаллических включений не более 2,5 по среднему и не более 3,0 по максимальному значению, а суммарное содержание мышьяка, свинца, цинка, олова, сурьмы, висмута - не более 0,020%, листовой прокат после прокатки и охлаждения подвергают дополнительному нагреву под закалку до температуры Ас3÷(Ас3+50)°С и отпуску, температуру которого назначают в зависимости от толщины проката в интервале 680÷730°С, при этом в прокате обеспечивают полосчатость не более 2 балла (патент РФ №2569619, C21D 9/46, 2015).
Недостаток данного способа состоит в том, что он не обеспечивает в прокате отсутствие полосчатости, чистоту по коррозионно-активным неметаллическим включениям и количество вязкой составляющей в образцах ИПГ при - 20°С.
Техническим результатом изобретения является обеспечение хладостойкости при -30°С не менее 150Дж/см2, отношения предела текучести к временному сопротивлению не более 0,89, чистоты стали по коррозионно-активным неметаллическим включениям и коррозионной стойкости в сероводородной среде.
Технический результат достигается тем, что в способе производства коррозионностойкого проката из низколегированной стали, включающем нагрев, черновую прокатку до промежуточной толщины, чистовую прокатку с регламентированной температурой конца прокатки, согласно изобретению, выплавляют сталь, которая имеет следующее соотношение компонентов, мас. %: углерод - 0,10-0,20, марганец - 0,5-1,0, кремний - 0,01-0,40, хром - 0,05- 0,40, никель - 0,05-0,40, медь - 0,05-0,40, ниобий - 0,01-0,08, фосфор - не более 0,020, серу - не более 0,006, алюминий - 0,01-0,06, железо и неизбежные примеси - остальное, при этом деформацию завершают при температуре Ar3+(20÷80)°С с последующим охлаждением на воздухе, затем прокат подвергают нагреву до температуры Ас3+(10÷50)°С с выдержкой 2xh мин/мм, где h - толщина проката, с последующим ускоренным охлаждением со скоростью 15÷70°С/сек. до температуры не более 40°С, после чего прокат подвергается повторному нагреву до температуры 700÷750°С с выдержкой (1,0÷4,5) xh, при этом обеспечивается мелкодисперсная феррито-бейнитная структура с балом зерна феррита не крупнее 9 и ферритной полосчатостью 0 балла и имеет чистоту по коррозионно-активным неметаллическим включениям не более 2-х включений на 1 мм2. Кроме того, что прокат из низколегированной стали обладает повышенной хладостойкостью (ударная вязкость KCV-30 не менее 200дж/см2), доля вязкой составляющей при испытании падающим грузом не менее 60%, обеспечивается коррозионной стойкостью к водородному растрескиванию CLR≤6%, CTR≤3%.
Рассмотрим влияние химического состава.
Углерод в стали предложенного состава определяет ее прочностные свойства. Снижение содержания углерода менее 0,10% приводит к падению прочности ниже допустимого уровня. Увеличение содержания углерода сверх 0,20% ухудшает пластичность и вязкость стали. Кроме того, данное содержание углерода способствует получению регламентированного отношения временного сопротивления к пределу текучести не более 0,89.
Марганец введен для повышения прочности стали, связывания примесной серы в сульфиды. При содержании марганца менее 0,50% снижается прочность стали и вязкость при отрицательных температурах. Повышение концентрации марганца сверх 1,0% ухудшает пластичность стали, снижает хладостойкость и повышает отношение σт/σв более 0,89.
Кремний раскисляет и упрочняет сталь, повышает ее упругие свойства. При содержании кремния менее 0,01% прочность стали недостаточна. Увеличение содержания кремния более 0,4% приводит к возрастанию количества силикатных неметаллических включений, охрупчивает сталь, ухудшает ее пластичность.
Хром, никель и медь способствуют повышению прочностных свойств и стойкости против коррозии, но при содержании Ni и Cu более 0,40% имеет место снижение хладостойкости стали при отрицательных температурах и повышение себестоимости.
Содержании Nb в диапазоне 0,01÷0,08% способствует формированию мелкодисперсной феррито-бейнитной структуры, сдерживанию роста зерна при нагреве, последующей прокатке и термообработке.
Сера является вредной примесью, снижающей пластические и вязкостные свойства. При концентрации серы не более 0,006% ее вредное действие проявляется слабо и не приводит к заметному снижению механических свойств стали. В то же время более глубокое удаление серы удорожает сталь, снижает экономические показатели производства.
Фосфор в количестве не более 0,020% целиком растворяется в α-железе, что ведет к упрочнению металлической матрицы. Однако увеличение содержания фосфора более 0,020% вызывает охрупчивание стали и снижение хладостойкости.
Алюминий является раскисляющим и модифицирующим элементом. При содержании алюминия менее 0,01% его воздействие проявляется слабо, сталь имеет низкие механические свойства. Увеличение содержания алюминия более 0,06% приводит к повышенному содержанию неметаллических включений что приводит к образованию дефектов при проведении сварочных работ и испытаниях на ударную вязкость и падающим грузом.
Завершение деформации при температуре Ar3+(20÷80)°С с последующим охлаждением на воздухе направлено на получение предварительной структуры, которая послужит основой для конечной требуемой структуры, которая будет сформирована в результате двойной термообработки: нагрева до температуры Ас3+(10÷50)°С с выдержкой 2xh мин/мм, где h - толщина проката, с последующим ускоренным охлаждением со скоростью 15÷70°С/сек. до температуры не более 40°С и нагрева до температуры 700÷750°С с выдержкой (1,0÷4,5) xh. Применение термоулучшения (закалка + отпуск) направлено на получение мелкодисперсной однородной феррито-бейнитной структуры с балом зерна феррита не крупнее 9. Кроме того, нагрев под закалку выше Ас3 способствует устранению ферритной полосчатости, которая наследуется от литого сляба и усугубляется при последующей горячей прокатке и отрицательно влияет на коррозионную стойкость в среде сероводорода.
Чистота стали по коррозионно-активным неметаллическим включениям не более 2-х включений на 1 мм2 обеспечивает повышенную стойкость проката (труб) к локальной коррозии и гарантируется пониженными содержаниями серы и марганца, а также мелкое зерно итоговой структуры проката.
Сочетание химического состава с режимами прокатки и термической обработки направлены на обеспечение повышенной хладостойкости (ударная вязкость KCV-30 не менее 200дж/см2). При этом доля вязкой составляющей при испытании падающим грузом гарантируется на уровне не менее 60%.
Пример реализации.
Сталь выплавляли в кислородном конвертере с последующей разливкой в непрерывно литые слябы. Химический состав сталей с различным содержанием легирующих элементов и примесей приведен в таблице 2.
Слябы подвергали горячей прокатке на реверсивном стане 2800 в листы толщиной 8-20 мм с температурой конца прокатки Ткп =Ar3+(20÷80)°С с последующим охлаждением на воздухе.
После прокатки листы подвергали термообработке: нагреву до температуры Ас3+(10÷50)°С с выдержкой 2xh мин/мм, где h - толщина проката, с последующим ускоренным охлаждением со скоростью 15÷70°С/сек до температуры не более 40°С повторному нагреву до температуры 700÷750°С с выдержкой (1,0÷4,5) xh с охлаждением на воздухе.
В таблицах 2 и 3 приведены различные режимы производства горячекатаных полос и механические свойства по результатам производства.
Как следует из таблиц 2 и 3 при реализации предложенного способа горячекатаные полосы (составы № 2, 3, 4) имеют повышенную коррозионную стойкость, хладостойкость (ударную вязкость при отрицательных температурах).
В случаях запредельных значений заявленных параметров (составы № 1 и 5), коррозионная стойкость и хладостойкость в стали ухудшаются.
Описанная технология производства обеспечивает получение мелкозернистой равномерной микроструктуры имеющей балл зерна феррита не крупнее 9.
Figure 00000002

Claims (14)

1. Способ производства коррозионностойкого проката из низколегированной стали, включающий нагрев, черновую прокатку до промежуточной толщины, чистовую прокатку с регламентированной температурой конца прокатки, отличающийся тем, что сталь имеет следующее соотношение компонентов, мас. %:
углерод - 0,10-0,20;
марганец - 0,5-1,0;
кремний - 0,01-0,40;
хром - 0,05-0,40;
никель - 0,05-0,40;
медь - 0,05-0,40;
ниобий - 0,01-0,08;
фосфор - не более 0,020;
серу - не более 0,006;
алюминий - 0,01-0,06;
железо и неизбежные примеси - остальное,
деформацию завершают при температуре Аr3+(20÷80)°С с последующим охлаждением на воздухе, прокат подвергают нагреву до температуры Ас3+(10÷50)°С с выдержкой 2×h мин/мм, где h - толщина проката, с последующим ускоренным охлаждением со скоростью 15÷70°С/с до температуры не более 40°С, после чего прокат подвергается повторному нагреву до температуры 700÷750°С с выдержкой (1,0÷4,5)×h, при этом обеспечивается мелкодисперсная феррито-бейнитная структура с баллом зерна феррита не крупнее 9 и ферритной полосчатостью 0 баллов и имеет чистоту по коррозионно-активным неметаллическим включениям не более 2-х включений на 1 мм2.
2. Способ по п. 1, отличающийся тем, что прокат из низколегированной стали обладает повышенной хладостойкостью, при которой ударная вязкость KCV-30 составляет не менее 150 Дж/см2, доля вязкой составляющей при испытании падающим грузом - не менее 60%, при этом обладает коррозионной стойкостью к водородному растрескиванию CLR≤6%, CTR≤3%.
RU2018118729A 2018-05-21 2018-05-21 Способ производства коррозионностойкого проката из низколегированной стали RU2681074C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018118729A RU2681074C1 (ru) 2018-05-21 2018-05-21 Способ производства коррозионностойкого проката из низколегированной стали

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018118729A RU2681074C1 (ru) 2018-05-21 2018-05-21 Способ производства коррозионностойкого проката из низколегированной стали

Publications (1)

Publication Number Publication Date
RU2681074C1 true RU2681074C1 (ru) 2019-03-01

Family

ID=65632930

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018118729A RU2681074C1 (ru) 2018-05-21 2018-05-21 Способ производства коррозионностойкого проката из низколегированной стали

Country Status (1)

Country Link
RU (1) RU2681074C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2731223C1 (ru) * 2019-06-26 2020-08-31 Публичное акционерное общество "Магнитогорский металлургический комбинат" Высокопрочная свариваемая хладостойкая сталь и изделие, выполненное из нее
CN115491602A (zh) * 2022-09-19 2022-12-20 江苏省产品质量监督检验研究院 一种防腐蚀细晶粒化热轧钢筋及其生产方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2390568C1 (ru) * 2009-07-07 2010-05-27 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Способ производства толстолистового низколегированного штрипса
WO2014148013A1 (ja) * 2013-03-19 2014-09-25 Jfeスチール株式会社 硬質冷延鋼板およびその製造方法
US20140352850A1 (en) * 2012-02-13 2014-12-04 Nippon Steel & Sumitomo Metal Corporation Cold-rolled steel sheet, plated steel sheet, and method for manufacturing the same
RU2569619C1 (ru) * 2014-05-22 2015-11-27 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства низколегированного хладостойкого свариваемого листового проката повышенной коррозионной стойкости
RU2583973C1 (ru) * 2015-02-10 2016-05-10 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ производства толстолистовой трубной стали
RU2633684C1 (ru) * 2016-12-08 2017-10-16 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства горячекатаных листов из низколегированной стали

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2390568C1 (ru) * 2009-07-07 2010-05-27 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Способ производства толстолистового низколегированного штрипса
US20140352850A1 (en) * 2012-02-13 2014-12-04 Nippon Steel & Sumitomo Metal Corporation Cold-rolled steel sheet, plated steel sheet, and method for manufacturing the same
WO2014148013A1 (ja) * 2013-03-19 2014-09-25 Jfeスチール株式会社 硬質冷延鋼板およびその製造方法
RU2569619C1 (ru) * 2014-05-22 2015-11-27 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства низколегированного хладостойкого свариваемого листового проката повышенной коррозионной стойкости
RU2583973C1 (ru) * 2015-02-10 2016-05-10 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ производства толстолистовой трубной стали
RU2633684C1 (ru) * 2016-12-08 2017-10-16 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства горячекатаных листов из низколегированной стали

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2731223C1 (ru) * 2019-06-26 2020-08-31 Публичное акционерное общество "Магнитогорский металлургический комбинат" Высокопрочная свариваемая хладостойкая сталь и изделие, выполненное из нее
CN115491602A (zh) * 2022-09-19 2022-12-20 江苏省产品质量监督检验研究院 一种防腐蚀细晶粒化热轧钢筋及其生产方法

Similar Documents

Publication Publication Date Title
JP6285462B2 (ja) 780MPa級冷間圧延二相帯鋼及びその製造方法
US20160168672A1 (en) High-strength steel material for oil well and oil well pipes
KR20120099505A (ko) 가공성 및 내충격 특성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법
JP6212473B2 (ja) 高強度ばね用圧延材及びこれを用いた高強度ばね用ワイヤ
RU2569619C1 (ru) Способ производства низколегированного хладостойкого свариваемого листового проката повышенной коррозионной стойкости
WO2014157576A1 (ja) フェライト系ステンレス熱延鋼板とその製造方法及び鋼帯
JP2014019928A (ja) 高強度冷延鋼板および高強度冷延鋼板の製造方法
JP7339339B2 (ja) 冷間加工性及びssc抵抗性に優れた超高強度鋼材及びその製造方法
WO2015060311A1 (ja) 絞り加工性と浸炭熱処理後の表面硬さに優れる熱延鋼板
JP2016191150A (ja) 靭性に優れたステンレス鋼板およびその製造方法
JP5195413B2 (ja) 曲げ加工性及び靭性の異方性に優れた高強度熱延鋼板及びその製造方法
KR101539520B1 (ko) 2상 스테인리스강
RU2578618C1 (ru) Способ производства полос из низколегированной свариваемой стали
JP4676923B2 (ja) 耐食性および溶接強度に優れた高強度高延性溶融亜鉛めっき鋼板およびその製造方法
JPWO2020166538A1 (ja) 高Mn鋼およびその製造方法
CN111433382B (zh) 具有优异的抗高温氧化性的铁素体不锈钢及其制造方法
JPWO2015151519A1 (ja) 高張力鋼板およびその製造方法
JP5874664B2 (ja) 落重特性に優れた高張力鋼板およびその製造方法
RU2681074C1 (ru) Способ производства коррозионностойкого проката из низколегированной стали
US9816163B2 (en) Cost-effective ferritic stainless steel
JP6492869B2 (ja) 溶接性と加工性に優れた高強度冷延鋼板とその製造方法
JP2018009231A (ja) 製造性と耐食性に優れた刃物用マルテンサイト系ステンレス鋼板
JP2000256777A (ja) 強度および低温靱性に優れた高張力鋼板
JP2023507528A (ja) 低炭素低コスト超高強度多相鋼板/鋼帯およびその製造方法
JP7096337B2 (ja) 高強度鋼板及びその製造方法