RU2658699C1 - Способ измерения продукции нефтяной скважины - Google Patents
Способ измерения продукции нефтяной скважины Download PDFInfo
- Publication number
- RU2658699C1 RU2658699C1 RU2017125888A RU2017125888A RU2658699C1 RU 2658699 C1 RU2658699 C1 RU 2658699C1 RU 2017125888 A RU2017125888 A RU 2017125888A RU 2017125888 A RU2017125888 A RU 2017125888A RU 2658699 C1 RU2658699 C1 RU 2658699C1
- Authority
- RU
- Russia
- Prior art keywords
- separator
- liquid
- gas
- siphon
- oil
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 title claims abstract description 17
- 239000003129 oil well Substances 0.000 title claims abstract description 12
- 239000007788 liquid Substances 0.000 claims abstract description 64
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 25
- 230000002706 hydrostatic effect Effects 0.000 claims abstract description 12
- 239000012071 phase Substances 0.000 claims abstract description 11
- 230000001174 ascending effect Effects 0.000 claims abstract description 8
- 239000012530 fluid Substances 0.000 claims abstract description 8
- 238000000926 separation method Methods 0.000 claims abstract description 7
- 230000007812 deficiency Effects 0.000 claims abstract description 4
- 239000007791 liquid phase Substances 0.000 claims abstract description 3
- 230000007423 decrease Effects 0.000 claims description 4
- 238000005070 sampling Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 235000019198 oils Nutrition 0.000 description 24
- 238000005259 measurement Methods 0.000 description 13
- 238000009434 installation Methods 0.000 description 7
- 235000019476 oil-water mixture Nutrition 0.000 description 3
- 239000003209 petroleum derivative Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/34—Arrangements for separating materials produced by the well
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/10—Locating fluid leaks, intrusions or movements
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geophysics (AREA)
- Measuring Volume Flow (AREA)
Abstract
Изобретение относится к нефтяной промышленности и может быть использовано для определения газового фактора нефти, а также дебитов нефти и воды нефтяных скважин. Технический результат заключается в обеспечении возможности измерения дебита жидкости при малом содержании свободного нефтяного газа или его отсутствия в измеряемой продукции. Способ измерения продукции нефтяной скважины включает поступление продукции нефтяной скважины в сепаратор с калиброванной частью, разделение ее на газовую и жидкую фазы, последовательный отбор газа и жидкости соответственно из верхней и нижней точек сепаратора, измерение дебита жидкости по скорости наполнения калиброванной части сепаратора, а дебита газа – по скорости ее опорожнения, а также плотности продукции в калиброванной части сепаратора с помощью датчиков гидростатического перепада давления, установленных на разных уровнях калиброванной части сепаратора. В условиях дефицита свободной газовой фазы в продукции скважины циклические опорожнения сепаратора от жидкости после ее заполнений производят с помощью сифонной трубки, восходящую линию которой соединяют с нижней точкой калиброванной части сепаратора, а нисходящую – с напорной линией скважины, и заряжающейся при достижении уровнем жидкости в сепарационной емкости крайней верхней точки трубки сифона, а срывающего свою работу при достижении уровнем жидкости в сепараторе точки ее отбора сифоном. Точку отбора жидкости из емкости сифоном располагают непосредственно под нижним датчиком, а верхнюю точку трубки сифона – непосредственно над верхним датчиком гидростатического давления. Объемный расход жидкости, сливаемый через сифон, поддерживают превышающим объемный расход поступающей жидкости в сепаратор регулированием дросселя на нисходящей линии сифона. 1 ил.
Description
Предлагаемое изобретение относится к нефтяной промышленности и может быть использовано для определения газового фактора нефти, а также дебитов нефти и воды нефтяных скважин.
Измерение продукции нефтяных скважин в большинстве случаев производится автоматизированными групповыми замерными установками стационарного или передвижного типа. Известна установка для измерения нефти, газа и воды в продукции нефтяной скважины /патент RU №168317 U1. Установка для измерения продукции нефтяной скважины. Заявл. 21.07.2016. Опубл. 30.01.2017/. Установка включает измерительную емкость с калиброванной частью, верхний и нижний датчики положения уровней жидкости, линии подачи продукции скважины в сепаратор, отвода газа и жидкости из него, а также трехходовой кран для переключения слива жидкости на отбор газа и наоборот. При достижении уровнем жидкости в измерительной емкости верхнего датчики блоком управления подается сигнал приводу трехходового крана на слив жидкости, а при достижении нижнего датчика - на отвод газа из верхней части измерительной емкости.
Известна также установка для определения дебита продукции скважины /Патент РФ №2133826. Установка для определения дебита продукции скважин. Заявл. 05.01.1998 г. Опубл. 27.07.1999 г./. Дебит воды определяется по известным плотностям нефти и воды и гидростатическому давлению столба жидкости в измерительном цилиндре. В момент достижения верхнего уровня в измерительной емкости датчики подают сигнал на переключение потока в другую емкость и измерение гидростатического давления, по которому определяется средняя плотность жидкости. По ранее известным плотностям нефти и воды рассчитывается содержание воды в объеме жидкости.
Однако приведенные аналоги имеют существенный недостаток, заключающийся в сложности проведения измерений при малом содержании свободного газа в поступающей в измерительную емкость продукции скважины. При полном отсутствии свободного газа в продукции измерение дебитов становится невозможным.
Известен способ определения дебитов нефти, попутного газа и воды /Патент RU №2504653 С1. Способ определения дебитов нефти, попутного газа и воды. Заявл. 30.07.2012 г. Опубл. 20.01.2014 г./. Для измерения дебита жидкости производят заполнение продукцией скважины измерительной емкости, а после достижения максимального уровня водонефтяной смеси производят закрытие входного крана измерительной емкости и выдержку во времени для сепарации свободного газа из жидкости. После определения дебита водонефтяной смеси по скорости заполнения и объему сепарированной жидкости производят постепенный отбор газовой фазы из верхней части измерительной емкости компрессором через понижающий до атмосферного давления редуктор. Компрессор при этом закачивает отбираемый газ в коллектор скважины. Откачку газа производят до тех пор, пока давление в измерительной емкости не снизится до атмосферного значения. Газовый фактор рассчитывается по производительности компрессора и времени его работы.
Однако применение компрессора осложнено в связи с изменением давления нагнетания газа в коллектор, изменяющегося в широких диапазонах даже в пределах одного месторождения нефти.
Известен способ измерения дебита газа, основанный на определении скорости заполнения поочередно двух измерительных емкостей и их последующего опорожнения /Патент РФ №2082107. Способ определения количества нефти, газа и воды в продукции скважин. Заявл. 18.05.1995 г. Опубл. 20.06.1997 г./. По времени заполнения емкостей определяется дебит водонефтяной смеси, а по скорости опорожнения емкостей определяют дебит свободной газовой фазы. Недостаток устройства состоит в том, что при измерениях в жидкости, заполняющей цилиндрическую емкость, присутствуют диспергированные водная и газовая фазы в виде капель и пузырей, что приводит к значительной погрешности измерений. Кроме того, в нефтяной фазе остается достаточное количество растворенного попутного газа, который не выходит из нефти при рабочем давлении (обычно давлении напорного коллектора) и поэтому не может быть учтено в расчетах газового фактора нефти или дебита газа.
Наиболее близким по технической сущности к предлагаемому техническому решению является способ измерения дебитов нефти и попутного газа нефтяных скважин /патент RU №2439316 С2. Заявл. 05.04.2010. Опубл. 10.01.2012/, включающий поступление добываемой продукции из колонны насосно-компрессорных труб в сепаратор и разделение в нем газа и нефти. Далее осуществляют последовательный отбор из сепаратора нефти и газа с замером их количества с помощью поплавка и трехходового переключателя потоков по времени соответственно наполнения и опорожнения измерительной части сепаратора. Переключение потоков нефти и газа осуществляется за счет повышения давления на каждую из сторон двустороннего поршня переключателя потока при запирании поплавком выходов нефти и газа из сепаратора в верхнем и нижнем концах вертикальной перфорированной трубы.
Недостаток способа состоит в том, что при повышении давления в сепараторе происходит сжатие газовой фазы и задержка срабатывания переключателя потока. Это, в свою очередь, приводит к значительной погрешности измерения времени налива и слива нефти, а также достоверности проводимых измерений.
Однако главным недостатком способа является невозможность проведения измерений при малых количествах попутного нефтяного газа или его отсутствии в жидкости, например, при замерах продукции высокообводненных скважин. Малые количества попутного нефтяного газа приводят к значительному росту периода измерения его расхода, измеряемому многими часами, а при полном отсутствии свободного газа в жидкости - к потере работоспособности установки и обеспечения замера дебита жидкости из-за невозможности опорожнения измерительной емкости после ее заполнения.
Технической задачей предлагаемого способа является обеспечение возможности измерения дебита жидкости при малом содержании свободного нефтяного газа или его отсутствия в измеряемой продукции.
Решение поставленной технической задачи достигается тем, что в известном способе измерения дебитов нефти, воды и попутного нефтяного газа, включающем поступление продукции нефтяной скважины в сепаратор с калиброванной частью, разделение ее на газовую и жидкую фазы, последовательный отбор газа и жидкости соответственно из верхней и нижней точек сепаратора, измерение дебита жидкости по скорости наполнения калиброванной части сепаратора, а дебита газа - по скорости ее опорожнения, а также плотности продукции в калиброванной части сепаратора с помощью датчиков гидростатического перепада давления, установленных на разных уровнях калиброванной части сепаратора, согласно изобретению, в условиях дефицита свободной газовой фазы в продукции скважины, например при достижении ее высокой обводненности, циклические опорожнения сепаратора от жидкости после ее заполнений производят с помощью сифонной трубки, восходящую линию которой соединяют с нижней точкой калиброванной части сепаратора, а нисходящую - с напорной линией скважины, и заряжающейся при достижении уровнем жидкости в сепарационной емкости крайней верхней точки трубки сифона, а срывающего свою работу при достижении уровнем жидкости в сепараторе точки ее отбора сифоном, причем точку отбора жидкости из емкости сифоном располагают непосредственно под нижним датчиком, а верхнюю точку трубки сифона - непосредственно над верхним датчиком гидростатического давления, а объемный расход жидкости, сливаемый через сифон, поддерживают превышающим объемный расход поступающей жидкости в сепаратор регулированием дросселя на нисходящей линии сифона.
На чертеже показана принципиальная схема реализации способа.
К напорному коллектору 1 скважины через входную 2 и выходную 3 задвижки подключен сепаратор 4. На коллекторе 1 размещена разрывная задвижка 5. К сепаратору 4 подведены входной 6 и выходной 7 трубопроводы. В нижнюю точку калиброванной части сепаратора 4 введена восходящая линия 8 сифонной трубки, а нисходящая ее линия 9 через дроссель 10 соединена с выходным трубопроводом 7. Газопровод 11 соединяет верхнюю часть сепаратора 4 с выходным трубопроводом 7. На верхнем и нижнем уровнях калиброванной части сепаратора 4 установлены датчики 12 и 13 гидростатического давления, соединенные с блоком управления 14. Датчик 12 установлен ниже верхней точки сифона, а датчик 13, напротив, выше точки ввода трубки 8 сифона. На пересечении сливной линии 15 сепаратора с газопроводом 11 установлен трехходовой кран 16 с электроприводом.
Способ осуществляется следующим образом.
Поступающая по входному трубопроводу 6 в сепаратор 4 продукция нефтяной скважины расслаивается на жидкость, содержащую некоторый объем воды, и свободный попутный газ, выделившийся из нефтяной фазы при давлении в коллекторе 1. При достаточном объеме свободного газа, т.е. в условиях обводненности продукции до 75…80%, дроссель 10 полностью перекрыт. При достижении уровнем жидкости в сепараторе 4 датчика давления 12 блок управления 14 подает сигнал приводу крана 16 на переключение его на слив жидкости из сепаратора 4. До переключения крана 16 накапливающаяся газовая фаза отводится из сепаратора 4 по газопроводу 11 через кран 16 и трубопровод 7 в коллектор 1. После переключения крана 16 на слив уровень жидкости в сепараторе 4 будет снижаться и при достижении датчика 13 кран 16 вновь переключится на налив жидкости в сепаратор. По скорости перемещения уровня жидкости от датчика 13 к датчику 12 рассчитывается дебит скважины по жидкости, а по скорости снижения уровня жидкости от датчика 12 до датчика 13 рассчитывается дебит свободного нефтяного газа. Измереннный гидростатический перепад давления столба жидкости между датчиками 12 и 13 при полном заполнении калиброванной части сепаратора 4 при известных плотностях нефти и воды позволяет рассчитать обводненность продукции скважины.
При достижении обводненности нефти 75…80% образуется дефицит свободной газовой фазы и длительность снижения уровня жидкости в сепараторе 4 может измеряться многими часами. Жидкость будет представлять собой эмульсию прямого типа (нефть в воде) с содержанием воды более 75…80%. Малое количество свободного газа, выделившегося из нефти при давлении в коллекторе 1, не позволяет производить замеры продукции описанным выше способом вытеснения поступившей жидкости накапливающимся газом из сепаратора 4.
В этих условиях трехходовой кран 16 устанавливают на постоянное положение отвода газа из сепаратора 4, а дроссель 11 открывают, т.е. измерения производят включением в работу сифона.
На чертеже показан цикл наполнения сепаратора 4 продукцией, в котором происходит подъем уровня жидкости. Одновременно, в восходящей линии 8 сифонной трубки также происходит подъем уровня жидкости по закону сообщающихся сосудов. Кроме того, в этот же период через газовую линию 11 и выходной трубопровод 7 в коллектор 1 будет поступать незначительное количество газа.
По достижению уровнем жидкости датчика 12 гидростатического давления блоком 14 так же, как в предыдущем случае, фиксируется время заполнения жидкостью и калиброванной части сепаратора 4 от уровня установки датчика 13 до уровня установки датчика 12. По времени заполнения рассчитывается дебит скважины по жидкости, а по перепаду гидростатического давления между датчиками 12 и 13, а также известным плотностям нефти и воды заложенной программой рассчитывается обводненность продукции скважины.
Дальнейший подъем уровня жидкости в сепараторе и достижение им верхней точки сифонной трубки приведет к переливу жидкости из восходящей линии 8 в нисходящую 9. При этом заряжается сифон и через него начнется цикл слива жидкости из сепаратора 4 в коллектор 1 через дроссель 10 и трубопровод 7. Сифонная трубка подбирается с таким расчетом, чтобы объемный расход сливаемой жидкости из сепаратора 4 превышал объемный расход жидкости, поступающей в сепаратор 4 по входному трубопроводу 6. Зарядка сифона позволяет уровню жидкости в сепараторе 4 снижаться до отметки установки датчика 13 и далее до входа восходящей линии 8 сифона в сепаратор 4. Далее в линию 8 войдет газ и сорвет работу сифона. Отбор жидкости из сепаратора 4 сразу прекратится и уровень жидкости в нем будет уже повышаться, т.е. начнется цикл заполнения сепаратора 4 жидкостью и т.д.
Минимальный напор сифона Н определяется расстоянием от точки ввода восходящей линии 8 в сепаратор 4 до уровня расположения выходного трубопровода 7. Максимальная вакууметрическая высота h соответствует всей длине восходящей линии 8 сифонной трубки. Выбор соответствующих длин и диаметра линий 8 и 9, а также степени перекрытия потока дросселем 10, т.е. регулированием гидравлических сопротивлений в системе позволяет обеспечить устойчивую работу сифона и слив требуемого количества жидкости из сепаратора 4 в единицу времени.
Зарядка сифона в момент достижения уровнем жидкости верхней точки сифона, а также срыв его работы при нижнем положении уровня жидкости из-за неустойчивости процессов требуют небольшого периода времени. В этой связи верхний датчик 12 располагают ниже верхней точки сифона, а нижний датчик 13 располагают выше точки отбора жидкости из сепаратора 4. Таким образом, при определении дебита скважины по жидкости неустойчивые периоды работы сифона исключаются и замеры производятся только по времени перемещения уровня жидкости от датчика 13 до датчика 12. Таким образом, измерение дебита свободного газа ввиду его малости при высокой обводненности продукции не производится.
Технико-экономическим преимуществом предложенного способа является обеспечение возможности измерения дебита нефти и воды скважины при малом содержании свободного газа в добываемой продукции или полном его отсутствии.
Claims (1)
- Способ измерения продукции нефтяной скважины, включающий поступление продукции нефтяной скважины в сепаратор с калиброванной частью, разделение ее на газовую и жидкую фазы, последовательный отбор газа и жидкости соответственно из верхней и нижней точек сепаратора, измерение дебита жидкости по скорости наполнения калиброванной части сепаратора, а дебита газа - по скорости ее опорожнения, а также плотности продукции в калиброванной части сепаратора с помощью датчиков гидростатического перепада давления, установленных на разных уровнях калиброванной части сепаратора, согласно изобретению, в условиях дефицита свободной газовой фазы в продукции скважины, например при достижении ее высокой обводненности, циклические опорожнения сепаратора от жидкости после ее заполнений производят с помощью сифонной трубки, восходящую линию которой соединяют с нижней точкой калиброванной части сепаратора, а нисходящую - с напорной линией скважины, и заряжающейся при достижении уровнем жидкости в сепарационной емкости крайней верхней точки трубки сифона, а срывающего свою работу при достижении уровнем жидкости в сепараторе точки ее отбора сифоном, причем точку отбора жидкости из емкости сифоном располагают непосредственно под нижним датчиком, а верхнюю точку трубки сифона - непосредственно над верхним датчиком гидростатического давления, а объемный расход жидкости, сливаемый через сифон, поддерживают превышающим объемный расход поступающей жидкости в сепаратор регулированием дросселя на нисходящей линии сифона.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017125888A RU2658699C1 (ru) | 2017-07-18 | 2017-07-18 | Способ измерения продукции нефтяной скважины |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017125888A RU2658699C1 (ru) | 2017-07-18 | 2017-07-18 | Способ измерения продукции нефтяной скважины |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2658699C1 true RU2658699C1 (ru) | 2018-06-22 |
Family
ID=62713410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017125888A RU2658699C1 (ru) | 2017-07-18 | 2017-07-18 | Способ измерения продукции нефтяной скважины |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2658699C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112943218A (zh) * | 2021-03-05 | 2021-06-11 | 濮阳市奥依尔节能设备制造有限公司 | 通气浮球液位控制装置及控制方法 |
RU2822257C1 (ru) * | 2024-01-18 | 2024-07-03 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Устройство для взятия проб нефти |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1553661A1 (ru) * | 1988-04-20 | 1990-03-30 | Октябрьский Филиал Всесоюзного Научно-Исследовательского И Проектно-Конструкторского Института Комплексной Автоматизации Нефтяной И Газовой Промышленности | Устройство дл измерени дебита нефт ных скважин |
US5654502A (en) * | 1995-12-28 | 1997-08-05 | Micro Motion, Inc. | Automatic well test system and method of operating the same |
RU2406823C1 (ru) * | 2009-09-14 | 2010-12-20 | Рауф Рахимович Сафаров | Способ дифференцированного измерения дебита нефтяных скважин и устройство для его осуществления (варианты) |
RU2439316C2 (ru) * | 2010-04-05 | 2012-01-10 | Общество с ограниченной ответственностью " Актуальные технологии нефтеотдачи " | Способ измерения дебитов нефти и попутного газа нефтяных скважин |
RU2504653C1 (ru) * | 2012-07-30 | 2014-01-20 | Марат Давлетович Валеев | Способ определения дебитов нефти, попутного газа и воды |
RU2513891C1 (ru) * | 2012-12-19 | 2014-04-20 | Рауф Рахимович Сафаров | Устройство для измерения дебита скважин |
-
2017
- 2017-07-18 RU RU2017125888A patent/RU2658699C1/ru not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1553661A1 (ru) * | 1988-04-20 | 1990-03-30 | Октябрьский Филиал Всесоюзного Научно-Исследовательского И Проектно-Конструкторского Института Комплексной Автоматизации Нефтяной И Газовой Промышленности | Устройство дл измерени дебита нефт ных скважин |
US5654502A (en) * | 1995-12-28 | 1997-08-05 | Micro Motion, Inc. | Automatic well test system and method of operating the same |
RU2406823C1 (ru) * | 2009-09-14 | 2010-12-20 | Рауф Рахимович Сафаров | Способ дифференцированного измерения дебита нефтяных скважин и устройство для его осуществления (варианты) |
RU2439316C2 (ru) * | 2010-04-05 | 2012-01-10 | Общество с ограниченной ответственностью " Актуальные технологии нефтеотдачи " | Способ измерения дебитов нефти и попутного газа нефтяных скважин |
RU2504653C1 (ru) * | 2012-07-30 | 2014-01-20 | Марат Давлетович Валеев | Способ определения дебитов нефти, попутного газа и воды |
RU2513891C1 (ru) * | 2012-12-19 | 2014-04-20 | Рауф Рахимович Сафаров | Устройство для измерения дебита скважин |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112943218A (zh) * | 2021-03-05 | 2021-06-11 | 濮阳市奥依尔节能设备制造有限公司 | 通气浮球液位控制装置及控制方法 |
RU2823636C1 (ru) * | 2023-04-05 | 2024-07-26 | Ооо Научно-Инжиниринговая Компания "Импетрабилис" | Способ измерения массового дебита сырой нефти и объема нерастворенного газа в продукции нефтяной скважины |
RU2822257C1 (ru) * | 2024-01-18 | 2024-07-03 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Устройство для взятия проб нефти |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9114332B1 (en) | Multiphase flow measurement apparatus utilizing phase separation | |
RU2504653C1 (ru) | Способ определения дебитов нефти, попутного газа и воды | |
RU2439316C2 (ru) | Способ измерения дебитов нефти и попутного газа нефтяных скважин | |
RU76070U1 (ru) | Устройство для измерения продукции нефтяных скважин | |
RU2396427C2 (ru) | Способ определения обводненности продукции нефтяных скважин "охн++" | |
RU2658699C1 (ru) | Способ измерения продукции нефтяной скважины | |
RU2661209C1 (ru) | Способ измерения дебитов нефти, газа и воды нефтяной скважины | |
RU2629787C2 (ru) | Установка для раздельного измерения дебита нефтяных скважин по нефти, газу и воде | |
RU2733954C1 (ru) | Способ измерения продукции нефтяной скважины | |
RU2520251C1 (ru) | Способ определения обводненности продукции нефтедобывающей скважины | |
RU2552563C1 (ru) | Переносной узел учета добываемой скважинной жидкости | |
RU155020U1 (ru) | Установка для измерения дебита продукции нефтяных скважин | |
RU168317U1 (ru) | Установка для измерения продукции нефтяной скважины | |
RU2779284C1 (ru) | Способ измерения газового фактора нефти | |
RU108801U1 (ru) | Устройство для измерения дебита нефтяных скважин | |
RU2779520C1 (ru) | Способ измерения продукции скважины с малым содержанием газа | |
RU2131027C1 (ru) | Устройство для измерения дебита нефтяных скважин | |
RU2677725C1 (ru) | Способ измерения дебитов нефти, газа и воды в скважинах нефтяных месторождений | |
RU2340772C2 (ru) | Способ определения обводненности продукции нефтяных скважин "охн+" | |
CN216665587U (zh) | 一种定容积双向连续自动计量装置 | |
RU2823638C1 (ru) | Способ замера продукции нефтяной скважины и определения газового фактора нефти | |
RU2823636C1 (ru) | Способ измерения массового дебита сырой нефти и объема нерастворенного газа в продукции нефтяной скважины | |
CN108387292A (zh) | 气井三相计量分离控制系统及油水界面计量方法 | |
RU2798181C1 (ru) | Способ измерения многофазной продукции нефтяной скважины | |
RU2781205C1 (ru) | Способ измерения продукции нефтяной скважины |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20200719 |