RU2658436C2 - Способ получения ребаудиозида m с использованием ферментативного способа - Google Patents
Способ получения ребаудиозида m с использованием ферментативного способа Download PDFInfo
- Publication number
- RU2658436C2 RU2658436C2 RU2016108660A RU2016108660A RU2658436C2 RU 2658436 C2 RU2658436 C2 RU 2658436C2 RU 2016108660 A RU2016108660 A RU 2016108660A RU 2016108660 A RU2016108660 A RU 2016108660A RU 2658436 C2 RU2658436 C2 RU 2658436C2
- Authority
- RU
- Russia
- Prior art keywords
- udp
- rebaudioside
- glucosyl
- glucosyltransferase
- recombinant cells
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- GSGVXNMGMKBGQU-PHESRWQRSA-N rebaudioside M Chemical compound C[C@@]12CCC[C@](C)([C@H]1CC[C@@]13CC(=C)[C@@](C1)(CC[C@@H]23)O[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O[C@@H]2O[C@H](CO)[C@@H](O)[C@H](O)[C@H]2O)[C@H]1O[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O)C(=O)O[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O[C@@H]2O[C@H](CO)[C@@H](O)[C@H](O)[C@H]2O)[C@H]1O[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O GSGVXNMGMKBGQU-PHESRWQRSA-N 0.000 title claims abstract description 23
- 102000004190 Enzymes Human genes 0.000 title description 3
- 108090000790 Enzymes Proteins 0.000 title description 3
- 101710204244 Processive diacylglycerol beta-glucosyltransferase Proteins 0.000 claims abstract description 36
- RPYRMTHVSUWHSV-CUZJHZIBSA-N rebaudioside D Chemical compound O([C@H]1[C@H](O)[C@@H](CO)O[C@H]([C@@H]1O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)O[C@]12C(=C)C[C@@]3(C1)CC[C@@H]1[C@@](C)(CCC[C@]1([C@@H]3CC2)C)C(=O)O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O RPYRMTHVSUWHSV-CUZJHZIBSA-N 0.000 claims abstract description 30
- HELXLJCILKEWJH-NCGAPWICSA-N rebaudioside A Chemical compound O([C@H]1[C@H](O)[C@@H](CO)O[C@H]([C@@H]1O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)O[C@]12C(=C)C[C@@]3(C1)CC[C@@H]1[C@@](C)(CCC[C@]1([C@@H]3CC2)C)C(=O)O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O HELXLJCILKEWJH-NCGAPWICSA-N 0.000 claims abstract description 20
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 claims abstract description 19
- HSCJRCZFDFQWRP-JZMIEXBBSA-N UDP-alpha-D-glucose Chemical group O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OP(O)(=O)OP(O)(=O)OC[C@@H]1[C@@H](O)[C@@H](O)[C@H](N2C(NC(=O)C=C2)=O)O1 HSCJRCZFDFQWRP-JZMIEXBBSA-N 0.000 claims abstract description 17
- 125000003275 alpha amino acid group Chemical group 0.000 claims abstract description 17
- 241000588724 Escherichia coli Species 0.000 claims abstract description 11
- 229930006000 Sucrose Natural products 0.000 claims abstract description 11
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims abstract description 11
- 239000005720 sucrose Substances 0.000 claims abstract description 11
- 239000001512 FEMA 4601 Substances 0.000 claims abstract description 10
- HELXLJCILKEWJH-SEAGSNCFSA-N Rebaudioside A Natural products O=C(O[C@H]1[C@@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1)[C@@]1(C)[C@@H]2[C@](C)([C@H]3[C@@]4(CC(=C)[C@@](O[C@H]5[C@H](O[C@H]6[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O6)[C@@H](O[C@H]6[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O6)[C@H](O)[C@@H](CO)O5)(C4)CC3)CC2)CCC1 HELXLJCILKEWJH-SEAGSNCFSA-N 0.000 claims abstract description 10
- HELXLJCILKEWJH-UHFFFAOYSA-N entered according to Sigma 01432 Natural products C1CC2C3(C)CCCC(C)(C(=O)OC4C(C(O)C(O)C(CO)O4)O)C3CCC2(C2)CC(=C)C21OC(C1OC2C(C(O)C(O)C(CO)O2)O)OC(CO)C(O)C1OC1OC(CO)C(O)C(O)C1O HELXLJCILKEWJH-UHFFFAOYSA-N 0.000 claims abstract description 10
- 235000019203 rebaudioside A Nutrition 0.000 claims abstract description 10
- 108010043934 Sucrose synthase Proteins 0.000 claims abstract description 7
- 230000008929 regeneration Effects 0.000 claims abstract description 7
- 238000011069 regeneration method Methods 0.000 claims abstract description 7
- 241000235058 Komagataella pastoris Species 0.000 claims abstract description 4
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims abstract description 4
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 claims abstract description 4
- 230000003993 interaction Effects 0.000 claims abstract 13
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims abstract 3
- 230000000813 microbial effect Effects 0.000 claims abstract 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 20
- 239000008363 phosphate buffer Substances 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 239000012071 phase Substances 0.000 claims 7
- 239000008346 aqueous phase Substances 0.000 claims 1
- DRSKVOAJKLUMCL-MMUIXFKXSA-N u2n4xkx7hp Chemical compound O([C@H]1[C@H](O)[C@@H](CO)O[C@H]([C@@H]1O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)O[C@]12C(=C)C[C@@]3(C1)CC[C@@H]1[C@@](C)(CCC[C@]1([C@@H]3CC2)C)C(O)=O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O DRSKVOAJKLUMCL-MMUIXFKXSA-N 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 35
- 230000015572 biosynthetic process Effects 0.000 abstract description 9
- HSCJRCZFDFQWRP-UHFFFAOYSA-N Uridindiphosphoglukose Natural products OC1C(O)C(O)C(CO)OC1OP(O)(=O)OP(O)(=O)OCC1C(O)C(O)C(N2C(NC(=O)C=C2)=O)O1 HSCJRCZFDFQWRP-UHFFFAOYSA-N 0.000 abstract description 6
- 238000002360 preparation method Methods 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 1
- 101150016042 udp gene Proteins 0.000 abstract 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 36
- 238000001514 detection method Methods 0.000 description 12
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 12
- 241000544066 Stevia Species 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 239000006228 supernatant Substances 0.000 description 11
- 239000012634 fragment Substances 0.000 description 10
- 239000008176 lyophilized powder Substances 0.000 description 10
- 238000000746 purification Methods 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- 239000007788 liquid Substances 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 238000003786 synthesis reaction Methods 0.000 description 8
- 238000011282 treatment Methods 0.000 description 8
- 238000006911 enzymatic reaction Methods 0.000 description 7
- 108091008146 restriction endonucleases Proteins 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- 235000019202 steviosides Nutrition 0.000 description 7
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 238000002425 crystallisation Methods 0.000 description 6
- 230000008025 crystallization Effects 0.000 description 6
- 235000019253 formic acid Nutrition 0.000 description 6
- 238000004128 high performance liquid chromatography Methods 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 6
- 239000011541 reaction mixture Substances 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000000741 silica gel Substances 0.000 description 6
- 229910002027 silica gel Inorganic materials 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000007036 catalytic synthesis reaction Methods 0.000 description 5
- 238000005119 centrifugation Methods 0.000 description 5
- 101000630755 Arabidopsis thaliana Sucrose synthase 1 Proteins 0.000 description 4
- 240000007594 Oryza sativa Species 0.000 description 4
- 235000007164 Oryza sativa Nutrition 0.000 description 4
- 238000006555 catalytic reaction Methods 0.000 description 4
- 235000013305 food Nutrition 0.000 description 4
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 4
- 229930188195 rebaudioside Natural products 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 3
- 238000004108 freeze drying Methods 0.000 description 3
- 238000010353 genetic engineering Methods 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 238000009210 therapy by ultrasound Methods 0.000 description 3
- 238000002604 ultrasonography Methods 0.000 description 3
- 239000013598 vector Substances 0.000 description 3
- 241000219195 Arabidopsis thaliana Species 0.000 description 2
- 102000003960 Ligases Human genes 0.000 description 2
- 108090000364 Ligases Proteins 0.000 description 2
- UEDUENGHJMELGK-HYDKPPNVSA-N Stevioside Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@]12C(=C)C[C@@]3(C1)CC[C@@H]1[C@@](C)(CCC[C@]1([C@@H]3CC2)C)C(=O)O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O UEDUENGHJMELGK-HYDKPPNVSA-N 0.000 description 2
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 235000013361 beverage Nutrition 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 235000003599 food sweetener Nutrition 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 239000002054 inoculum Substances 0.000 description 2
- 235000021096 natural sweeteners Nutrition 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 238000003259 recombinant expression Methods 0.000 description 2
- 229940013618 stevioside Drugs 0.000 description 2
- OHHNJQXIOPOJSC-UHFFFAOYSA-N stevioside Natural products CC1(CCCC2(C)C3(C)CCC4(CC3(CCC12C)CC4=C)OC5OC(CO)C(O)C(O)C5OC6OC(CO)C(O)C(O)C6O)C(=O)OC7OC(CO)C(O)C(O)C7O OHHNJQXIOPOJSC-UHFFFAOYSA-N 0.000 description 2
- 239000003765 sweetening agent Substances 0.000 description 2
- 108010011485 Aspartame Proteins 0.000 description 1
- 241001198387 Escherichia coli BL21(DE3) Species 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- 102000004357 Transferases Human genes 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000008122 artificial sweetener Substances 0.000 description 1
- 235000021311 artificial sweeteners Nutrition 0.000 description 1
- 239000000605 aspartame Substances 0.000 description 1
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 description 1
- 235000010357 aspartame Nutrition 0.000 description 1
- 229960003438 aspartame Drugs 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- DRTQHJPVMGBUCF-PSQAKQOGSA-N beta-L-uridine Natural products O[C@H]1[C@@H](O)[C@H](CO)O[C@@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-PSQAKQOGSA-N 0.000 description 1
- 238000010170 biological method Methods 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000006862 enzymatic digestion Effects 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 235000019534 high fructose corn syrup Nutrition 0.000 description 1
- 235000012907 honey Nutrition 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- DRTQHJPVMGBUCF-UHFFFAOYSA-N uracil arabinoside Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-UHFFFAOYSA-N 0.000 description 1
- 229940045145 uridine Drugs 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/44—Preparation of O-glycosides, e.g. glucosides
- C12P19/56—Preparation of O-glycosides, e.g. glucosides having an oxygen atom of the saccharide radical directly bound to a condensed ring system having three or more carbocyclic rings, e.g. daunomycin, adriamycin
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L27/00—Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
- A23L27/30—Artificial sweetening agents
- A23L27/33—Artificial sweetening agents containing sugars or derivatives
- A23L27/36—Terpene glycosides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1048—Glycosyltransferases (2.4)
- C12N9/1051—Hexosyltransferases (2.4.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/18—Preparation of compounds containing saccharide radicals produced by the action of a glycosyl transferase, e.g. alpha-, beta- or gamma-cyclodextrins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y204/00—Glycosyltransferases (2.4)
- C12Y204/01—Hexosyltransferases (2.4.1)
- C12Y204/01017—Glucuronosyltransferase (2.4.1.17)
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2002/00—Food compositions, function of food ingredients or processes for food or foodstuffs
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Polymers & Plastics (AREA)
- Nutrition Science (AREA)
- Food Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Enzymes And Modification Thereof (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Группа изобретений относится к биотехнологии. Предложен способ получения ребаудиозида М. Способ включает взаимодействие ребаудиозида D с донором глюкозила в присутствии UDP-глюкозилтрансферазы или рекомбинантных клеток, содержащих UDP-глюкозилтрансферазу, с получением ребаудиозида M. При этом донором глюкозила является UDP-глюкоза или система регенерации UDP-глюкозы, включающая сахарозу, сахарозасинтетазу и UDP, UDP-глюкозилтрансфераза имеет аминокислотную последовательность, имеющую по меньшей мере 90% идентичность SEQ ID NO:2. Рекомбинантные клетки представляют собой микробные клетки, выбранные из группы, состоящей из клеток Escherichia coli, Saccharomyces cerevisiae или Pichia pastoris. Предложен также способ получения ребаудиозида М, включающий взаимодействие ребаудиозида А с донором глюкозила в присутствии первой UDP-глюкозилтрансферазы или рекомбинантных клеток, содержащих первую UDP-глюкозилтрансферазу с образованием ребаудиозида D, и взаимодействие ребаудиозида D с донором глюкозила в присутствии второй UDP-глюкозилтрансферазы или рекомбинантных клеток, содержащих вторую UDP-глюкозилтрансферазу, с получением ребаудиозида M. При этом первая UDP-глюкозилтрансфераза имеет аминокислотную последовательность, имеющую по меньшей мере 90% идентичность с SEQ ID NO: 4, и вторая UDP-глюкозилтрансфераза имеет аминокислотную последовательность, имеющую по меньшей мере 90% идентичность SEQ ID NO: 2. Группа изобретений обеспечивает превращение по меньшей мере 40% ребаудиозида D в ребаудиозид М после взаимодействия в течение двух часов. 2 н. и 9 з.п. ф-лы, 1 ил., 10 пр.
Description
Область техники
Настоящее изобретение относится к способу получения ребаудиозида M и в частности к биологическому способу получения ребаудиозида M.
Предшествующий уровень техники
Подсластители представляют собой класс пищевых добавок, которые находят широкое применение в производстве пищевых продуктов, напитков и конфет. Их можно добавлять в способе получения пищевого продукта или альтернативно их можно использовать путем соответствующего разбавления в качестве заменителя сахарозы во время домашней выпечки. Подсластители включают натуральные подсластители, например сахарозу, кукурузный сироп с высоким содержанием фруктозы, мед и т.д., и искусственные подсластители, например аспартам, сахарин и т.д. Стевиозиды представляют собой класс натуральных подсластителей, экстрагируемых из растения Stevia rebaudkma и в настоящее время широко используются в пищевых продуктах и напитках. Экстракт Stevia rebaudkma содержит ряд стевиозидов, включая ребаудиозид. Экстрагируемые естественным образом стевиозиды характеризуются большим различием ингредиентов в различных партиях, и нуждаются в последующей очистке. Коммерчески производимый в настоящее время продукт ребаудиозид A содержит некоторые другие стевиозиды, например ребаудиозиды C, D и F, и т.д. Стевиозид, получаемый способ экстракции, как правило, дополнительно содержит некоторые примеси, смешанные с ним, которые оказывают определенное влияние на область его применения. Ребаудиозид M обладает преимуществами по сравнению с ребаудиозидом A, но его содержание в листьях Stevia rebaudkma является очень низким и его детектируют только в растении Stevia rebaudkma Morita (2010, J. Appl. Glycosci., 57, 199-209). В настоящее время не существует какого-либо промышленного производства ребаудиозида M.
Сущность изобретения
Техническая проблема, подлежащая решению в настоящем изобретении, заключается в предоставлении способа получения ребаудиозида M ферментативным способом для устранения недостатков известного уровня техники. Этим способом можно получать продукт ребаудиозида M высокой степени чистоты при более низких затратах за более короткий период времени.
Для решения указанной выше технической проблемы в настоящем изобретении применяют следующее техническое решение: способ получения ребаудиозида M ферментативным способом. В способе в качестве субстрата используют ребаудиозид A или ребаудиозид D; и в присутствии донора глюкозила ребаудиозид M получают путем взаимодействия субстрата при катализе UDP-глюкозилтрансферазы и/или рекомбинантных клеток, содержащих UDP-глюкозилтрансферазу.
По настоящему изобретению донор глюкозила может представлять собой UDP-глюкозу или систему регенерации UDP-глюкозы, состоящую из сахарозы, сахарозосинтетазы и UDP (2007, FEBS Letters, 581, 2562-2566), и предпочтительно систему регенерации UDP-глюкозы, состоящую из сахарозы, сахарозосинтетазы и UDP. UDP-глюкоза является более дорогостоящей, и применение системы регенерации UDP-глюкозы может значительно снижать затраты.
По настоящему изобретению UDP-глюкозилтрансфераза (т.е. уридиндифосфоглюкозилтрансфераза, сокращенно обозначаемая как UGT) является известной. Предпочтительно UDP-глюкозилтрансфераза, применяемая в настоящем изобретении, представляет собой UGT-A из Stevia rebaudkma и/или UGT-B из Oryza sativa.
Аминокислотная последовательность UGT-A может обладать по меньшей мере 60% идентичностью с последовательностью 2. Предпочтительно аминокислотная последовательность UGT-A обладает по меньшей мере 70% идентичностью с последовательностью 2. Кроме того, предпочтительно аминокислотная последовательность UGT-A обладает по меньшей мере 80% идентичностью с последовательностью 2. Наиболее предпочтительно аминокислотная последовательность UGT-A обладает по меньшей мере 90% идентичностью с последовательностью 2. По одному конкретному аспекту аминокислотная последовательность UGT-A является полностью идентичной последовательности 2.
Аминокислотная последовательность UGT-B может обладать по меньшей мере 60% идентичностью с последовательностью 4. Более предпочтительно аминокислотная последовательность UGT-B обладает по меньшей мере 70% идентичностью с последовательностью 4. Кроме того, предпочтительно аминокислотная последовательность UGT-B обладает по меньшей мере 80% идентичностью с последовательностью 4. Наиболее предпочтительно аминокислотная последовательность UGT-B обладает по меньшей мере 90% идентичностью с последовательностью 4. По одному конкретному аспекту аминокислотная последовательность UGT-B является полностью идентичной последовательности 4.
По настоящему изобретению реакцию можно проводить в водно-фазной системе при температуре от 4 до 50°C и значении pH от 5,0 до 9,0. Предпочтительно реакцию проводят в водно-фазной системе при температуре от 25 до 35°C и значении pH от 6,5 до 7,5.
Более предпочтительно реакцию проводят при температуре 30°C.
Более предпочтительно реакцию проводят при значении pH 7,0.
По одному конкретному предпочтительному аспекту реакцию проводят в фосфатном буфере при pH 7.
По настоящему изобретению, когда катализ проводят с применением рекомбинантных клеток, содержащих UDP-глюкозилтрансферазу, реакцию можно проводить в присутствии средств, способствующих проникновению в клетки. Предпочтительно средство, способствующее проникновению в клетки, представляет собой толуол в концентрации, которая может составлять от 1% до 3% по объемному отношению во всей реакционной смеси. Более предпочтительно концентрация толуола составляет 2% по объемному отношению.
По настоящему изобретению рекомбинантные клетки могут представлять собой и предпочтительно представляют собой клетки микроорганизмов, где микроорганизмы могут представлять собой и предпочтительно представляют собой Escherichia coli, Saccharomyces cerevisiae или Pichia pastoris и т.п.
По одному конкретному и предпочтительному аспекту способ получения проводят так, как указано ниже: все исходные вещества, применяемые в реакции, добавляют в реакционный котел, перемешивают до однородного состояния, затем помещают при указанной температуре и перемешивают для начала реакции. После завершения реакции можно получать продукт ребаудиозида Μ, соответствующий требованиям использования, путем обработки очисткой. В одном конкретном способе очистки можно получать продукт ребаудиозида Μ с чистотой до 95% в соответствии со способом очистки посредством дополнительной обработки, включающей разделение смолой.
По одному конкретному аспекту настоящего изобретения субстрат представляет собой ребаудиозид A, и UDP-глюкозилтрансфераза представляет собой смесь UGT-A из Stevia rebaudkma и UGT-B из Oryza sativa, где аминокислотная последовательность UGT-A из Stevia rebaudkma обладает по меньшей мере 80% идентичностью с последовательностью 2, и аминокислотная последовательность UGT-B из Oryza sativa обладает по меньшей мере 80% идентичностью с последовательностью 4. Предпочтительно массовое отношение в смеси UGT-A из Stevia rebaudkma и UGT-B из Oryza sativa составляет 1: от 0,8 до 1,2, например оно может составлять 1:1.
По одному другому конкретному аспекту настоящего изобретения субстрат представляет собой ребаудиозид D, и UDP-глюкозилтрансфераза представляет собой UGT-A из Stevia rebaudkma, где аминокислотная последовательность UGT-A из Stevia rebaudkma обладает по меньшей мере 80% идентичностью с последовательностью 2.
В результате реализация указанных выше технических решений настоящее изобретение обладает следующими ниже преимуществами по сравнению с известным уровнем техники.
Способ получения ребаудиозида M ферментативным способом, предоставленным в настоящем изобретении, имеет важное прикладное значение. Вследствие того, что скорость роста микроорганизмов является значительно выше чем скорость роста растений, способом получения по настоящему изобретению можно значительно снижать производственные затраты, можно сокращать цикл производства и можно значительно увеличивать конкурентоспособность продукта. Кроме того, стевиозид характеризуется низким содержанием в растениях и содержит относительно много стевиозидов с различными структурами таким образом, что экстракция более чистых продуктов является крайне затруднительной. В свою очередь применение способа синтеза с использованием ферментативного способа по настоящему изобретению способно обеспечивать продукты более высокой степени чистоты, что дополнительно расширит его область применения. По сравнению со способом экстракции ребаудиозида M из листьев Stevia rebaudkma способ по настоящему изобретению характеризуется значительно более коротким циклом производства, улучшенной производительностью, более низкими затратами и может обеспечивать продукты с более высокой степенью чистоты и таким образом его можно использовать с меньшими затратами в пищевой промышленности и промышленности напитков.
Краткое описание чертежей
Фиг. 1 представляет собой диаграмму протонного магнитного спектра продукта, получаемого в примере 5 по настоящему изобретению.
Подробное описание предпочтительных вариантов осуществления
Следующие ниже ребаудиозид A, ребаудиозид D и ребаудиозид M сокращенно обозначают соответственно как Reb A, Reb D и Reb M, где структурные формулы соответственно относятся к формулам I, II и III.
Настоящее изобретение относится в основном к четырем путям синтеза Reb M:
Способ 1:
Способ 2:
Способ 3:
Способ 4:
По настоящему изобретению применяемые UGT-A или UGT-B могут находиться в форме порошка лиофилизированного фермента или содержаться в рекомбинантных клетках.
UGT-A или UGT-B получают способом так, как указано ниже:
Рекомбинантные штаммы Escherichia coli (или других бактериальных клеток), экспрессирующие UGT-A или UGT-B, получают с использованием техник молекулярного клонирования и техник генетической инженерии. Затем рекомбинантные Escherichia coli подвергают ферментации для получения рекомбинантных клеток, содержащих UGT-A или UGT-B, или для получения лиофилизированных порошков UGT-A или UGT-B.
Все указанные выше техники молекулярного клонирования и техники генетической инженерии хорошо известны. Техники молекулярного клонирования можно найти в Molecular Cloing A Laboratory Manual. 3rd Edition, J. Shambrook, 2005.
Этапы экспрессии для конструирования рекомбинантных штаммов по настоящему изобретению с применением способа генетической инженерии являются такими, как указано ниже:
(1) (в соответствии с последовательностью 1 и последовательностью 2 или в соответствии с последовательностью 3 и последовательностью 4) генетически синтезируют необходимые фрагменты гена, лигируют в них векторы pUC57 и на оба конца добавляют участки рестрикции ферментов NdeI и BamHI соответственно;
(2) путем двойного ферментативного расщепления и лигирования каждый из фрагментов гена вводят в соответствующие участки ферментов рестрикции экспрессирующего вектора pET30a, чтобы обеспечивать возможность того, что каждый из генов находится под контролем промотора T7, и
(3) рекомбинантыми плазмидами трансформируют Escherichia coli BL21 (DE3) и индуцируют экспрессию целевых белков с использованием IPTG так, чтобы получать рекомбинантные штаммы Escherichia coli, экспрессирующие UGT-A или UGT-B.
Рекомбинантные клетки, содержащие UGT-A или UGT-B, или лиофилизированные порошки of UGT-A или UGT-B получают с использованием рекомбинантных экспрессионных штаммов Escherichia coli, содержащих UGT-A или UGT-B, посредством следующих ниже этапов.
Рекомбинантные экспрессионные штаммы Escherichia coli, содержащие UGT-A или UGT-B, инокулируют в 4 мл жидкой среды LB в количественном соотношении 1% и встряхивают (200 об/мин) при 37°C при культивировании в течение ночи. Культуру, которую культивировали в течение ночи, переносят в 50 мл жидкой среды LB при размере инокулята 1%. Среду для культивирования встряхивают (200 об./мин) при 37°C при культивировании до значения OD600 0,6-0,8. Затем добавляют IPTG в конечной концентрации 0,4 мМ и встряхивают смесь при 20°C при культивировании в течение ночи. После завершения индукции клетки собирают центрифугированием (8000 об/мин, 10 мин). Клетки ресуспендируют с использованием 5 мл 2 ммоль/л фосфатного буфера (pH 7,0) с получением рекомбинантных клеток или дополнительно разрушают с использованием ультразвука на ледяной бане с получением лиофилизированного порошка центрифугированием жидкости, подвергаемой обработке ультразвуком (8000 об/мин, 10 мин), сбором супернатант и лиофилизацией в течение 24 часов.
Настоящее изобретение более подробно описано ниже в сочетании с конкретными примерами.
Пример 1: получение рекомбинантных клеток
Escherichia coli
, содержащих UGT-A
В соответствии с последовательностью 1 и последовательностью 2 фрагменты гена UGT-A получали генетическим синтезом, к обоим концам добавляли участки ферментов рестрикции NdeI и BamHI соответственно и лигировали в них векторы pUC57 (Suzhou Genewiz Biotech Co., Ltd.). Фрагменты гена UGT подвергали ферментативному расщеплению рестрикционными эндонуклеазами NdeI и BamHI. Выделяли очищенные фрагменты. Добавляли к ним лигазу T4 и лигировали фрагменты в соответствующие участки ферментов рестрикции pET30a для трансформации штаммов BL21 (DE3).
Штаммы UGT инокулировали в 4 мл жидкой среды LB в количественном отношении 1% и встряхивали (200 об/мин) при 37°C при культивировании в течение ночи. Культуру, которую культивировали в течение ночи, переносили в 50 мл жидкой среды LB при размере инокулята 1%. Среду для культивирования встряхивали (200 об/мин) при 37°C при культивировании до значения OD600 0,6-0,8. Добавляли в нее IPTG в конечной концентрации 0,4 мМ и встряхивали смесь при 20°C при культивировании в течение ночи. После завершения индукции клетки собирали центрифугированием (8000 об/мин, 10 мин). Клетки ресуспендировали с использованием 5 мл 2 ммоль/л фосфатного буфера (pH 7,0) с получением рекомбинантных клеток, содержащих UGT-A для применения в катализе.
Пример 2: получение лиофилизированного порошка UGT-A
Рекомбинантные клетки UGT-A, получаемые в примере 1, разрушали с использованием ультразвука на ледяной бане с получением лиофилизированного порошка UGT-A центрифугированием жидкости, подвергаемой обработке ультразвуком (8000 об/мин, 10 мин), сбором супернатанта и лиофилизацией в течение 24 часов.
Пример 3: получение рекомбинантных клеток
Escherichia coli
, содержащих UGT-B
В соответствии с последовательностью 3 и последовательностью 4 фрагменты ген UGT-B получали генетическим синтезом, к обоим концам добавляли участки ферментов рестрикции NdeI и BamHI соответственно и лигировали в них векторы pUC57 (Suzhou Genewiz Biotech Co., Ltd.). Фрагменты гена UGT подвергали ферментативному расщеплению рестрикционными эндонуклеазами NdeI и BamHI. Выделяли очищенные фрагменты. Добавляли к ним лигазу T4 и лигировали фрагменты в соответствующие участки ферментов рестрикции pET30a для трансформации штаммов BL21 (DE3).
Штаммы UGT инокулировали в 4 мл жидкой среды LB в количественном отношении 1% и встряхивали (200 об/мин) при 37°C при культивировании в течение ночи. Культуру, которую культивировали в течение ночи, переносили в 50 мл жидкой среды LB при размере иноулята 1%. Среду для культивирования встряхивали (200 об/мин) при 37°C при культивировании до значения OD600 0,6-0,8. Добавляли к ним IPTG в конечной концентрации 0,4 мМ и встряхивали смесь при 20°C при культивировании в течение ночи. После завершения индукции клетки собирали центрифугированием (8000 об/мин, 10 мин). Клетки ресуспендировали с использованием 5 мл 2 ммоль/л фосфатного буфера (pH 7,0) с получением рекомбинантных клеток, содержащих UGT-B, для применения в катализе.
Пример 4: получение лиофилизированного порошка UGT-B
Рекомбинантные клетки UGT-B, получаемые в примере 3, разрушали с использованием ультразвука на ледяной бане с получением лиофилизированного порошка UGT-B центрифугированием жидкости, подвергаемой обработке ультразвуком (8000 об/мин, 10 мин), сбором супернатанта и лиофилизацией в течение 24 часов.
Пример 5: синтез Reb M ферментативным способом с Reb D в качестве субстрата (способ 1)
В этом примере в каталитическом синтезе Reb M использовали лиофилизированный порошок UGT-A, получаемый способом в примере 2.
150 мл 0,05 моль/л фосфатного буфера (pH 7,0), 0,255 г UDP-глюкозы, 0,17 г Reb D и 1,5 г лиофилизированного порошка UGT-A последовательно добавляли в реакционную смесь, перемешивали до однородного состояния, затем помещали на водяную баню при 30°C и перемешивали при 160 об/мин с проведением реакции в течение 2 часов. После завершения реакции отбирали 500 мкл реакционного раствора и добавляли в равный объем безводного метанола и перемешивали до однородного состояния. Смесь центрифугировали в течение 10 мин при 8000 об/мин. Супернатант отбирали и пропускали через мембрану фильтра с последующей детекцией с использованием высокоэффективной жидкостной хроматографии (хроматографические условия: хроматографическая колонка: Agilent eclipse sb-C18 4,6×250 мм; длина волны детекции: 210 нм; подвижная фаза: 1% водный раствор муравьиной кислоты:метанол=20%:80%; скорость потока: 1,0 мл/мин; температура колонки: 25°C). Показатель преобразования Reb D составлял более 40% получали 0,054 г Reb M с чистотой более 95% после очистки последующими обработками, такими как разделение силикагелевой смолой, кристаллизация и т.д.
Пример 6: синтез Reb M ферментативным способом с Reb A в качестве субстрата (способ 2)
В этом примере в каталитическом синтезе Reb M использовали лиофилизированный порошок UGT-A, получаемый способом в примере 2, и лиофилизированный порошок UGT-B, получаемый способом в примере 4.
150 мл 0,05 моль/л фосфатного буфера (pH 7,0), 0,51 г UDP-глюкозы, 0,145 г Reb A и 1,5 г каждого из лиофилизированных порошков UGT-A и UGT-B последовательно добавляли в реакционную смесь, перемешивали до однородного состояния, затем помещали на водяную баню при 30°C и перемешивали при 160 об/мин для проведения реакции в течение 2 часов. После завершения реакции отбирали 500 мкл реакционного раствора и добавляли в равный объем безводного метанола и перемешивали до однородного состояния. Смесь центрифугировали в течение 10 мин при 8000 об/мин. Супернатант отбирали и пропускали через мембрану фильтра с последующей детекцией с использованием высокоэффективной жидкостной хроматографии (хроматографические условия: хроматографическая колонка: Agilent eclipse sb-C18 4,6×250 мм; длина волны детекции: 210 нм; подвижная фаза: 1% водный раствор муравьиной кислоты:метанол=20%:80%; скорость потока: 1,0 мл/мин; температура колонки: 25°C). Показатель преобразования Reb A составлял более 40%. 0,05 г Reb M с чистотой более 95% получали после очистки последующими обработками, такими как разделение силикагелевой смолой, кристаллизация и т.д.
Пример 7: синтез Reb M ферментативным способом с Reb D в качестве субстрата (способ 3)
В этом примере в качестве донора глюкозила использовали систему регенерации UDP-глюкозы, состоящую из сахарозы, сахарозосинтетазы (AtSUS1 для краткого обозначения в дальнейшем) из Arabidopsis thaliana и UDP.
150 мл 0,05 моль/л фосфатного буфера (pH 7,0), 0,182 г UDP, 51,3 г сахарозы, 0,17 г Reb D, 1,5 г лиофилизированного порошка UGT-A и 0,5 г лиофилизированного порошка AtSUS1 последовательно добавляли в реакционную смесь, перемешивали до однородного состояния, затем помещали на водяную баню при 30°C и перемешивали при 160 об/мин для проведения реакции в течение 2 часов. После завершения реакции отбирали 500 мкл реакционного раствора и добавляли в равный объем безводного метанола, и перемешивали до однородного состояния. Смесь центрифугировали в течение 10 мин при 8000 об/мин. Супернатант отбирали и пропускали через мембрану фильтра с последующей детекцией с использованием высокоэффективной жидкостной хроматографии (хроматографические условия: хроматографическая колонка: Agilent eclipse sb-C18 4,6×250 мм; длина волны детекции: 210 нм; подвижная фаза: 1% водный раствор муравьиной кислоты:метанол=20%:80%; скорость потока: 1,0 мл/мин; температура колонки: 25°C). Показатель преобразования Reb D составлял более 80%. Получали 0,11 г Reb M с чистотой более 95% после очистки последующими обработками, такими как разделение силикагелевой смолой, кристаллизация и т.д.
Пример 8: синтез Reb M ферментативным способом с Reb A в качестве субстрата (способ 4)
В этом примере в качестве донора глюкозила использовали систему регенерации UDP-глюкозы, состоящую из сахарозы, сахарозосинтетазы (в дальнейшем обозначаемую как AtSUS1) из Arabidopsis thaliana и UDP.
150 мл 0,05 моль/л фосфатного буфера (pH 7,0), 0,364 г UDP, 51,3 г сахарозы, 0,145 г Reb A, 1,5 г каждого из UGT-A и UGT-B и 0,5 г лиофилизированного порошка AtSUS1 последовательно добавляли в реакционную смесь, перемешивали до однородного состояния, затем помещали на водяную баню при 30°C и перемешивали при 160 об/мин для проведения реакции в течение 2 часов. После завершения реакции отбирали 500 мкл реакционного раствора и добавляли в равный объем безводного метанола и перемешивали до однородного состояния. Смесь центрифугировали в течение 10 мин при 8000 об/мин. Супернатант отбирали и пропускали через мембрану фильтра с последующей детекцией с использованием высокоэффективной жидкостной хроматографии (хроматографические условия: хроматографическая колонка: Agilent eclipse sb-C18 4,6×250 мм; длина волны детекции: 210 нм; подвижная фаза: 1% водный раствор муравьиной кислоты:метанол=20%: 80%; скорость потока: 1,0 мл/мин; температура колонки: 25°C). Показатель преобразования Reb A составлял более 80%. Получали 0,108 г Reb M с чистотой более 95% после очистки последующими обработками, такими как разделение силикагелевой смолой, кристаллизация и т.д.
Пример 9: синтез Reb M цельноклеточным каталитическим синтезом с Reb D в качестве субстрата
В этом примере в каталитическом синтезе использовали Reb M рекомбинантные клетки, содержащие UGT-A, получаемые способом в примере 1.
150 мл 0,05 моль/л фосфатного буфера (pH 7,0), 0,255 г UDP-глюкозы, 3 мл толуола, 0,17 г Reb D и 10 г рекомбинантных клеток, содержащих UGT-A, последовательно добавляли в реакционную смесь, перемешивали до однородного состояния, затем помещали на водяную баню при 30°C и перемешивали при 160 об/мин для проведения реакции в течение 2 часов. После завершения реакции отбирали 500 мкл реакционного раствора и добавляли в равный объем безводного метанола, и перемешивали до однородного состояния. Смесь центрифугировали в течение 10 мин при 8000 об/мин. Супернатант отбирали и пропускали через мембрану фильтра с последующей детекцией с использованием высокоэффективной жидкостной хроматографии (хроматографические условия: хроматографическая колонка: Agilent eclipse sb-C18 4,6×250 мм; длина волны детекции: 210 нм; подвижная фаза: 1% водный раствор муравьиной кислоты:метанол=20%:80%; скорость потока: 1,0 мл/мин; температура колонки: 25°C). Показатель преобразования Reb D составлял более 40%. Получали 0,052 г Reb M с чистотой более 95% после очистки последующими обработками, такими как, центрифугирование, разделение путем пропускания супернатанта через силикагелевую смолу, кристаллизация и т.д.
Пример 10: синтез Reb M цельноклеточным каталитическим синтезом с Reb A в качестве субстрата
150 мл 0,05 моль/л фосфатного буфера (pH 7,0), 0,51 г UDP-глюкозы, 3 мл толуола, 0,145 г Reb A и 10 г целых клеток, содержащих UGT-A и UGT-B, одновременно последовательно добавляли в реакционный раствор, перемешивали до однородного состояния, затем помещали на водяную баню при 30°C и перемешивали при 160 об/мин для проведения реакции в течение 2 часов. После завершения реакции отбирали 500 мкл реакционного раствора и добавляли в равный объем безводного метанола и перемешивали до однородного состояния. Смесь центрифугировали в течение 10 мин при 8000 об/мин. Супернатант отбирали и пропускали через мембрану фильтра с последующей детекцией с использованием высокоэффективной жидкостной хроматографии (хроматографические условия: хроматографическая колонка: Agilent eclipse sb-C18 4,6×250 мм; длина волны детекции: 210 нм; подвижная фаза: 1% водный раствор муравьиной кислоты:метанол=20%:80%; скорость потока: 1,0 мл/мин; температура колонки: 25°C). Показатель преобразования Reb A составлял более 40%. Получали 0,05 г Reb M с чистотой более 95% после очистки последующими обработками, такими как центрифугирование, разделение путем пропускания супернатанта через силикагелевую смолу, кристаллизация и т.д.
Указанные выше примеры используют только для описания технической концепции и признака настоящего изобретения, для обеспечения возможности понимания специалистом в данной области и таким образом осуществления содержания настоящего изобретения, а не ограничения объема патентной защиты настоящего изобретения. Любые эквивалентные изменения или модификации, проводимые в рамках объема и сущности настоящего изобретения, должны быть включены в объем патентной защиты настоящего изобретения.
Claims (21)
1. Способ получения ребаудиозида М, включающий взаимодействие ребаудиозида D с донором глюкозила в присутствии UDP-глюкозилтрансферазы или рекомбинантных клеток, содержащих UDP-глюкозилтрансферазу, с получением ребаудиозида M,
в котором донором глюкозила является UDP-глюкоза или система регенерации UDP-глюкозы, включающая сахарозу, сахарозасинтетазу и UDP,
где UDP-глюкозилтрансфераза имеет аминокислотную последовательность, имеющую по меньшей мере 90% идентичность SEQ ID NO:2, и
в котором рекомбинантные клетки представляют собой микробные клетки, выбранные из группы, состоящей из клеток Escherichia coli, Saccharomyces cerevisiae или Pichia pastoris, и
где по меньшей мере 40% ребаудиозида D превращается в ребаудиозид М после взаимодействия в течение двух часов.
2. Способ по п.1, в котором взаимодействие ребаудиозида D с донором глюкозила в присутствии UDP-глюкозилтрансферазы или рекомбинантных клеток, содержащих UDP-глюкозилтрансферазу, проводят в водно-фазовой системе при температуре от 25 до 35°С и рН от 6,5 до 7,5.
3. Способ по п.2, в котором водно-фазовая система содержит фосфатный буфер при рН 7,0.
4. Способ по п.2, в котором взаимодействие ребаудиозида D с донором глюкозила происходит в присутствии рекомбинантных клеток, содержащих UDP-глюкозилтрансферазу, и где водно-фазовая система дополнительно содержит толуол в концентрации от 1 до 3% по объемному соотношению.
5. Способ получения ребаудиозида М, включающий
a. взаимодействие ребаудиозида А с донором глюкозила в присутствии первой UDP-глюкозилтрансферазы или рекомбинантных клеток, содержащих первую UDP-глюкозилтрансферазу с образованием ребаудиозида D, и
b. взаимодействие ребаудиозида D с донором глюкозила в присутствии второй UDP-глюкозилтрансферазы или рекомбинантных клеток, содержащих вторую UDP-глюкозилтрансферазу, с получением ребаудиозида M,
в котором донором глюкозила является UDP-глюкоза или система регенерации UDP-глюкозы, включающая сахарозу, сахарозасинтетазу и UDP,
в котором рекомбинантные клетки представляют собой микробные клетки, выбранные из группы, состоящей из клеток Escherichia coli, Saccharomyces cerevisiae или Pichia pastoris, и
где первая UDP-глюкозилтрансфераза имеет аминокислотную последовательность, имеющую по меньшей мере 90% идентичность с SEQ ID NO: 4, и где вторая UDP-глюкозилтрансфераза имеет аминокислотную последовательность, имеющую по меньшей мере 90% идентичность SEQ ID NO: 2, а также
где по меньшей мере 40% ребаудиозида А превращается в ребаудиозид М после взаимодействия в течение двух часов.
6. Способ по п.5, в котором первая UDP-глюкозилтрансфераза и вторая UDP-глюкозилтрансфераза присутствуют в массовом соотношении от 1:0,8 до 1:1,2.
7. Способ по п.5, в котором взаимодействие ребаудиозида А с донором глюкозила в присутствии первой UDP-глюкозилтрансферазы или рекомбинантных клеток, содержащих первую UDP-глюкозилтрансферазу, проводят в водно-фазовой системе при температуре от 25 до 35ºC и pH от 6,5 до 7,5.
8. Способ по п.5, в котором взаимодействие ребаудиозида D с донором глюкозила в присутствии второй UDP-глюкозилтрансферазы или рекомбинантных клеток, содержащих вторую UDP-глюкозилтрансферазу, проводят в водно-фазовой системе при температуре от 25 до 35ºC и pH от 6,5 до 7,5.
9. Способ по п.8, в котором водно-фазовая система содержит фосфатный буфер при рН 7,0.
10. Способ по п.5, в котором взаимодействие ребаудиозида А с донором глюкозила происходит в присутствии рекомбинантных клеток, содержащих первую UDP-глюкозилтрансферазу, и где водно-фазовая система дополнительно содержит толуол в концентрации от 1 до 3 % по объемному соотношению.
11. Способ по п.10, в котором взаимодействие ребаудиозида D с донором глюкозила происходит в присутствии рекомбинантных клеток, включающих вторую UDP-глюкозилтрансферазу, и где водно-фазовая система дополнительно содержит толуол в концентрации от 1 до 3 % по объемному соотношению.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310353500.9 | 2013-08-14 | ||
CN201310353500.9A CN103397064B (zh) | 2013-08-14 | 2013-08-14 | 一种酶法制备瑞鲍迪甙m的方法 |
PCT/CN2013/084644 WO2015021690A1 (zh) | 2013-08-14 | 2013-09-29 | 一种酶法制备瑞鲍迪甙m的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2016108660A RU2016108660A (ru) | 2017-09-18 |
RU2658436C2 true RU2658436C2 (ru) | 2018-06-21 |
Family
ID=49560764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016108660A RU2658436C2 (ru) | 2013-08-14 | 2013-09-29 | Способ получения ребаудиозида m с использованием ферментативного способа |
Country Status (11)
Country | Link |
---|---|
US (2) | US10301662B2 (ru) |
EP (1) | EP3034614A4 (ru) |
JP (1) | JP6272485B2 (ru) |
CN (1) | CN103397064B (ru) |
AU (1) | AU2013398146B2 (ru) |
BR (1) | BR112016003035A2 (ru) |
CA (1) | CA2921247C (ru) |
HK (1) | HK1226103A1 (ru) |
MX (1) | MX2016001986A (ru) |
RU (1) | RU2658436C2 (ru) |
WO (1) | WO2015021690A1 (ru) |
Families Citing this family (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011153378A1 (en) | 2010-06-02 | 2011-12-08 | Abunda Nutrition, Inc. | Recombinant Production of Steviol Glycosides |
US9631215B2 (en) | 2011-08-08 | 2017-04-25 | Evolva Sa | Recombinant production of steviol glycosides |
US9752174B2 (en) | 2013-05-28 | 2017-09-05 | Purecircle Sdn Bhd | High-purity steviol glycosides |
EP4012041A1 (en) * | 2012-05-22 | 2022-06-15 | PureCircle SDN BHD | High-purity steviol glycosides |
MX369525B (es) | 2013-02-06 | 2019-11-11 | Evolva Sa | Métodos para mejorar la produccion de rebaudiosido d y rebaudiosido m. |
CA2900882A1 (en) | 2013-02-11 | 2014-08-14 | Evolva Sa | Efficient production of steviol glycosides in recombinants hosts |
CN103397064B (zh) | 2013-08-14 | 2015-04-15 | 苏州汉酶生物技术有限公司 | 一种酶法制备瑞鲍迪甙m的方法 |
CN106471128A (zh) * | 2014-01-28 | 2017-03-01 | 百事可乐公司 | 一种酶法制备瑞鲍迪甙m的方法 |
US9522929B2 (en) * | 2014-05-05 | 2016-12-20 | Conagen Inc. | Non-caloric sweetener |
CN105087739B (zh) * | 2014-05-12 | 2019-11-05 | 中国科学院上海生命科学研究院 | 一种新的制备稀有人参皂苷的催化体系及其应用 |
CN104163839A (zh) * | 2014-07-04 | 2014-11-26 | 苏州景泓生物技术有限公司 | 一种制备莱鲍迪苷m的工艺方法 |
CN114410493A (zh) | 2014-08-11 | 2022-04-29 | 埃沃尔瓦公司 | 在重组宿主中生产甜菊醇糖苷 |
CN104151378A (zh) * | 2014-08-12 | 2014-11-19 | 济南汉定生物工程有限公司 | 一种甜菊糖甙rm的提纯方法 |
MX2017003130A (es) | 2014-09-09 | 2017-10-24 | Evolva Sa | Produccion de glucosidos de esteviol en hospederos recombinantes. |
CN104232496B (zh) * | 2014-09-18 | 2017-06-06 | 广州康琳奈生物科技有限公司 | 一种重组毕赤酵母工程菌及其在合成莱鲍迪苷a中的应用 |
EP3200615B1 (en) * | 2014-10-03 | 2019-05-29 | Conagen Inc. | Non-caloric sweeteners and methods for synthesizing |
WO2016073740A1 (en) * | 2014-11-05 | 2016-05-12 | Manus Biosynthesis, Inc. | Microbial production of steviol glycosides |
CA2973674A1 (en) | 2015-01-30 | 2016-08-04 | Evolva Sa | Production of steviol glycosides in recombinant hosts |
WO2016146711A1 (en) | 2015-03-16 | 2016-09-22 | Dsm Ip Assets B.V. | Udp-glycosyltransferases |
CN104726523B (zh) * | 2015-03-28 | 2018-08-10 | 南京工业大学 | 一种酶法制备莱鲍迪苷m的方法 |
KR102569053B1 (ko) | 2015-04-14 | 2023-08-21 | 코나겐 인크. | 조작된 전체 세포 촉매를 사용한 비칼로리 감미료의 제조 |
CN105200098A (zh) * | 2015-06-30 | 2015-12-30 | 苏州汉酶生物技术有限公司 | 一种利用酿酒酵母酶法制备瑞鲍迪甙m的方法 |
WO2017025362A1 (en) | 2015-08-07 | 2017-02-16 | Evolva Sa | Production of steviol glycosides in recombinant hosts |
WO2017093895A1 (en) * | 2015-11-30 | 2017-06-08 | Purecircle Sdn Bhd | Process for producing high purity steviol glycosides |
EP3442355A1 (en) | 2016-04-13 | 2019-02-20 | Evolva SA | Production of steviol glycosides in recombinant hosts |
EP3458599A1 (en) | 2016-05-16 | 2019-03-27 | Evolva SA | Production of steviol glycosides in recombinant hosts |
US11299723B2 (en) | 2016-06-15 | 2022-04-12 | Codexis, Inc. | Engineered beta-glucosidases and glucosylation methods |
HUE064754T2 (hu) | 2016-10-14 | 2024-04-28 | Conagen Inc | Szteviol-glikozidok bioszintetikus elõállítása és az ehhez szükséges eljárások |
AU2016427120B2 (en) * | 2016-10-21 | 2022-08-18 | Pepsico, Inc. | Method for preparing rebaudioside C using enzymatic method |
RU2736352C1 (ru) * | 2016-10-21 | 2020-11-16 | Пепсико, Инк. | Способ получения ребаудиозида j с применением ферментативного способа |
CN116515929A (zh) | 2016-10-21 | 2023-08-01 | 百事可乐公司 | 一种酶法制备瑞鲍迪甙n的方法 |
WO2018083338A1 (en) | 2016-11-07 | 2018-05-11 | Evolva Sa | Production of steviol glycosides in recombinant hosts |
EP3878967A3 (en) | 2017-02-03 | 2021-12-08 | Codexis, Inc. | Engineered glycosyltransferases and steviol glycoside glucosylation methods |
RU2764803C2 (ru) * | 2017-03-06 | 2022-01-21 | Конаджен Инк. | Биосинтетическое получение стевиолового гликозида ребаудиозида d4 из ребаудиозида e |
CN110730614A (zh) | 2017-03-08 | 2020-01-24 | 谱赛科美国股份有限公司 | 高莱鲍迪苷m甜菊植物栽培品种及其产生方法 |
CN106866757B (zh) | 2017-03-16 | 2020-06-26 | 诸城市浩天药业有限公司 | 甜菊糖m苷晶型及制备方法和用途 |
PE20200291A1 (es) * | 2017-05-15 | 2020-02-05 | Purecircle Usa Inc | Glicosidos de esteviol de alta pureza |
MX2019015404A (es) | 2017-06-30 | 2020-07-20 | Conagen Inc | Hidrólisis de glucósidos de esteviol por beta-glucosidasa. |
CN107586809A (zh) * | 2017-10-09 | 2018-01-16 | 中国科学院天津工业生物技术研究所 | 一种生物催化合成大豆低聚糖的方法 |
CN108998485A (zh) * | 2018-06-28 | 2018-12-14 | 青岛润德生物科技有限公司 | 一种甜菊糖苷复合物及其制备方法 |
US11230724B2 (en) * | 2018-07-16 | 2022-01-25 | Manus Bio Inc. | Production of steviol glycosides through whole cell biotransformation of steviol glycoside intermediates |
CN109234341A (zh) * | 2018-09-29 | 2019-01-18 | 四川盈嘉合生科技有限公司 | 全细胞催化合成甜味剂组合物的方法 |
CN109393426A (zh) * | 2018-09-29 | 2019-03-01 | 四川盈嘉合生科技有限公司 | 一种复合甜味剂 |
CN111073923A (zh) * | 2018-10-22 | 2020-04-28 | 山东三元生物科技股份有限公司 | 一种莱鲍迪苷m的酶法制备方法 |
CN109588686A (zh) * | 2018-10-31 | 2019-04-09 | 郑书旺 | 一种复合甜味剂及其制备方法 |
CN115478060B (zh) * | 2021-06-16 | 2023-11-28 | 弈柯莱生物科技(集团)股份有限公司 | 一种糖基转移酶及其应用 |
KR102628374B1 (ko) * | 2021-10-19 | 2024-01-24 | 씨제이제일제당 주식회사 | 신규한 당전이효소 및 이의 용도 |
CN117660385A (zh) * | 2021-11-17 | 2024-03-08 | 江南大学 | 一种利用糖基转移酶高效生物合成莱鲍迪苷d的方法 |
CN114921434B (zh) * | 2022-05-27 | 2024-02-20 | 中化健康产业发展有限公司 | 催化Reb A生产Reb M的重组糖基转移酶 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2011115775A (ru) * | 2009-10-15 | 2012-11-10 | ПЬЮСЁРКЛ ЭсДиЭн БиЭйчДи (MY) | Ребаудиозид d высокой степени чистоты и его применение |
WO2013022989A2 (en) * | 2011-08-08 | 2013-02-14 | Evolva Sa | Recombinant production of steviol glycosides |
WO2013096420A1 (en) * | 2011-12-19 | 2013-06-27 | The Coca-Cola Company | Methods for purifying steviol glycosides and uses of the same |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX2009007834A (es) | 2007-01-22 | 2009-09-10 | Cargill Inc | Metodo para producir composiciones de rebaudiosido a purificado usando cristalizacion en solvente/ antisolvente. |
CN101225424B (zh) | 2007-09-13 | 2013-05-29 | 天津药物研究院 | 环黄芪醇的单葡萄糖苷、其制备方法、药物组合物和应用 |
MY158626A (en) * | 2008-10-03 | 2016-10-31 | Morita Kagaku Kogyo | New steviol glycoside |
WO2011153378A1 (en) | 2010-06-02 | 2011-12-08 | Abunda Nutrition, Inc. | Recombinant Production of Steviol Glycosides |
US8962698B2 (en) | 2011-01-28 | 2015-02-24 | Tate & Lyle Ingredients Americas Llc | Rebaudioside-mogroside V blends |
CN103031283B (zh) * | 2011-10-08 | 2015-07-08 | 成都华高瑞甜科技有限公司 | 甜叶菊酶vi及莱鲍迪苷a转化为莱鲍迪苷d的方法 |
CN103159808B (zh) * | 2011-12-09 | 2017-03-29 | 上海泓博智源医药股份有限公司 | 一种制备天然甜味剂的工艺方法 |
DK2806754T3 (en) | 2012-01-23 | 2019-02-18 | Dsm Ip Assets Bv | Diterpene PREPARATION |
CN102559528B (zh) * | 2012-02-09 | 2013-08-21 | 南京工业大学 | 一种产甜叶菊糖基转移酶ugt76g1的基因工程菌及其应用 |
EP4012041A1 (en) | 2012-05-22 | 2022-06-15 | PureCircle SDN BHD | High-purity steviol glycosides |
US9752174B2 (en) | 2013-05-28 | 2017-09-05 | Purecircle Sdn Bhd | High-purity steviol glycosides |
WO2014086890A1 (en) | 2012-12-05 | 2014-06-12 | Evolva Sa | Steviol glycoside compositions sensory properties |
CN103088041B (zh) | 2013-01-29 | 2015-01-07 | 江南大学 | 一种可用于高效生产角质酶的角质酶基因及其应用 |
MX369525B (es) | 2013-02-06 | 2019-11-11 | Evolva Sa | Métodos para mejorar la produccion de rebaudiosido d y rebaudiosido m. |
CN103397064B (zh) | 2013-08-14 | 2015-04-15 | 苏州汉酶生物技术有限公司 | 一种酶法制备瑞鲍迪甙m的方法 |
CN106471128A (zh) | 2014-01-28 | 2017-03-01 | 百事可乐公司 | 一种酶法制备瑞鲍迪甙m的方法 |
EP3302097B1 (en) | 2015-05-29 | 2022-03-23 | Cargill, Incorporated | Heat treatment to produce glycosides |
-
2013
- 2013-08-14 CN CN201310353500.9A patent/CN103397064B/zh active Active
- 2013-09-29 JP JP2016533776A patent/JP6272485B2/ja active Active
- 2013-09-29 RU RU2016108660A patent/RU2658436C2/ru active
- 2013-09-29 EP EP13891561.6A patent/EP3034614A4/en active Pending
- 2013-09-29 US US14/911,876 patent/US10301662B2/en active Active
- 2013-09-29 CA CA2921247A patent/CA2921247C/en active Active
- 2013-09-29 MX MX2016001986A patent/MX2016001986A/es active IP Right Grant
- 2013-09-29 WO PCT/CN2013/084644 patent/WO2015021690A1/zh active Application Filing
- 2013-09-29 AU AU2013398146A patent/AU2013398146B2/en active Active
- 2013-09-29 BR BR112016003035-4A patent/BR112016003035A2/pt not_active Application Discontinuation
-
2016
- 2016-12-20 HK HK16114443A patent/HK1226103A1/zh unknown
-
2019
- 2019-04-10 US US16/380,678 patent/US10428364B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2011115775A (ru) * | 2009-10-15 | 2012-11-10 | ПЬЮСЁРКЛ ЭсДиЭн БиЭйчДи (MY) | Ребаудиозид d высокой степени чистоты и его применение |
WO2013022989A2 (en) * | 2011-08-08 | 2013-02-14 | Evolva Sa | Recombinant production of steviol glycosides |
WO2013096420A1 (en) * | 2011-12-19 | 2013-06-27 | The Coca-Cola Company | Methods for purifying steviol glycosides and uses of the same |
Non-Patent Citations (3)
Title |
---|
Data base GenBank: * |
Data base GenBank: AAR06912.1, 28.12.2004. * |
Data base UniProtKB - Q0DPB7, 12.10.2009. * |
Also Published As
Publication number | Publication date |
---|---|
BR112016003035A2 (pt) | 2018-02-06 |
EP3034614A1 (en) | 2016-06-22 |
EP3034614A4 (en) | 2017-04-12 |
CA2921247C (en) | 2021-04-06 |
AU2013398146A1 (en) | 2016-04-07 |
CN103397064A (zh) | 2013-11-20 |
WO2015021690A1 (zh) | 2015-02-19 |
JP2016527892A (ja) | 2016-09-15 |
AU2013398146B2 (en) | 2017-07-13 |
JP6272485B2 (ja) | 2018-01-31 |
RU2016108660A (ru) | 2017-09-18 |
CN103397064B (zh) | 2015-04-15 |
CA2921247A1 (en) | 2015-02-19 |
US10301662B2 (en) | 2019-05-28 |
US20160298159A1 (en) | 2016-10-13 |
HK1226103A1 (zh) | 2017-09-22 |
US10428364B2 (en) | 2019-10-01 |
MX2016001986A (es) | 2016-10-26 |
US20190233866A1 (en) | 2019-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2658436C2 (ru) | Способ получения ребаудиозида m с использованием ферментативного способа | |
RU2737118C2 (ru) | Способ получения ребаудиозида n с применением ферментативного способа | |
WO2017000366A1 (zh) | 一种利用酿酒酵母酶法制备瑞鲍迪甙m的方法 | |
JP2017504341A (ja) | 酵素法を使用することによりレバウディオサイドmを調製する方法 | |
US11976312B2 (en) | Enzymatic method for preparing Rebaudioside C | |
RU2736352C1 (ru) | Способ получения ребаудиозида j с применением ферментативного способа | |
JP2019532650A5 (ru) | ||
JP7210626B2 (ja) | 酵素的方法を使用してレバウディオサイドjを調製するための方法 |