RU2652260C2 - Способ лазерного разделения изотопов лития - Google Patents
Способ лазерного разделения изотопов лития Download PDFInfo
- Publication number
- RU2652260C2 RU2652260C2 RU2016138917A RU2016138917A RU2652260C2 RU 2652260 C2 RU2652260 C2 RU 2652260C2 RU 2016138917 A RU2016138917 A RU 2016138917A RU 2016138917 A RU2016138917 A RU 2016138917A RU 2652260 C2 RU2652260 C2 RU 2652260C2
- Authority
- RU
- Russia
- Prior art keywords
- mcm
- radiation
- laser
- microns
- lithium
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 15
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 11
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 11
- 238000000926 separation method Methods 0.000 title claims abstract description 9
- 230000005855 radiation Effects 0.000 claims abstract description 37
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 claims abstract description 19
- 230000000694 effects Effects 0.000 claims abstract description 13
- 150000002500 ions Chemical class 0.000 claims abstract description 11
- 238000000605 extraction Methods 0.000 claims abstract description 7
- 230000003287 optical effect Effects 0.000 claims abstract description 7
- 230000001678 irradiating effect Effects 0.000 abstract description 3
- 238000002955 isolation Methods 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 11
- 239000000460 chlorine Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 230000005641 tunneling Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000005284 excitation Effects 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 4
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 4
- 230000000155 isotopic effect Effects 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 230000005865 ionizing radiation Effects 0.000 description 3
- 238000005369 laser isotope separation Methods 0.000 description 3
- 230000005281 excited state Effects 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000000132 electrospray ionisation Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000001871 ion mobility spectroscopy Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000005372 isotope separation Methods 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000006303 photolysis reaction Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D59/00—Separation of different isotopes of the same chemical element
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Lasers (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
Изобретение относится к области разделения изотопов лития и может быть использовано для получения изотопически обогащенного лития. Способ лазерного разделения изотопов лития включает облучение паров хлористого лития (LiCl) резонансным инфракрасным излучением с длиной волны 14,79 мкм, 7,451 мкм, 5,006 мкм, 3,783 мкм, 3,050 мкм, 2,562 мкм, 2,213 мкм или 1,952 мкм, последующее воздействие лазерным излучением с диапазоном излучения оптическим или инфракрасным и интенсивностью более 3×1013 Вт/см2 и экстракцию образованных положительных ионов, причем время между воздействиями резонансного инфракрасного и лазерного излучений не должно превышать время распада колебательного состояния LiCl. Изобретение обеспечивает повышение эффективности выделения изотопов лития лазерным излучением. 2 ил.
Description
Изобретение относится к молекулярной физике, а именно к области разделения изотопов лития, и может быть использовано для получения изотопически обогащенного лития.
Методы лазерного разделения изотопов являются эффективными методами получения химических элементов определенного изотопического состава [Летохов B.C., Мур С.Б. Квантовая электроника, т. 3, вып. 3, 4, 1976 г.], что связано с возможностью значительного изотопического обогащения за один цикл. Лазерные методы разделения изотопов основаны на селективном возбуждении лазерным излучением электронных или колебательных уровней атомов или молекул определенного изотопического состава. Метод избирательной стимуляции одного молекулярного компонента в смеси [WO 9712373; МПК B01D 53/00; B01D 59/34; G01N 21/63; опубл. 1997.04.03] предполагает переход обоих компонентов в первое возбужденное состояние при первом импульсе лазерного излучения и выборочный переход одного компонента во второе возбужденное состояние при втором импульсе лазерного излучения длительностью порядка 10-15 с.
Способ разделения и обогащения стабильных изотопов в газовой фазе с использованием принципов спектрометрии ионной подвижности при атмосферном давлении (760 мм рт.ст.) и при комнатной температуре (298 К), согласно патенту US 6831271 [B01D 59/46; B01D 59/48; G01N 27/62; G01N 27/64; H01J 49/04; H01J 49/40; H01J 49/42, 2004.12.14], может быть использован для разделения и обогащения изотопов лития. Электроспрей-ионизация используется для создания газовой смеси ионов, и ионные пучки на выходе из сильного поля с асимметричной формой волны спектрометра подвижности ионов попадают в масс-спектрометр для идентификации изотопов.
Известен способ [патент RU 2530062 от 10.10.2014] лазерного разделения изотопов хлора, согласно которому осуществляют облучение исходного газа резонансным инфракрасным излучением, последующее воздействие сильным лазерным излучением и экстракцию образованных положительных ионов, отличающийся тем, что в качестве исходного газа используется хлористый водород (HCl), длина волны резонансного инфракрасного излучения 3,782 мкм, диапазон лазерного излучения оптический или инфракрасный, а интенсивность сильного лазерного излучения превышает 1013 Вт/см2, причем время между воздействиями резонансного инфракрасного и лазерного излучений не должно превышать время распада колебательного состояния НС1.
Известен способ [патент RU 2531178 от 12.10.2014] лазерного разделения изотопов водорода, включающий облучение исходного газа резонансным инфракрасным излучением, последующее воздействие лазерным излучением и экстракцию образованных положительных ионов, отличающийся тем, что в качестве исходного газа используется хлористый водород (смесь HCl и DCl), длина волны резонансного инфракрасного излучения 4,662 мкм, диапазон лазерного излучения оптический или инфракрасный, а интенсивность превышает 1013 Вт/см2, причем время между воздействиями резонансного инфракрасного и сильного лазерного излучений не должно превышать время распада колебательного состояния DCl.
Известен способ разделения различных изотопов по патенту GB 1529391 (B01D 59/34; G02B 27/00; H01S 3/08, 1978.10.18), согласно которому пар, содержащий смесь изотопов, облучают для возбуждения изотопов одного типа до повышенного колебательного состояния и перехода возбужденных изотопов на более высокий электронный уровень, на котором электронные заряды разделяются. Пар обеспечивает сильно насыщенную атмосферу, которая не является растворителем для изотопов.
Известен способ [патент GB 1473330, МПК B01D 59/34; B01J 19/12; G02B 27/00; H01S 3/00; H01S 3/094; H01S 3/22; от 23.10.1973] лазерного разделения изотопов, взятый за прототип, основанный на изотопически-селективном возбуждении молекул газовой фазы в процессе инфракрасного поглощения фотонов, который включает в себя следующие стадии: облучение молекул ИК-излучением с помощью ИК-лазера при интенсивности по крайней мере 104 Вт/см2 в течение времени от 10-10 до 5×10-5 с, причем молекулы, содержащие желаемый изотоп или изотопы, преимущественно возбуждены резонансным излучением и поглощают больше чем один квант ИК-излучения; преобразование возбужденных молекул в процессе облучения лазером оптического или УФ диапазона для осуществления фотодиссоциации, в котором возбужденные молекулы могут быть отделены от невозбужденных.
Селективное колебательное возбуждение считается наиболее трудным методом [Летохов B.C., Мур С.Б., цит. соч., стр. 253]. Это связано с тем, что, несмотря на простоту селективного колебательного возбуждения, затруднено дальнейшее выделение колебательно возбужденных молекул.
Задачей изобретения является устранение недостатков, присущих прототипу.
Технический результат заключается в повышении эффективности выделения изотопов лития лазерным излучением.
Технический результат достигается тем, что в способе лазерного разделения изотопов лития, включающем облучение исходного газа резонансным инфракрасным излучением, последующее воздействие сильным лазерным излучением и экстракцию образованных положительных ионов, согласно изобретению в качестве исходного газа используются пары хлористого лития (LiCl). Длина волны резонансного инфракрасного излучения должна иметь одно из значений: 14,79 мкм, 7,451 мкм, 5,006 мкм, 3,783 мкм, 3,050 мкм, 2,562 мкм, 2,213 мкм или 1,952 мкм, диапазон сильного лазерного излучения оптический или инфракрасный, а интенсивность превышает 3×1013 Вт/см2, причем время между воздействиями резонансного инфракрасного и сильного лазерного излучений не должно превышать время распада колебательного состояния LiCl.
Предлагается использовать эффект антистоксова усиления туннельной ионизации молекул. Этот эффект, предложенный в работе [Kornev A.S., Zon B.A. Phys. Rev. A 86, 043401 (2012)] и более детально рассмотренный в работе [Kornev A.S., Zon B.A. Laser Phys. 24, 115302 (2014)] применительно к молекуле HF, состоит в значительном увеличении вероятности туннельного эффекта в лазерном поле для колебательно-возбужденных молекул. При туннельном эффекте в лазерном поле возможен неупругий процесс, когда часть энергии передается туннелирующему электрону от иных степеней свободы в атомах [Kornev A.S. et al. Phys. Rev. A 68, 065403 (2003); 69, 065401 (2004); 79, 063405 (2009); 84, 053424 (2011); 85, 035402 (2012)] или молекулах [Kornev A.S., Zon B.A., Phys. Rev. A 86, 043401 (2012); Kornev A.S., Zon B.A. Laser Phys. 24, 115302 (2014)]. Для молекул такими иными степенями свободы могут являться колебательные степени свободы ядер атомов, образующих молекулу. Предварительное возбуждение ядерных колебаний позволяет в результате туннельного эффекта образовывать ионы с преимущественным содержанием определенных изотопов, поскольку нейтральные молекулы разного изотопического состава имеют разные частоты колебательных переходов.
На фиг. 1 приведена таблица значений длины волн резонансного инфракрасного излучения для разных возбужденных колебательных состояний (υi=1, 2, …, 8).
На фиг. 2 показана зависимость отношения вероятности образования ионов Li6Cl+ из возбужденных колебательных состояний (υi=1, 2, …, 8) к вероятности образования ионов Li7Cl+ из основного колебательного состояния (υi=0), в зависимости от интенсивности лазерного излучения I. При этом предполагается, что молекулы LiCl содержат единственный изотоп Cl35.
Пары хлористого лития (температура кипения 1368°С при давлении 760 мм рт.ст.), содержащие смесь изотопов Li6 и Li7 (в природе распространенность этих изотопов составляет 7,5% и 92,5% соответственно), облучаются инфракрасным излучением с длиной волны λр в соответствии с данными из таблицы 1 для заселения υi-го колебательного состояния молекулы Li6Cl. После этого на объем газа, подвергшийся облучению с указанной выше длиной волны, воздействуют лазерным излучением оптического или ИК-диапазона, причем интенсивность излучения I должна быть достаточно высокой, чтобы ионизация проходила вследствие туннельного эффекта, то есть удовлетворять неравенству
где E0 - потенциал ионизации молекулы, λ - длина волны ионизирующего излучения, а = 0,529 Å = 0,529×10-10 м - атомная единица длины (боровский радиус), Е а = 27,2 эВ = 4,36×10-18 Дж - атомная единица энергии, Ia = 3,51×1016 Вт см-2 = 3,51×1020 Вт м-2 - атомная единица интенсивности, αе=7,23×10-3 - постоянная тонкой структуры.
Для молекулы хлористого лития LiCl эта интенсивность должна превышать 3×1013 Вт/см2 при длине волны ионизирующего излучения 1,3 мкм или 1,4×1013 Вт/см2 при длине волны ионизирующего излучения 2,0 мкм. Интервал времени между облучением резонансным инфракрасным излучением и мощным лазерным излучением не должен превышать времени жизни колебательного состояния, зависящего от давления и температуры газа. Вследствие туннельного эффекта преимущественно ионизуются колебательно-возбужденные молекулы, то есть молекулы Li6Cl. Далее путем экстракции положительных ионов получают хлористый литий с повышенным по сравнению с исходным содержанием изотопа Li6.
Из зависимости на фиг. 1 видно, что в оптимальных условиях, при интенсивности лазерного излучения ~1013 Вт/см2, вероятность образования Li6Cl+ превышает вероятность образования ионов Li7Cl+ более чем в 5 раз.
Claims (1)
- Способ лазерного разделения изотопов лития, включающий облучение исходного газа резонансным инфракрасным излучением, последующее воздействие лазерным излучением и экстракцию образованных положительных ионов, отличающийся тем, что в качестве исходного газа используются пары хлористого лития (LiCl), длина волны резонансного инфракрасного излучения должна иметь одно из значений 14,79 мкм, 7,451 мкм, 5,006 мкм, 3,783 мкм, 3,050 мкм, 2,562 мкм, 2,213 мкм или 1,952 мкм, диапазон сильного лазерного излучения оптический или инфракрасный, а интенсивность превышает 3×1013 Вт/см2, причем время между воздействиями резонансного инфракрасного и лазерного излучений не должно превышать время распада колебательного состояния LiCl.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016138917A RU2652260C2 (ru) | 2016-10-03 | 2016-10-03 | Способ лазерного разделения изотопов лития |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016138917A RU2652260C2 (ru) | 2016-10-03 | 2016-10-03 | Способ лазерного разделения изотопов лития |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2016138917A RU2016138917A (ru) | 2018-04-03 |
RU2652260C2 true RU2652260C2 (ru) | 2018-04-25 |
Family
ID=61866784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016138917A RU2652260C2 (ru) | 2016-10-03 | 2016-10-03 | Способ лазерного разделения изотопов лития |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2652260C2 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2724748C1 (ru) * | 2019-11-19 | 2020-06-25 | федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет" (ФГБОУ ВО "ВГУ") | Способ лазерного разделения изотопов кислорода |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3937956A (en) * | 1973-10-23 | 1976-02-10 | Exxon Research & Engineering Company | Isotope separation process |
US4044252A (en) * | 1975-01-02 | 1977-08-23 | Bell Telephone Laboratories, Incorporated | Separation of chemical species |
WO1997012373A2 (en) * | 1995-09-15 | 1997-04-03 | British Nuclear Fuels Plc | Method and apparatus for laser separation of molecular compounds |
US6831271B1 (en) * | 1998-08-05 | 2004-12-14 | National Research Council Canada | Method for separation and enrichment of isotopes in gaseous phase |
RU2531178C2 (ru) * | 2012-12-18 | 2014-10-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный университет" (ФГБОУ ВПО "ВГУ") | Способ лазерного разделения изотопов водорода |
-
2016
- 2016-10-03 RU RU2016138917A patent/RU2652260C2/ru not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3937956A (en) * | 1973-10-23 | 1976-02-10 | Exxon Research & Engineering Company | Isotope separation process |
US4044252A (en) * | 1975-01-02 | 1977-08-23 | Bell Telephone Laboratories, Incorporated | Separation of chemical species |
WO1997012373A2 (en) * | 1995-09-15 | 1997-04-03 | British Nuclear Fuels Plc | Method and apparatus for laser separation of molecular compounds |
US6831271B1 (en) * | 1998-08-05 | 2004-12-14 | National Research Council Canada | Method for separation and enrichment of isotopes in gaseous phase |
RU2531178C2 (ru) * | 2012-12-18 | 2014-10-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный университет" (ФГБОУ ВПО "ВГУ") | Способ лазерного разделения изотопов водорода |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2724748C1 (ru) * | 2019-11-19 | 2020-06-25 | федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет" (ФГБОУ ВО "ВГУ") | Способ лазерного разделения изотопов кислорода |
Also Published As
Publication number | Publication date |
---|---|
RU2016138917A (ru) | 2018-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Nakashima et al. | Large molecules in high-intensity laser fields | |
RU2531178C2 (ru) | Способ лазерного разделения изотопов водорода | |
RU2652260C2 (ru) | Способ лазерного разделения изотопов лития | |
Ozenne et al. | Laser photodissociation of the isotopic hydrogen molecular ions. Comparison between experimental and ab initio computed fragment kinetic energy spectra | |
RU2530062C2 (ru) | Способ лазерного разделения изотопов хлора | |
Rottke et al. | Multiphoton ionization and dissociation of | |
RU2724748C1 (ru) | Способ лазерного разделения изотопов кислорода | |
RU2651338C2 (ru) | Способ лазерного разделения изотопов йода | |
RU2620051C2 (ru) | Способ лазерного разделения изотопов фтора | |
Tang et al. | Photodissociation Study of Ethyl Bromide in the Ultraviolet Range by the Ion‐Velocity Imaging Technique | |
RU2750381C1 (ru) | Способ лазерного разделения изотопов азота | |
Svrčková et al. | Photodissociation dynamics of ethanethiol in clusters: complementary information from velocity map imaging, mass spectrometry and calculations | |
JP4581958B2 (ja) | 質量分析装置 | |
Tian | Photoion-pair dissociation dynamics of polyatomic molecules with synchrotron radiation | |
Adams et al. | Photoelectron spectroscopy of 1-nitropropane and 1-nitrobutane anions | |
L'Huillier | Atoms in strong laser fields | |
US7323651B2 (en) | Method for isotope separation of thallium | |
JP2008282595A (ja) | 質量分析方法及び質量分析装置 | |
Sassin et al. | Photodissociation and collisional cooling of rhodamine 575 cations in a quadrupole ion trap | |
Sharma et al. | Wavelength‐dependent Coulomb explosion in carbon disulphide (CS2) clusters: generation of energetic multiply charged carbon and sulphur ions | |
US5443702A (en) | Laser isotope separation of erbium and other isotopes | |
Niki et al. | Laser isotope separation of zirconium for nuclear transmutation process | |
Sharma et al. | Multiphoton dissociation/ionization of CHCl3 and CFCl3 at 355 nm: an experimental and theoretical study | |
Saquet et al. | Effect of electronic angular momentum exchange on photoelectron anisotropy following the two-color ionization of krypton atoms | |
Lichtin et al. | Potential analytical aspects of laser multiphoton ionization mass spectrometry |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20191004 |