RU2652195C1 - Distributor catalyst and transport gas for the reactor - reclaimer system of the c3-c5 paraffin hydrocarbon dehydrogenation plants with the fluidized bed - Google Patents
Distributor catalyst and transport gas for the reactor - reclaimer system of the c3-c5 paraffin hydrocarbon dehydrogenation plants with the fluidized bed Download PDFInfo
- Publication number
- RU2652195C1 RU2652195C1 RU2017123636A RU2017123636A RU2652195C1 RU 2652195 C1 RU2652195 C1 RU 2652195C1 RU 2017123636 A RU2017123636 A RU 2017123636A RU 2017123636 A RU2017123636 A RU 2017123636A RU 2652195 C1 RU2652195 C1 RU 2652195C1
- Authority
- RU
- Russia
- Prior art keywords
- catalyst
- paragraphs
- cone
- reactor
- mixer
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 86
- 229930195733 hydrocarbon Natural products 0.000 title claims abstract description 25
- 150000002430 hydrocarbons Chemical class 0.000 title claims abstract description 23
- 239000012188 paraffin wax Substances 0.000 title claims abstract description 15
- 238000006356 dehydrogenation reaction Methods 0.000 title claims abstract description 13
- 239000004215 Carbon black (E152) Substances 0.000 title claims abstract description 6
- 239000000203 mixture Substances 0.000 claims abstract description 12
- 238000007664 blowing Methods 0.000 claims description 4
- 239000000571 coke Substances 0.000 abstract description 11
- 230000008929 regeneration Effects 0.000 abstract description 8
- 238000011069 regeneration method Methods 0.000 abstract description 8
- 230000003628 erosive effect Effects 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 abstract description 3
- 230000007717 exclusion Effects 0.000 abstract description 3
- -1 polypropylene Polymers 0.000 abstract description 3
- 229920003051 synthetic elastomer Polymers 0.000 abstract description 3
- 239000005061 synthetic rubber Substances 0.000 abstract description 3
- 239000004743 Polypropylene Substances 0.000 abstract description 2
- 239000000178 monomer Substances 0.000 abstract description 2
- 229920001155 polypropylene Polymers 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract 1
- 239000003348 petrochemical agent Substances 0.000 abstract 1
- 238000000638 solvent extraction Methods 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 61
- 239000000725 suspension Substances 0.000 description 8
- 238000009826 distribution Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000009434 installation Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000009827 uniform distribution Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical class C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000002679 ablation Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- QQHSIRTYSFLSRM-UHFFFAOYSA-N alumanylidynechromium Chemical compound [Al].[Cr] QQHSIRTYSFLSRM-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C5/00—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
- C07C5/32—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
- C07C5/321—Catalytic processes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C5/00—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
- C07C5/32—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
- C07C5/327—Formation of non-aromatic carbon-to-carbon double bonds only
- C07C5/333—Catalytic processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
Изобретение относится к области нефтехимии, в частности к установкам дегидрирования парафиновых углеводородов С3-С5 в соответствующие олефиновые углеводороды, используемые для получения основных мономеров для синтетического каучука, а также при производстве полипропилена, метилтретичнобутилового эфира и др.The invention relates to the field of petrochemistry, in particular to installations for the dehydrogenation of C 3 -C 5 paraffin hydrocarbons into the corresponding olefinic hydrocarbons used to produce basic monomers for synthetic rubber, as well as in the production of polypropylene, methyl tertiary butyl ether, etc.
Типовые установки дегидрирования парафиновых углеводородов (И.Л. Кирпичников, В.В. Береснев, Л.М. Попов, «Альбом технологических схем основных производств промышленности синтетического каучука», Химия, Ленинград, 1986, стр. 8-12.; патент RU 2601002, МПК B01J 8/04; С07С 5/333, опубл. 27.10.2016) включают в себя реактор и регенератор с кипящим слоем мелкодисперсного алюмохромового катализатора с секционирующими решетками, транспортные трубы для циркуляции катализатора из реактора в регенератор и обратно путем пневмотранспорта катализатора на верх кипящего слоя с использованием транспортного газа, подаваемого в транспортные трубы (паров сырья, природного газа или других инертных газов - при транспорте катализатора из регенератора в реактор и воздуха - при транспорте катализатора из реактора в регенератор), трубопроводы для подачи паров сырья вниз кипящего слоя реактора, воздуха вниз кипящего слоя регенератора, трубопроводы для вывода контактного газа и газа регенерации, соединенные с циклонами, расположенными в верхней части реактора и регенератора. Нагретый и отрегенерированный в регенераторе катализатор подается из нижней части кипящего слоя регенератора через распределитель катализатора и транспортного газа на верх кипящего слоя реактора, проходит противоточно поднимающимся в кипящем слое катализатора парам сырья, обеспечивая эндотермическую реакцию дегидрирования и далее с низа реактора в закоксованном, восстановленном и охлажденном виде подается через распределитель катализатора и транспортного газа на верх кипящего слоя регенератора для выжига кокса, окисления и перегрева катализатора за счет сгорания подаваемого в верхнюю часть кипящего слоя регенератора топливного газа в условиях противотока катализатора и подаваемого вниз кипящего слоя регенератора воздуха. В реакторе и регенераторе формируется температурный профиль изменения температуры по высоте кипящего слоя при котором температура верхней части кипящего слоя выше, чем температура низа кипящего слоя. Установка содержит распределитель катализатора и транспортного газа в виде отбойного диска конической или эллиптической формы, расположенного над верхним торцом транспортной трубы над уровнем кипящего слоя в сепарационной зоне реактора и/или регенератора. К недостаткам известного распределителя катализатора и транспортного газа следует отнести возможность захвата частиц катализатора газовым потоком на выходе из распределителя, что ухудшает работу циклонов и снижает эффективность улавливания катализатора. Кроме того, транспортный газ в варианте подачи на транспорт катализатора в реактор паров сырья и воздуха - в регенератор не контактирует с кипящим слоем соответственно в реакторе и регенераторе, примешиваясь к контактному газу и газу регенерации в сепарационных зонах указанных аппаратов. Величина указанных потоков достигает 5% и более от количества подаваемого в реактор сырья и воздуха в регенератор. Непрореагировавшие парафиновые углеводороды из транспортного газа балластируют контактный газ, проходят далее весь технологический цикл и возвращаются с рециклом непрореагировавших парафиновых углеводородов сырья на вход в реактор, что приводит к соответствующим энергетическим затратам и потерям части указанных парафиновых углеводородов транспортного газа в производстве. В то же время кислород воздуха, подаваемого на транспорт катализатора в регенератор, не используется для регенерации катализатора, например, для выжига кокса в регенераторе. К недостатку указанного распределителя относится также наличие значительных тепловых неравномерностей в верхней части кипящего слоя реактора и регенератора вследствие неравномерного распределения катализатора по сечению кипящего слоя, что снижает выходы олефиновых углеводородов.Typical installations for the dehydrogenation of paraffin hydrocarbons (I. L. Kirpichnikov, V. V. Beresnev, L. M. Popov, “Album of technological schemes of the main production of the synthetic rubber industry”, Chemistry, Leningrad, 1986, pp. 8-12 .; RU patent 2601002,
Расположение распределителя катализатора и транспортного газа в виде отражательного диска под уровнем кипящего слоя (патент RU 2591159, МПК С07С 5/333; В01J 8/00, опубл. 10.07.2016) не приводит к улучшению ситуации описанной выше, в связи с тем, что катализатор и транспортный газ подается в кипящий слой практически в одну точку в центре кипящего слоя реактора и регенератора.The location of the catalyst distributor and the transport gas in the form of a reflective disk below the fluidized bed level (patent RU 2591159,
Известны распределители катализатора и транспортного газа (патент RU 2129111, МПК С07С 5/333, опубл. 20.04.1999; патент RU 2301107, МПК С07С 5/333; B01J 8/04, опубл. 20.06.2007) для системы реактор-регенератор дегидрирования парафиновых углеводородов С3-С5 с кипящим слоем с секционирующими решетками, содержащие расположенную по оси реактора и/или регенератора вертикальную транспортную трубу с восходящим потоком смеси катализатора и транспортного газа, соединенную с установленным соосно с трубой на ее верхнем торце расширителем, соединенным соединительными трубами с вертикальными стояками с нисходящим потоком смеси катализатора и транспортного газа, нижние торцы которых расположены под уровнем кипящего слоя катализатора над верхней секционирующей решеткой.Known distributors of catalyst and transport gas (patent RU 2129111,
Наиболее близким техническим решением является (патент RU 2301107, МПК С07С 5/333; В01J 8/04, опубл. 20.06.2007).The closest technical solution is (patent RU 2301107,
Однако присоединение соединительных труб к нижнему днищу расширителя ограничивает возможности создания эффективного распределителя для системы реактор-регенератор большой мощности - с большим диаметром аппаратов. В тоже время подача катализатора и транспортного газа компактными струями в несколько локальных точек кипящего слоя неэффективна вследствие ограниченного перемешивания и контактирования распределяемых потоков с кипящим слоем. Распределяемые потоки не перекрывают всего сечения кипящего слоя, что определяет большие тепловые неравномерности в кипящем слое, невысокие выходы олефиновых углеводородов и повышенный унос катализатора при локальном возмущении кипящего слоя распределяемым потоком транспортного газа. При этом наблюдается эрозия верхних секционирующих решеток реактора и/или регенератора вследствие воздействия на них вертикально направленных компактных струй смеси катализатора и транспортного газа, выходящих из спускных стояков. Поверхность верхнего днища расширителя эллипсовидной формы известного распределителя в реакторе, разогретая до высокой температуры перегретым потоком поступающего из регенератора катализатора, покрывается монолитным коксом, куски которого падают в кипящий слой, нарушая работу реактора.However, the connection of the connecting pipes to the bottom of the expander limits the possibility of creating an efficient distributor for a large-capacity reactor-regenerator system with a large diameter of apparatus. At the same time, the supply of catalyst and transport gas in compact jets to several local points of the fluidized bed is inefficient due to limited mixing and contacting the distributed flows with the fluidized bed. Distributed flows do not cover the entire cross section of the fluidized bed, which determines large thermal irregularities in the fluidized bed, low yields of olefinic hydrocarbons and increased ablation of the catalyst with local disturbance of the fluidized bed by the distributed flow of transport gas. In this case, erosion of the upper sectional gratings of the reactor and / or regenerator is observed due to the impact of vertically directed compact jets of a mixture of catalyst and transport gas leaving the drain risers. The surface of the upper bottom of the ellipsoidal expander of the known distributor in the reactor, heated to a high temperature by the superheated stream coming from the catalyst regenerator, is coated with monolithic coke, pieces of which fall into the fluidized bed, disrupting the operation of the reactor.
Задачей предлагаемого изобретения является увеличение выходов олефиновых углеводородов на пропущенное и разложенное сырье, снижение расхода воздуха на регенерацию катализатора, снижение уноса катализатора, исключение отложений монолитного кокса на элементах конструкции распределителя и эрозии внутренних устройств реактора и регенератора.The objective of the invention is to increase the yield of olefin hydrocarbons on the passed and decomposed raw materials, reducing air consumption for catalyst regeneration, reducing catalyst entrainment, eliminating deposits of monolithic coke on the structural elements of the distributor and erosion of the internal devices of the reactor and regenerator.
Для решения поставленной задачи предлагается распределитель катализатора и транспортного газа в системе реактор-регенератор дегидрирования парафиновых углеводородов С3-С5 с кипящим слоем с секционирующими решетками, содержащий расположенную по оси реактора и/или регенератора вертикальную транспортную трубу 1 с восходящим потоком смеси катализатора и транспортного газа, соединенную с установленным соосно с трубой на ее верхнем торце расширителем 2, соединенным соединительными трубам 10, 20 с вертикальными спускными стояками 7, 24 с нисходящим потоком смеси катализатора и транспортного газа, нижние торцы которых расположены в верхней части кипящего слоя, при этом расширитель 2 состоит из цилиндрического корпуса 3 с верхним 4 и нижним 5 днищем, а соединительные трубы 10, 20 верхними торцами соединены с отверстиями 8, 9, расположенными в цилиндрической части корпуса 3 и/или в нижнем днище 5, и к нижнему торцу каждого спускного стояка 7,24 прикреплен соосно стояку 7, 24 смеситель в виде верхнего диска 11, окружающего выпускное отверстие спускного стояка 7, 24, и на расстоянии от него -нижнего диска 12.To solve this problem, a catalyst and transport gas distributor is proposed in a C 3 -C 5 paraffin hydrocarbon dehydrogenation reactor-regenerator system with a fluidized bed with sectional gratings, containing a
Смеситель может быть расположен под уровнем кипящего слоя 16 над или под верхней секционирующей решеткой 15.The mixer may be located below the
Отношение диаметра корпуса 3 расширителя 2 к диаметру транспортной трубы 1 может находится в диапазоне значений от 1,5 до 3,2.The ratio of the diameter of the
Верхнее днище 4 расширителя 2 может иметь форму конуса с наклоном образующей конуса под углом в диапазоне от 10° до 40° вниз от горизонтального положения.The
Над верхним торцом 26 транспортной трубы 1 соосно с ней к верхнему днищу 4 расширителя 2 может быть прикреплен своим основанием конус-отражатель 6 верхнего днища 4 с наклоном образующей конуса под углом в диапазоне от 10° до 40° вверх от горизонтального положения.Above the
Нижнее днище 5 расширителя 2 может иметь форму усеченного конуса с наклоном образующей конуса под углом в диапазоне от 30° до 85° вверх от горизонтального положения.The
Число спускных стояков 7, 24 может составлять 4-12.The number of
Верхний диск 11 смесителя может быть установлен горизонтально.The
Верхний диск 11 смесителя может иметь также форму усеченного конуса и может быть установлен с наклоном образующей конуса под углом в диапазоне от 5° до 30° вниз от горизонтального положения.The
Нижний диск 12 смесителя может быть установлен горизонтально.The
Нижний диск 12 смесителя может иметь также форму конуса и может быть установлен с наклоном образующей конуса под углом в диапазоне от 5° до 45° вниз от горизонтального положения.The
Под нижним торцом спускного стояка 24 соосно с ним к нижнему диску 12 смесителя может быть прикреплен своим основанием конус-отражатель 14 нижнего диска 12 с наклоном образующей конуса под углом в диапазоне от 10° до 40° вниз от горизонтального положения.Under the lower end of the
Отношение диаметра верхнего диска 11 смесителя к диаметру реактора и/или регенератора может находится в диапазоне значений от 0,02 до 0,09.The ratio of the diameter of the
Отношение диаметра верхнего диска 11 смесителя к диаметру нижнего диска 12 смесителя может находится в диапазоне от 0,8 до 1,2.The ratio of the diameter of the
Отношение диаметра основания конуса-отражателя 14 нижнего диска 12 смесителя к диаметру спускного стояка 24 может находится в диапазоне от 0,3 до 1,0.The ratio of the diameter of the base of the cone-
Соединительные трубы 10, 20 могут быть расположены под углом 30°-80° вниз от горизонтального положения.The connecting
Каждый спускной стояк 7, 24 может иметь патрубки 17, 18 и 19 для продувки стояков 7, 24.Each
Патрубки 17, 18 и 19 могут быть расположены в верхней и нижней части стояков 7,24.
Патрубки 17, 18 и 19 могут быть расположены под углом 30°-50° вверх от горизонтального положения.The
Патрубки 17, 18 и 19 на каждом спускном стояке 7, 24 могут быть соединены с приборами 21, 22 и 23 для измерения перепада давления между верхними 17, 19 и нижними 18 патрубками.The
На фиг. 1 представлен возможный вариант распределителя циркулирующего катализатора и транспортного газа в системе реактор-регенератор дегидрирования парафиновых углеводородов С3-С5 в соответствии с настоящим изобретением.In FIG. 1 shows a possible embodiment of a circulating catalyst and transport gas distributor in a C 3 -C 5 paraffin hydrocarbon dehydrogenation reactor-regenerator system in accordance with the present invention.
Распределитель состоит из транспортной трубы 1, расположенной соосно с корпусом 25 реактора и регенератора, расширителя 2, установленного на верхнем торце 26 транспортной трубы 1, который состоит из цилиндрического корпуса 3, верхнего днища 4 и нижнего днища 5. Отношение диаметра корпуса 3 расширителя 2 к диаметру транспортной трубы 1 находится в диапазоне значений от 1,5 до 3,2. При отношении диаметров меньше величины 1,5 гидравлическое сопротивление потоку газовзвеси катализатора и транспортного газа становится недопустимо высоким, а величину более 3,2 ограничивает чрезмерные габариты и металлоемкость распределителя. Верхнее днище 4 имеет форму конуса с наклоном образующей конуса под углом в диапазоне от 10° до 40° вниз от горизонтального положения, что препятствует отложениям катализатора и кокса на ее поверхности, а нижнее днище 5 имеет форму усеченного конуса с наклоном образующей конуса под углом в диапазоне от 30° до 85° вверх от горизонтального положения, что обеспечивает приемлемые величины гидравлического сопротивления и габариты расширителя в заявляемом диапазоне углов наклона. К верхнему днищу 4 прикреплен конус-отражатель 6 верхнего днища 4 с наклоном образующей конуса под углом в диапазоне от 10° до 40° вверх от горизонтального положения. В заявляемом диапазоне угла наклона образующей конуса обеспечиваются минимальные величины гидравлического сопротивления расширителя при приемлемом уровне эрозии его верхнего днища. Расширитель 2 соединен со спускными стояками 7 и 24 через отверстия 8 и 9 соответственно в цилиндрическом корпусе 3 и в нижнем днище 5 соединительными трубами 10 и 20, которые расположены под углом 30°-80° вниз от горизонтального положения, что обеспечивает необходимый уровень циркуляции катализатора в системе реактор-регенератор при достаточной текучести газо взвеси катализатора и транспортного газа. На фиг. 1 условно показаны два стояка и, соответственно, два отверстия и две соединительные трубы, хотя их может быть больше (4-12).The distributor consists of a
Присоединенные к цилиндрическому корпусу 3 соединительные трубы 10 позволяют соединять расширитель со спускными стояками, расположенными на большем расстоянии от расширителя 2, чем соединительные трубы 20, присоединенные к нижнему днищу 5. Комбинация указанных соединительных труб позволяет создавать оптимальный распределитель для аппаратов большого диаметра с равномерным распределением спускных стояков по поперечному сечению кипящего слоя. К нижнему торцу каждого спускного стояка 7, 24 прикреплен смеситель в виде верхнего 11 и нижнего 12 дисков, установленных в варианте смесителя изображенного на фиг. 1 горизонтально, с образованием между ними кольцевой щели 13. В указанном варианте исполнения предлагаемого распределителя при горизонтальном истечении газовзвеси катализатора и транспортного газа в радиальном направлении обеспечивается максимальное проникновение струи газовзвеси в поперечном сечении кипящего слоя. Верхний диск 11 может иметь также форму усеченного конуса, а нижний - форму конуса (на фиг. 1 не показано), при этом диски могут быть установлены с наклоном образующей конуса под углом: верхний диск 11 в диапазоне от 5° до 30°, а нижний диск 12 в диапазоне от 5° до 45° вниз от горизонтального положения. Образующееся при этом конусообразное расположение кольцевой щели обеспечивает снижение гидравлического сопротивления истечению потока газовзвеси катализатора и транспортного газа. Отношение диаметра верхнего диска 11 смесителя к диаметру реактора и/или регенератора находится в диапазоне значений от 0,02 до 0,09, что в совокупности с заявляемым количеством спускных стояков (4-12 штук) позволяет равномерно распределять поток газовзвеси катализатора и транспортного газа в поперечном сечении кипящего слоя при приемлемом гидравлическом сопротивлении смесителя. Отношение диаметра верхнего диска 11 смесителя к диаметру нижнего диска 12 смесителя находится в диапазоне от 0,8 до 1,2, что позволяет организовать выпуск газовзвеси катализатора и транспортного газа с некоторым отклонением струи газовзвеси соответственно вверх или вниз от горизонтальной плоскости в зависимости от предпочтений того или иного варианта при конкретном проектировании реактора или регенератора. К нижнему диску 12 прикреплен конус-отражатель 14 нижнего диска 12 с наклоном образующей конуса под углом в диапазоне от 10° до 40° вниз от горизонтального положения. Отношение диаметра основания конуса-отражателя 14 нижнего диска 12 смесителя к диаметру спускного стояка 24 находится в диапазоне от 0,3 до 1,0. В указанных диапазонах изменения конструктивных параметров конуса-отражателя нижнего диска достигается снижение гидравлического сопротивления смесителя. В рассматриваемом на фиг. 1 варианте смеситель расположен выше секционирующей решетки 15 под уровнем кипящего слоя 16, в то время как он может быть расположен также и под верхней секционирующей решеткой с повышенным свободным сечением этой решетки (патент RU 2601002, МПК B01J 8/04; С07С 5/333, опубл. 27.10.2016). Комбинация из смесителей распределителя катализатора и секционирующей решетки с повышенным обратным перемешиванием катализатора и газа («Катализ в промышленности», №5, 2005 г., Комаров С.М. и др., «Перемешивание катализатора на секционирующих решетках в реакторе с кипящим слоем дегидрирования парафиновых углеводородов») позволяет существенно повысить эффективность распределения катализатора и транспортного газа в поперечном сечении верхней части кипящего слоя. Каждый спускной стояк 7, 24 имеет патрубки 17, 18, 19 для продувки стояков, которые расположены под углом 30°-50° вверх от горизонтального положения. Наклон оси патрубков к оси спускного стояка в указанном диапазоне, особенно при их продувке газом, предотвращает забивку патрубков катализатором при пульсациях давления, характерных для кипящего слоя. Нижние патрубки 18 и верхние патрубки 17 и 19 соединены с приборами 21, 22 и 23 для измерения перепадов давления между верхними 17, 19 и нижними 18 патрубками в спускных стояках 7 и 24.The connecting
Предлагаемый распределитель работает следующим образом. Восходящий поток смеси циркулирующего в системе реактор-регенератор катализатора и транспортного газа поступает по транспортной трубе 1 в расширитель 2, где на поверхности верхнего днища 4 и конуса-отражателя 6 меняет направление на обратное и через соединительные трубы 10 и 20 распределяется по спускным стоякам 7 и 24 с нисходящим потоком смеси. Установленный на нижних торцах спускных стояков смеситель из двух дисков 11 и 12 с кольцевой щелью между ними 13 и конуса-отражателя 14 обеспечивает подачу в кипящий слой по всей наружной кромке дисков непрерывной, веерообразной, радиально-направленной струи циркулирующего катализатора и транспортного газа. Изменение направления указанных потоков с вертикального нисходящего на горизонтальное радиальное приводит сначала к задержке катализатора на начальном участке кольцевой щели 13 и далее к значительному увеличению скорости потока катализатора под воздействием потока транспортного газа на конечном участке щели. Указанная ситуация обеспечивается заявляемым диапазоном размеров конструктивных элементов распределителя. Увеличение скорости истечения смеси катализатора и транспортного газа позволяет выпускать катализатор и газ из щели смесителя на существенное расстояние от наружной кромки дисков, и обеспечивает при заявляемом количестве стояков равномерное перекрытие поперечного сечения кипящего слоя. Одновременно под воздействием потока катализатора транспортный газ диспергируется в смесителе и в точке ввода в кипящий слой находится в состоянии мелких пузырьков. Высокая скорость истечения катализатора и транспортного газа в радиальном направлении улучшает радиальное перемешивание катализатора и транспортного газа в кипящем слое. Достигаемое при этом равномерное распределение катализатора обеспечивает необходимый уровень изотермичности кипящего слоя в зоне ввода катализатора. В то же время совместный эффект диспергирования транспортного газа и перемешивания (контактирования) катализатора и газа создает условия резкого увеличения интенсивности процессов тепло-массообмена в смесителе и в верхней части кипящего слоя в зоне ввода катализатора и транспортного газа. Это приводит к улучшению степени использования транспортного газа в процессах дегидрирования и регенерации катализатора по сравнению с прототипом. Так, при использовании предлагаемой конструкции распределителя в реакторе с подачей паров сырья на транспорт катализатора, обеспечиваются условия для селективной конверсии подаваемых на транспорт парафиновых углеводородов, что приводит к получению дополнительного количества (увеличению выхода) получаемых в процессе олефиновых углеводородов. В то же время, при использовании предлагаемой конструкции распределителя в регенераторе с подачей воздуха на транспорт катализатора увеличивается концентрация кислорода в верхней части кипящего слоя регенератора, что способствует повышению эффективности процессов регенерации катализатора (окисления катализатора и выжига кокса). При этом открывается возможность уменьшения подачи воздуха в регенератор при существенном увеличении степени регенерации катализатора подаваемого затем в реактор, что также приводит к увеличению выходов олефиновых углеводородов. Расположение соединительных труб наклонно, а также подача газа на продувку спускных стояков обеспечивает необходимую текучесть катализатора при истечении его через стояки и смесители в режиме нисходящего потока. Продувка стояков в реакторе может осуществляться парами сырья, природным газом и другими инертными газами, а в регенераторе - воздухом. Хотя на фиг. 1 диски смесителя показаны установленными горизонтально, они могут быть установлены также в виде конусов при наклоне образующей конусов вниз. Такая конструкция препятствует скоплению катализатора на верхних поверхностях дисков и соответственно отложению в реакторе монолитного кокса на этих элементах конструкции смесителя. Отложение кокса может приводить к нарушению работы смесителя и распределителя в целом. Коническая форма верхнего днища расширителя распределителя предпочтительна также для использования в реакторе с целью предотвращения отложений монолитного кокса на поверхности верхнего днища расширителя. Предлагаемая конструкция распределителя позволяет за счет контролируемой подачи сравнительно небольших количеств вспомогательного газа на продувку стояков и установки приборов для измерения перепадов давления в спускных стояках контролировать и улучшать распределение циркулирующего катализатора по стоякам. При этом возникают возможности регулирования тепловых неоднородностей в верхней части кипящего слоя. Установленные на каждом стояке приборы для измерения перепада давления в стояках позволяют определять по величинам измеряемых перепадов давления и размерам стояков количество катализатора в каждом стояке, концентрацию катализатора в потоках каждого стояка и, соответственно, оценивать равномерность распределения по стоякам циркулирующего в системе реактор-регенератор катализатора и транспортного газа, осуществлять диагностику неисправностей в системе распределения во время работы установки и при необходимости продувать стояки повышенным расходом газа, управляя таким образом равномерностью распределения потоков. Достигаемое равномерное распределение транспортного газа в поперечном сечении верхней части кипящего слоя снижает унос катализатора из системы реактор-регенератор. При использовании предлагаемого распределителя секционирующие решетки реактора и регенератора не подвергаются эрозионному износу вследствие исключения вертикально направленных струй катализатора.The proposed distributor operates as follows. The upward flow of the mixture of the catalyst and the transport gas circulating in the reactor-regenerator system enters the
Таким образом, техническим результатом является то, что предлагаемая конструкция распределителя циркулирующего в системе реактор-регенератор дегидрирования парафиновых углеводородов С3-С5 катализатора и транспортного газа обеспечивает по сравнению с известной конструкцией увеличение выходов олефиновых углеводородов, снижение расхода воздуха на регенерацию катализатора, снижение уноса катализатора, исключение отложений монолитного кокса на элементах конструкции распределителя и эрозии внутренних устройств реактора и регенератора.Thus, the technical result is that the proposed design of the distributor of the catalyst circulating in the reactor-regenerator dehydrogenation system of paraffin hydrocarbons C 3 -C 5 hydrocarbons and transport gas provides an increase in the yields of olefinic hydrocarbons in comparison with the known design, a decrease in the air consumption for catalyst regeneration, and reduction of entrainment catalyst, the exclusion of deposits of monolithic coke on the design elements of the distributor and erosion of the internal devices of the reactor and regenerate pa.
Claims (20)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017123636A RU2652195C1 (en) | 2017-07-04 | 2017-07-04 | Distributor catalyst and transport gas for the reactor - reclaimer system of the c3-c5 paraffin hydrocarbon dehydrogenation plants with the fluidized bed |
CN201880036342.5A CN110691643A (en) | 2017-07-04 | 2018-06-28 | Catalyst and transport gas distributor for dehydrogenation reactors with fluidized bed |
PCT/RU2018/000429 WO2019009764A1 (en) | 2017-07-04 | 2018-06-28 | Catalyst and transport gas distributor for a dehydrogenation reactor with a fluidized bed |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017123636A RU2652195C1 (en) | 2017-07-04 | 2017-07-04 | Distributor catalyst and transport gas for the reactor - reclaimer system of the c3-c5 paraffin hydrocarbon dehydrogenation plants with the fluidized bed |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2652195C1 true RU2652195C1 (en) | 2018-04-25 |
Family
ID=62045482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017123636A RU2652195C1 (en) | 2017-07-04 | 2017-07-04 | Distributor catalyst and transport gas for the reactor - reclaimer system of the c3-c5 paraffin hydrocarbon dehydrogenation plants with the fluidized bed |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN110691643A (en) |
RU (1) | RU2652195C1 (en) |
WO (1) | WO2019009764A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2694840C1 (en) * | 2019-03-20 | 2019-07-17 | Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор" | Catalyst and transport gas distributors for boiling bed reactor-regenerator circulation systems |
RU2746425C1 (en) * | 2020-09-15 | 2021-04-13 | Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор" | Method for regeneration of chromium alumina catalyst and regenerator for its implementation |
RU2759288C1 (en) * | 2020-12-23 | 2021-11-11 | Публичное Акционерное Общество "Нижнекамскнефтехим" | Method for producing olefinic hydrocarbons in a fluidized bed of a pulverized chromium alumina catalyst |
RU2767249C1 (en) * | 2021-04-09 | 2022-03-17 | Открытое акционерное общество "Научно-исследовательский институт "Ярсинтез" (ОАО НИИ "Ярсинтез") | Catalyst and transport gas distributor |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115672195B (en) * | 2021-07-23 | 2024-06-25 | 中国石油天然气股份有限公司 | Supercharged small-particle catalyst filling equipment |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB767605A (en) * | 1954-06-08 | 1957-02-06 | Exxon Research Engineering Co | Improvements in or relating to improvements in hydroforming |
GB815332A (en) * | 1955-04-25 | 1959-06-24 | Exxon Research Engineering Co | Dehydrogenation of hydrocarbons |
US6166282A (en) * | 1999-08-20 | 2000-12-26 | Uop Llc | Fast-fluidized bed reactor for MTO process |
RU2301107C1 (en) * | 2005-10-18 | 2007-06-20 | Открытое акционерное общество Научно-исследовательский институт "Ярсинтез" (ОАО НИИ "Ярсинтез") | Reactor for dehydrogenation of paraffinic hydrocarbons c3-c5 |
RU2411284C2 (en) * | 2006-02-13 | 2011-02-10 | Юоп Ллк | Device and method for catalyst regeneration |
CN103449951A (en) * | 2013-09-04 | 2013-12-18 | 山东垦利石化集团有限公司 | Butane dehydrogenation process technology |
RU2561985C2 (en) * | 2011-06-08 | 2015-09-10 | Фудэ (Пекин) Кемикал Энд Индастри Ко., Лтд | Reactor with fluidised bed and production of olefins from oxygenators |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2234491C2 (en) * | 1999-12-17 | 2004-08-20 | Дау Глобал Текнолоджиз Инк. | Method of dehydrogenation of alkyl aromatic compounds, method of dehydrogenation of ethyl benzene or substituted ethyl benzene and reactor for dehydrogenation of alkyl aromatic compounds |
CN204958834U (en) * | 2014-06-05 | 2016-01-13 | 格雷特波因特能源公司 | Fluidized bed gasifica tion reactor subassembly |
-
2017
- 2017-07-04 RU RU2017123636A patent/RU2652195C1/en active
-
2018
- 2018-06-28 CN CN201880036342.5A patent/CN110691643A/en active Pending
- 2018-06-28 WO PCT/RU2018/000429 patent/WO2019009764A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB767605A (en) * | 1954-06-08 | 1957-02-06 | Exxon Research Engineering Co | Improvements in or relating to improvements in hydroforming |
GB815332A (en) * | 1955-04-25 | 1959-06-24 | Exxon Research Engineering Co | Dehydrogenation of hydrocarbons |
US6166282A (en) * | 1999-08-20 | 2000-12-26 | Uop Llc | Fast-fluidized bed reactor for MTO process |
RU2301107C1 (en) * | 2005-10-18 | 2007-06-20 | Открытое акционерное общество Научно-исследовательский институт "Ярсинтез" (ОАО НИИ "Ярсинтез") | Reactor for dehydrogenation of paraffinic hydrocarbons c3-c5 |
RU2411284C2 (en) * | 2006-02-13 | 2011-02-10 | Юоп Ллк | Device and method for catalyst regeneration |
RU2561985C2 (en) * | 2011-06-08 | 2015-09-10 | Фудэ (Пекин) Кемикал Энд Индастри Ко., Лтд | Reactor with fluidised bed and production of olefins from oxygenators |
CN103449951A (en) * | 2013-09-04 | 2013-12-18 | 山东垦利石化集团有限公司 | Butane dehydrogenation process technology |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2694840C1 (en) * | 2019-03-20 | 2019-07-17 | Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор" | Catalyst and transport gas distributors for boiling bed reactor-regenerator circulation systems |
WO2020190175A3 (en) * | 2019-03-20 | 2020-11-26 | Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор" | Catalyst and carrier gas distributors |
RU2746425C1 (en) * | 2020-09-15 | 2021-04-13 | Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор" | Method for regeneration of chromium alumina catalyst and regenerator for its implementation |
RU2759288C1 (en) * | 2020-12-23 | 2021-11-11 | Публичное Акционерное Общество "Нижнекамскнефтехим" | Method for producing olefinic hydrocarbons in a fluidized bed of a pulverized chromium alumina catalyst |
RU2767249C1 (en) * | 2021-04-09 | 2022-03-17 | Открытое акционерное общество "Научно-исследовательский институт "Ярсинтез" (ОАО НИИ "Ярсинтез") | Catalyst and transport gas distributor |
Also Published As
Publication number | Publication date |
---|---|
WO2019009764A1 (en) | 2019-01-10 |
CN110691643A (en) | 2020-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2652195C1 (en) | Distributor catalyst and transport gas for the reactor - reclaimer system of the c3-c5 paraffin hydrocarbon dehydrogenation plants with the fluidized bed | |
US20080081006A1 (en) | Advanced elevated feed distribution system for very large diameter RCC reactor risers | |
RU2278144C2 (en) | Dispenser of the dead catalyst | |
US7101474B2 (en) | Method and process with refractory shelf for hydrodynamic mixing zone | |
US6146519A (en) | Gas solid contact riser with redistribution | |
RU2588982C1 (en) | Method and device for distribution of hydrocarbon raw material on flow of catalyst | |
US7077997B1 (en) | Stripping apparatus | |
US7655589B2 (en) | Process and apparatus for the regeneration of spent FCC catalyst | |
RU2571119C1 (en) | Method and device for mixing two catalyst flows | |
US8387645B2 (en) | Methods and apparatus for contacting a fluid stream with particulate solids | |
US5358632A (en) | FCC feed injection with non-quiescent mixing | |
US7022221B1 (en) | Stripping apparatus and process | |
RU2694840C1 (en) | Catalyst and transport gas distributors for boiling bed reactor-regenerator circulation systems | |
EP2843028B1 (en) | Mixing device for mixing raw material and its use | |
RU2652198C1 (en) | Distributor of the catalyst for the reactor-reclaimer system of c3-c5 paraffin hydrocarbon dehydration of with fluidized bed | |
US9238209B2 (en) | Advanced elevated feed distribution apparatus and process for large diameter FCC reactor risers | |
US2765265A (en) | Method and apparatus for pneumatically lifting granular contact material | |
US2662796A (en) | Apparatus for elevating granular material | |
US9073030B2 (en) | Apparatuses and risers for reacting feedstock in the presence of catalyst and methods for installing baffles in risers | |
US11517869B2 (en) | Riser extension apparatus and process | |
RU2759288C1 (en) | Method for producing olefinic hydrocarbons in a fluidized bed of a pulverized chromium alumina catalyst | |
US2577791A (en) | Catalytic contacting unit with gas separator | |
US9309468B2 (en) | Recessed gas feed distributor process for FCC riser | |
RU2773127C1 (en) | Regenerator of the c3-c5 paraffin hydrocarbons dehydrogenation system with a fluidized catalyst bed | |
RU2767249C1 (en) | Catalyst and transport gas distributor |