RU2649384C1 - Способ гидроочистки сырья гидрокрекинга - Google Patents
Способ гидроочистки сырья гидрокрекинга Download PDFInfo
- Publication number
- RU2649384C1 RU2649384C1 RU2017133382A RU2017133382A RU2649384C1 RU 2649384 C1 RU2649384 C1 RU 2649384C1 RU 2017133382 A RU2017133382 A RU 2017133382A RU 2017133382 A RU2017133382 A RU 2017133382A RU 2649384 C1 RU2649384 C1 RU 2649384C1
- Authority
- RU
- Russia
- Prior art keywords
- catalyst
- rest
- carrier
- hydrotreating
- norbergite
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 40
- 238000004517 catalytic hydrocracking Methods 0.000 title claims abstract description 35
- 239000002994 raw material Substances 0.000 title abstract description 19
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 title 1
- 239000003054 catalyst Substances 0.000 claims abstract description 84
- 150000001875 compounds Chemical class 0.000 claims abstract description 42
- OJMOMXZKOWKUTA-UHFFFAOYSA-N aluminum;borate Chemical compound [Al+3].[O-]B([O-])[O-] OJMOMXZKOWKUTA-UHFFFAOYSA-N 0.000 claims abstract description 41
- 229910052856 norbergite Inorganic materials 0.000 claims abstract description 39
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000002245 particle Substances 0.000 claims abstract description 32
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 29
- 229910052796 boron Inorganic materials 0.000 claims abstract description 29
- 239000011148 porous material Substances 0.000 claims abstract description 29
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims abstract description 27
- 239000011734 sodium Substances 0.000 claims abstract description 27
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 27
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 21
- 239000011593 sulfur Substances 0.000 claims abstract description 21
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 18
- 238000002329 infrared spectrum Methods 0.000 claims abstract description 16
- 238000009835 boiling Methods 0.000 claims abstract description 15
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 14
- 239000001257 hydrogen Substances 0.000 claims abstract description 14
- 238000010521 absorption reaction Methods 0.000 claims abstract description 10
- 239000002638 heterogeneous catalyst Substances 0.000 claims abstract description 6
- 238000001179 sorption measurement Methods 0.000 claims abstract description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 25
- 239000007848 Bronsted acid Substances 0.000 claims description 6
- 239000002253 acid Substances 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 235000008098 Oxalis acetosella Nutrition 0.000 claims 1
- 240000007930 Oxalis acetosella Species 0.000 claims 1
- 235000004035 Cryptotaenia japonica Nutrition 0.000 abstract description 9
- 102000007641 Trefoil Factors Human genes 0.000 abstract description 9
- 235000015724 Trifolium pratense Nutrition 0.000 abstract description 9
- 230000000694 effects Effects 0.000 abstract description 7
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 239000003208 petroleum Substances 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 2
- 229910003158 γ-Al2O3 Inorganic materials 0.000 abstract description 2
- 230000002378 acidificating effect Effects 0.000 abstract 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 34
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 18
- 239000003921 oil Substances 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 11
- 239000004327 boric acid Substances 0.000 description 11
- 239000012153 distilled water Substances 0.000 description 11
- 238000003756 stirring Methods 0.000 description 8
- 238000004566 IR spectroscopy Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 5
- 150000001639 boron compounds Chemical class 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000004090 dissolution Methods 0.000 description 5
- 229910000008 nickel(II) carbonate Inorganic materials 0.000 description 5
- ZULUUIKRFGGGTL-UHFFFAOYSA-L nickel(ii) carbonate Chemical compound [Ni+2].[O-]C([O-])=O ZULUUIKRFGGGTL-UHFFFAOYSA-L 0.000 description 5
- 230000000737 periodic effect Effects 0.000 description 5
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 238000005470 impregnation Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910017604 nitric acid Inorganic materials 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 102200118166 rs16951438 Human genes 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- WQOXQRCZOLPYPM-UHFFFAOYSA-N Dimethyl disulfide Natural products CSSC WQOXQRCZOLPYPM-UHFFFAOYSA-N 0.000 description 3
- 238000006477 desulfuration reaction Methods 0.000 description 3
- 230000023556 desulfurization Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 238000005486 sulfidation Methods 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910017464 nitrogen compound Inorganic materials 0.000 description 2
- 150000002830 nitrogen compounds Chemical class 0.000 description 2
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical class [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000004523 catalytic cracking Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 238000005202 decontamination Methods 0.000 description 1
- 230000003588 decontaminative effect Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 229910001679 gibbsite Inorganic materials 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 229910001392 phosphorus oxide Inorganic materials 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- -1 polycyclic aromatic compounds Chemical class 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- VSAISIQCTGDGPU-UHFFFAOYSA-N tetraphosphorus hexaoxide Chemical compound O1P(O2)OP3OP1OP2O3 VSAISIQCTGDGPU-UHFFFAOYSA-N 0.000 description 1
- 238000007725 thermal activation Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/02—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
- C10G45/04—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
- C10G45/06—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
- C10G45/08—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
- B01J21/04—Alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/02—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
- B01J23/04—Alkali metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/22—Organic complexes
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Catalysts (AREA)
Abstract
Изобретение относится к способам получения сырья гидрокрекинга. Описан способ гидроочистки, заключающийся в превращении нефтяных фракций, имеющих температуру начала кипения выше 360°С, содержащих до 3,5% серы и до 0,2% азота при температуре 360-420°С, давлении 9,0-20,0 МПа, расходе сырья 0,5-1,5 ч-1, объемном отношении водород/сырье 800-2000 нм3/м3 в присутствии гетерогенного катализатора, содержащего, мас. %: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] 29,0-36,0; бор в форме поверхностных соединений 0,4-1,6; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Аl3ВО6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Аl2О3 - остальное. Входящий в состав катализатора борат алюминия Аl2ВО6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 Å, с углом между ними 53.8°, а бор в форме поверхностных соединений характеризуется полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах. Катализатор содержит сильные бренстедовские кислотные центры, определенные методом ИК из данных низкотемпературной адсорбции СО, 2-6 мкмоль/г (РА (сродство к протону) = 1180-1200 кДж/моль) и бренстедовские кислотные центры средней силы 30-60 мкмоль/г (РА=1250-1260 кДж/моль), и имеет удельную поверхность 130-180 м2/г, объем пор 0,35-0,65 см3/г, средний диаметр пор 10-15 нм, и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника. Технический результат - получение сырья гидрокрекинга с низким содержанием серы и азота при гидроочистке нефтяных фракций, имеющих температуру начала кипения выше 360°С, содержащих до 3,5% серы и до 0,2% азота. 5 з.п. ф-лы, 2 табл., 7 пр.
Description
Изобретение относится к способам гидроочистки нефтяных фракций с температурой начала кипения выше 360°С для получения сырья с низким содержанием серы и азота, которое далее перерабатывается в процессе гидрокрекинга.
Современные процессы гидрокрекинга, как правило, включают несколько последовательных стадий, на первой из которых осуществляется предварительная гидроочистка фракций с температурой начала кипения выше 360°С с получением сырья с пониженным содержанием серы, азота и полициклических ароматических соединений. Необходимость максимально возможного снижения содержания этих компонентов в сырье обусловлена тем, что они являются каталитическими ядами для катализаторов последующих стадий. Далее такое гидроочищенное сырье подается на гидрокрекинг, проводящийся на цеолитсодержащих катализаторах. Наиболее типичные примеры многостадийных процессов описаны в патентах [пат. РФ №2470989, 27.11.2011; пат. РФ №2565669, 20.10.2015; пат. РФ №2595041, 20.08.2016].
Основным недостатком описанных способов гидрокрекинга являются относительно низкие выходы получаемых продуктов, обусловленные быстрым отравлением катализаторов гидрокрекинга соединениями серы и азота вследствие недостаточно полного удаления этих соединений из сырья на стадии предварительной гидроочистки. В связи с этим разработка новых каталитических способов предварительной гидроочистки сырья гидрокрекинга является чрезвычайно важной и актуальной задачей.
Существующие заводские установки гидроочистки работают в достаточно узком интервале температур, расходов и давлений. Так для глубокой гидроочистки типичного сырья гидрокрекинга - нефтяных фракций с началом кипения 360°С - используется давление 4,5-9,0 МПа, расход сырья 1,0-1,5 ч-1, объемное отношение водород/сырье 400-600 нм3/м3. Стартовая температура процесса гидроочистки не может выбираться в широких пределах и должна быть как можно ниже, поскольку от нее зависит скорость дезактивации и межрегенерационный пробег катализатора. Таким образом, основным инструментом, который позволяет изменять количество серы в получаемых продуктах без существенных изменений условий процесса гидроочистки и реконструкции установок, являются характеристики используемых катализаторов, из которых наиболее важной является каталитическая активность.
Чаще всего процессы гидроочистки нефтяного сырья проводят в присутствии катализаторов, содержащих оксиды кобальта и молибдена, нанесенные на оксид алюминия. Так, известен способ каталитической гидроочистки нефтяного сырья [РФ 2192923, B01J 27/188, C10G 45/08, 20.10.2002]. Процесс проводят при 200-480°С при давлении 0,5-20 МПа при расходе сырья 0,05-20 ч-1 и расходе водорода 100-3000 л/л сырья, при этом используют катализатор на основе оксида алюминия, который содержит в пересчете на содержание оксида, мас. %: 2-10 оксида кобальта СоО, 10-30 оксида молибдена МoО3 и 4-10 оксида фосфора Р2О5, с площадью поверхности по методу БЭТ в интервале 100-300 м2/г и средним диаметром пор в интервале 8-11 нм.
Известен процесс гидроочистки тяжелого нефтяного сырья [заявка США №2014315712, B01J 21/04; B01J 23/85; B01J 23/883; 23.10.2014], согласно которому гидроочистку тяжелого углеводородного сырья проводят с использованием катализатора гидрообработки, имеющего специфические свойства, которые делают его эффективным при удалении азота и серы из исходного сырья. Катализатор состоит из носителя, представляющего собой частицы оксида алюминия, имеющего специфическое распределение пор по диаметру, которое достигается за счет использования псевдобемита в качестве исходного компонента и конкретных температур прокалки. Катализатор гидроочистки также содержит металл из 6 группы Периодической системы (например, молибден), металл из группы 8 (например, никель) и фосфор, которые нанесены на поверхность частиц оксида алюминия.
Известен способ гидроочистки газойля [пат. США №7618916, B01J 31/34, C10G 45/04, B01J 31/04; 17.11.2009], согласно которому гидроочистку проводят при парциальном давлении водорода от 3 до 8 МПа, температуре от 300 до 420°С, объемном расходе сырья от 0.3 до 5 ч-1 в присутствии катализатора, который включает в себя нанесенный на неорганический оксидный носитель как минимум один элемент, выбранный из металлов 6 группы Периодической таблицы с концентрацией от 10 до 40 мас. %, как минимум, один элемент, выбранный из металлов 8 группы Периодической таблицы с концентрацией от 1 до 15 мас. %, от 1,5 до 8 мас. % фосфора в пересчете на оксид, и от 2 до 14 мас. % углерода, при этом катализатор имеет удельную площадь поверхности от 150 до 300 м2/г, объем пор от 0,3 до 0,6 мл/г и средний диаметр пор от 65 до 140 Å.
Известен процесс гидроочистки углеводородного сырья [РФ №2402380, B01J 21/02, C10G 45/08, 27.10.2010], заключающийся в превращении нефтяных дистиллятов с высоким содержанием серы при температуре 320-400°С, давлении 0,5-10 МПа, весовом расходе сырья 0,5-5 ч-1, объемном отношении водород/сырье 100-1000 м3/м3 в присутствии гетерогенного катализатора, содержащего биметаллическое комплексное соединение [М(H2O)х(L)у]2[Mo4O11(C6H5O7)2], где L - частично депротонированная форма лимонной кислоты C6H6O7; х=0 или 2; у=0 или 1; М - Со2+ и/или Ni2, в количестве 30-45 мас. %, что соответствует содержанию в прокаленном при 550°С катализаторе, мас. %: MoO3 - 14,0-23,0; СоО и/или NiO - 3,6-6,0; B2O3 - 0,6-2,6, Al2O3 - остальное, и имеющего объем пор 0,3-0,7 мл/г, удельную поверхность 200-350 м2/г и средний диаметр пор 9-13 нм.
Основным недостатком вышеописанных способов проведения процесса гидроочистки является высокое содержание серы и азота в получаемых продуктах.
Наиболее близким по своей технической сущности и достигаемому эффекту к заявляемому способу получения малосернистого сырья гидрокрекинга является способ гидроочистки углеводородного сырья, описанный в пат. РФ №2626401, C10G 45/08, B01J 23/882, 09.11.2016, согласно которому гидроочистку вакуумного газойля проводят при температуре 360-420°С, давлении 9,0-20,0 МПа, расходе сырья 0,5-1,5 ч-1, объемном отношении водород/сырье 800-2000 нм3/м3 в присутствии гетерогенного катализатора, содержащего, мас. %: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] 29,0-36,0%; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное; что после сульфидирования по известным методикам соответствует содержанию, мас. %: Мо - 10,0-14,0; Ni - 3,0-4,3; S - 6,7-9,4; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное. Входящий в состав катализатора борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 Å, с углом между ними 53.8°. Используемый катализатор имеет удельную поверхность 130-180 м2/г, объем пор 0,35-0,65 см3/г, средний диаметр пор 10-15 нм и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм.
Общим недостатком для прототипа и всех вышеперечисленных процессов гидроочистки является высокое остаточное содержание серы и азота в гидроочищенных продуктах.
Предлагаемое изобретение решает задачу создания эффективного способа получения сырья гидрокрекинга.
Технический результат - получение сырья гидрокрекинга с низким содержанием серы и азота при гидроочистке нефтяных фракций, имеющих температуру начала кипения выше 360°С, содержащих до 3,5% серы и до 0,2% азота.
Задача решается способом гидроочистки сырья гидрокрекинга, заключающимся в проведении гидроочистки нефтяных фракций, имеющих температуру начала кипения выше 360°С, при температуре 360-420°С, давлении 9,0-20,0 МПа, расходе сырья 0,5-1,5 ч-1, объемном отношении водород/сырье 800-2000 нм3/м3 в присутствии гетерогенного катализатора, содержащего мас. %: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] 29,0-36,0; бор в форме поверхностных соединений 0,4-1,6; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное. Входящий в состав катализатора борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 Å, с углом между ними 53.8°, а бор в форме поверхностных соединений характеризуется полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах.
Используемый катализатор содержит сильные бренстедовские кислотные центры, определенные методом ИК из данных низкотемпературной адсорбции СО, 2-6 мкмоль/г (РА (сродство к протону) = 1180-1200 кДж/моль) и бренстедовские кислотные центры средней силы 30-60 мкмоль/г (РА=1250-1260 кДж/моль), и имеет удельную поверхность 130-180 м2/г, объем пор 0,35-0,65 см3/г, средний диаметр пор 10-15 нм, и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм.
В качестве исходного сырья используют прямогонные и смесевые нефтяные фракции, имеющие температуру начала кипения выше 360°С, содержащие до 3,5% серы и 0,2% азота.
Основным отличительным признаком предлагаемого способа гидроочистки сырья гидрокрекинга по сравнению с прототипом является то, что процесс гидроочистки нефтяных фракций, имеющих температуру начала кипения выше 360°С, проводят при температуре 360-420°С, давлении 9,0-20,0 МПа, массовом расходе сырья 0,5-1,5 ч-1, объемном отношении водород/сырье 800-2000 нм3/м3 в присутствии катализатора, который содержит, мас. %: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] 29,0-36,0%; бор в форме поверхностных соединений - 0,4-1,6%, носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное. Такой химический состав катализатора обеспечивает его максимальную активность в реакциях обессеривания и деазотирования.
Вторым отличительным признаком предлагаемого способа гидроочистки сырья гидрокрекинга является то, что используемый катализатор содержит бор в форме двух различных типов химических соединений: входящий в состав носителя борат алюминия Al3BO6 со структурой норбергита, представляющий собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 Å, с углом между ними 53.8°, и бор в форме поверхностных соединений, характеризующихся полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах. Наличие в катализаторе бората алюминия Al3BO6 способствует достижению текстурных характеристик катализатора, обеспечивающих доступ всех подлежащих превращению молекул сырья к активному компоненту. Наличие в катализаторе поверхностных соединений бора способствует повышению дисперсности активного компонента, что обеспечивает увеличение активности в реакциях обессеривания и деазотирования.
Третьим отличительным признаком предлагаемого способа по сравнению с прототипом является то, что поверхностные соединения бора обеспечивают повышение кислотности катализатора за счет образования сильных бренстедовских кислотных центров, определенных методом ИК из данных низкотемпературной адсорбции СО, 2-6 мкмоль/г (РА (сродство к протону) = 1180-1200 кДж/моль) и бренстедовских кислотных центров средней силы 30-60 мкмоль/г (РА=1250-1260 кДж/моль). Такие кислотные центры обеспечивают снижение содержания азота в продуктах гидроочистки.
Технический эффект предлагаемого способа гидроочистки сырья гидрокрекинга складывается из следующих составляющих:
1. Проведение гидроочистки в присутствии катализатора, в составе которого одновременно содержатся два различных типа соединений бора: борат алюминия Al3BO6 со структурой норбергита и поверхностные соединения бора, характеризующиеся полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах. Борат алюминия Al3BO6, представляющий собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 Å, с углом между ними 53.8°, входит в состав носителя и способствует достижению текстурных характеристик носителя и катализатора, обеспечивающих доступ всех подлежащих превращению молекул сырья к активному компоненту. Поверхностные соединения бора способствуют повышению дисперсности частиц активного компонента и ослаблению его связи с носителем, что обеспечивает повышение активности в целевых реакциях гидроочистки.
2. Проведение гидроочистки углеводородного сырья в присутствии катализатора, содержащего сильные бренстедовские кислотные центры, определенные методом ИК из данных низкотемпературной адсорбции СО, 2-6 мкмоль/г (РА (сродство к протону) = 1180-1200 кДж/моль) и бренстедовские кислотные центры средней силы 30-60 мкмоль/г (РА=1250-1260 кДж/моль), обеспечивает максимальное удаление из сырья соединений азота, что приводит к увеличению степени обессеривания.
3. Наличие в составе катализатора биметаллических комплексных соединений [Ni(H2O)2]2[Mo4O11(C6H5O7)2] обеспечивает дальнейшее формирование в катализаторе, при его эксплуатации в гидроочистке, наиболее активного компонента - NiMoS фазы типа II в форме частиц оптимальной для катализа морфологии, локализованных в порах, доступных для всех подлежащих превращению молекул, входящих в нефтяные фракции с температурой начала кипения выше 360°С.
4. Использование в процессе гидроочистки улучшенного катализатора позволяет получать нефтепродукты с пониженным содержанием серы и азота по сравнению с прототипом.
Описание предлагаемого технического решения
Гидроочистку нефтяных фракций, имеющих температуру начала кипения выше 360°С, проводят при температуре 360-420°С, давлении 9,0-20,0 МПа, расходе сырья 0,5-1,5 ч-1, объемном отношении водород/сырье 800-2000 нм3/м3 в присутствии гетерогенного катализатора, содержащего, мас. %: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] 29,0-36,0; бор в форме поверхностных соединений 0,4-1,6; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное. Входящий в состав катализатора борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 Å, с углом между ними 53.8°, а бор в форме поверхностных соединений характеризуется полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах. Используемый катализатор содержит сильные бренстедовские кислотные центры, определенные методом ИК из данных низкотемпературной адсорбции СО, 2-6 мкмоль/г (РА (сродство к протону) = 1180-1200 кДж/моль) и бренстедовские кислотные центры средней силы 30-60 мкмоль/г (РА=1250-1260 кДж/моль), и имеет удельную поверхность 130-180 м2/г, объем пор 0,35-0,65 см3/г, средний диаметр пор 10-15 нм, и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм.
Сущность изобретения иллюстрируется следующими примерами.
Пример 1. Согласно известному решению [патент РФ №2626401]
Сначала готовят носитель, для чего 150 г продукта термической активации гидраргиллита измельчают на планетарной мельнице до частиц размером в пределах 20-50 мкм. Далее порошок гидратируют при перемешивании и нагревании в растворе азотной кислоты с концентрацией 0,5%. Затем суспензию на воронке с бумажным фильтром промывают дистиллированной водой до остаточного содержания натрия в порошке не более 0,03%. Отмытую и отжатую лепешку переносят в автоклав, в который добавляют раствор 2,3 г борной кислоты в 1 л 1,5%-ного раствора азотной кислоты, имеющий рН 1,4. Автоклав нагревают до 150°С и выдерживают 12 ч. Далее автоклав охлаждают до комнатной температуры и проводят сушку полученной суспензии на распылительной сушилке при температуре воздуха на входе в сушилку 155°С и непрерывном перемешивании суспензии, высушенный порошок собирают в приемной емкости сушилки. Навеску 150 г порошка помещают в корыто смесителя с Z-образными лопастями, пептизируют 2,5%-ным водным раствором аммиака, после чего экструдируют при давлении 60,0 МПа через фильеру, обеспечивающую получение частиц с сечением в виде трилистника с диаметром описанной окружности 1,6 мм. Сформованные гранулы сушат при температуре 120°С и прокаливают при температуре 550°С. В результате получают носитель, содержащий, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0; натрий - 0,03; γ-Al2O3 - остальное.
Далее готовят раствор биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2], для чего в 100 мл дистиллированной воды при перемешивании последовательно растворяют 48,91 г лимонной кислоты C6H8O7; 89,87 г парамолибдата аммония (NH4)6Mo7O24×4Н2О и 31,4 г основного карбоната никеля NiCO3⋅mNi(OH)2⋅nH2O. После полного растворения всех компонентов добавлением дистиллированной воды объем раствора доводят до 200 мл.
100 г полученного носителя пропитывают по влагоемкости 67 мл раствора биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2] при 20°С в течение 60 мин. Затем катализатор сушат на воздухе при 100°С.
Полученный катализатор содержит, мас. %: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] - 32,4%; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0; натрий - 0,03; γ-Al2O3 - остальное.
Катализатор имеет удельную поверхность 150 м2/г, объем пор 0,55 см3/г, средний диаметр пор 13 нм и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,6 мм и длиной до 20 мм. Входящий в состав катализатора борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 Å, с углом между ними 53.8°.
Далее проводят запись ИК-спектров, которые регистрировали на спектрометре Shimadzu FTIR-8300 в спектральном диапазоне 700-6000 см-1 с разрешением 4 см-1, проводили 300 сканов для накопления сигнала. Данные ИК-спектроскопии приведены в таблице 1.
Снимки ПЭМВР были получены на электронном микроскопе JEM-2010 (JEOL, Япония) с разрешающей способностью решетки 0,14 нм при ускоряющем напряжении 200 кВ. По данным ПЭМВР в составе катализатора присутствуют частицы бората алюминия Al3BO6 со структурой норбергита с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 Å, с углом между ними 53.8°.
Катализатор сульфидируют прямогонной дизельной фракцией, содержащей дополнительно 1,5 мас. % сульфидирующего агента - диметилдисульфида (ДМДС), при объемной скорости подачи сульфидирующей смеси 2 ч-1 и соотношении водород/сырье = 300 по следующей программе:
- сушка катализатора в реакторе гидроочистки в токе водорода при 140°С в течение 2 ч;
- смачивание катализатора прямогонной дизельной фракцией в течение 2 ч;
- подача сульфидирующей смеси и увеличение температуры до 240°С со скоростью подъема температуры 25°С/ч;
- сульфидирование при температуре 240°С в течение 8 ч (низкотемпературная стадия);
- увеличение температуры реактора до 340°С со скоростью подъема температуры 25°С/ч;
- сульфидирование проводят при температуре 340°С в течение 8 ч.
В результате получают катализатор, который содержит, мас. %: Мо - 12,5; Ni - 3,85; S - 8,3; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0; натрий - 0,03; γ-Al2O3 - остальное.
Далее проводят гидроочистку сырья гидрокрекинга по варианту 1. В качестве сырья используют вакуумный газойль, имеющий интервал кипения 360-570°С, содержащий 0,95% серы и 0,16% азота. Гидроочистку проводят при давлении 16,0 МПа, объемном расходе сырья 0,75 ч-1, объемном отношении водород/сырье 1000 нм3/м3, температуре 380°С.
Также проводят гидроочистку сырья гидрокрекинга по варианту 2. В качестве сырья используют вакуумный газойль, имеющий интервал кипения 360-570°С, содержащий 3,5% серы и 0,2% азота. Гидроочистку проводят при давлении 10,0 МПа, расходе сырья 0,7 ч-1, объемном отношении водород/сырье 1200 нм3/м3, температуре 380°С.
Результаты гидроочистки сырья гидрокрекинга по обоим вариантам приведены в таблице 2.
Примеры 2-7 иллюстрируют предлагаемое техническое решение.
Пример 2
Сначала готовят борсодержащий носитель аналогично примеру 1. В результате получают носитель, содержащий, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0; натрий - 0,03; γ-Al2O3 - остальное.
Далее готовят раствор биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2], для чего в 100 мл дистиллированной воды при перемешивании последовательно растворяют 48,91 г лимонной кислоты C6H8O7, 89,87 г парамолибдата аммония (NH4)6Mo7O24×4H2O и 31,4 г основного карбоната никеля NiCO3⋅mNi(OH)2⋅nH2O. Далее температуру раствора поднимают до 90°С и растворяют в нем 44,63 г борной кислоты H3BO3. После полного растворения всех компонентов добавлением нагретой до 90°С дистиллированной воды объем раствора доводят до 200 мл.
100 г полученного носителя пропитывают по влагоемкости 67 мл раствора биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2] и борной кислоты при 90°С в течение 60 минут. Затем катализатор сушат на воздухе при 100°С.
Полученный катализатор содержит, мас. %: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] - 32,4; бор в форме поверхностных соединений - 1,6; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0; натрий - 0,03; γ-Al2O3 - остальное. Далее проводят запись ИК-спектров и делают снимки ПЭМВР аналогично примеру 1. Данные ИК-спектроскопии приведены в таблице 1.
Катализатор имеет удельную поверхность 150 м2/г, объем пор 0,55 см3/г, средний диаметр пор 13 нм и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,6 мм и длиной до 20 мм. Входящий в состав катализатора борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 Å, с углом между ними 53.8°. Бор в форме поверхностных соединений характеризуется полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах.
Далее катализатор сульфидируют аналогично примеру 1.
В результате получают катализатор, который содержит, мас. %: Мо - 12,5; Ni - 3,85; S - 8,3; бор в форме поверхностных соединений - 2,0; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0; натрий - 0,03; γ-Al2O3 - остальное.
Далее проводят гидроочистку сырья гидрокрекинга аналогично примеру 1. Результаты гидроочистки сырья гидрокрекинга по обоим вариантам приведены в таблице 2.
Пример 3
Готовят носитель по методике, близкой к примеру 2, с той разницей, что отмытую и отжатую лепешку переносят в автоклав, в который добавляют раствор 5,98 г борной кислоты в 1 литре 1,5%-ного раствора азотной кислоты. Остальные операции и загрузки компонентов при приготовлении носителя аналогичны примеру 2.
В результате получают носитель, содержащий, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.
100 г полученного носителя пропитывают при 70°С по влагоемкости 67 мл раствора биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2] и борной кислоты из примера 2. Затем катализатор сушат на воздухе при 100°С. Далее проводят запись ИК-спектров и делают снимки ПЭМВР аналогично примеру 1. Данные ИК-спектроскопии приведены в таблице 1.
Полученный катализатор содержит, мас. %: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] - 32,4; бор в форме поверхностных соединений - 1,6; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное. Катализатор имеет удельную поверхность 150 м2/г, объем пор 0,55 см3/г, средний диаметр пор 13 нм и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,6 мм и длиной до 20 мм.
Далее катализатор сульфидируют аналогично примеру 1.
В результате получают катализатор, который содержит, мас. %: Мо - 12,5; Ni - 3,85; S - 8,3; бор в форме поверхностных соединений - 2,0; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.
Далее проводят гидроочистку сырья гидрокрекинга аналогично примеру 1.
Результаты гидроочистки сырья гидрокрекинга по обоим вариантам приведены в таблице 2.
Пример 4
Готовят носитель по методике, близкой к примеру 2, с той разницей, что отмытую и отжатую лепешку переносят в автоклав, в который добавляют раствор 14,63 г борной кислоты в 1 литре 1,5%-ного раствора азотной кислоты. Остальные операции и загрузки компонентов при приготовлении носителя аналогичны примеру 2.
В результате получают носитель, содержащий, мас. %: борат алюминия Al3BO6 со структурой норбергита - 25,0; натрий - 0,023; γ-Al2O3 - остальное.
Далее готовят раствор биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2], для чего в 100 мл дистиллированной воды при перемешивании и нагревании до 70°С последовательно растворяют 48,91 г лимонной кислоты С6Н8О7; 89,87 г парамолибдата аммония (NH4)6Mo7O24×4Н2О и 31,4 г основного карбоната никеля NiCO3⋅mNi(ОН)2⋅nH2O. Далее к раствору добавляют 11,15 г борной кислоты Н3ВО3. После полного растворения всех компонентов добавлением дистиллированной воды объем раствора доводят до 200 мл. 100 г полученного носителя пропитывают по влагоемкости 67 мл раствора. Затем катализатор сушат на воздухе при 200°С. Далее проводят запись ИК-спектров и делают снимки ПЭМВР аналогично примеру 1. Данные ИК-спектроскопии приведены в таблице 1.
Полученный катализатор содержит, мас. %: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] - 32,4; бор в форме поверхностных соединений - 0,4; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 25,0; натрий - 0,023; γ-Al2O3 - остальное.
Далее катализатор сульфидируют аналогично примеру 1.
В результате получают катализатор, который содержит, мас. %: Мо - 12,5; Ni - 3,85; S - 8,3; бор в форме поверхностных соединений - 0,5; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 25,0; натрий - 0,023; γ-Al2O3 - остальное.
Далее проводят гидроочистку сырья гидрокрекинга аналогично примеру 1. Результаты гидроочистки сырья гидрокрекинга по обоим вариантам приведены в таблице 2.
Пример 5
Готовят носитель так же, как в примере 3.
Затем готовят раствор биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2], для чего в 100 мл дистиллированной воды при перемешивании последовательно растворяют 42,23 г лимонной кислоты C6H8O7; 77,58 г парамолибдата аммония (NH4)6Mo7O24×4Н2О и 27,1 г основного карбоната никеля NiCO3⋅mNi(OH)2⋅nH2O. Далее к раствору добавляют 22,31 г борной кислоты Н3ВО3.
После полного растворения всех компонентов добавлением дистиллированной воды объем раствора доводят до 200 мл.
100 г полученного носителя при комнатной температуре пропитывают по влагоемкости 67 мл раствора биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2] и борной кислоты. Затем катализатор сушат на воздухе при 120°С. Далее проводят запись ИК-спектров и делают снимки ПЭМВР аналогично примеру 1. Данные ИК-спектроскопии приведены в таблице 1.
Полученный катализатор содержит, мас. %: [Ni(Н2О)2]2[Mo4O11(C6H5O7]2] - 29,3; бор в форме поверхностных соединений - 0,8; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.
Катализатор имеет удельную поверхность 180 м2/г, объем пор 0,65 см3/г, средний диаметр пор 15 нм и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,6 мм и длиной до 20 мм. Входящий в состав катализатора борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 Å, с углом между ними 53.8°. Бор в форме поверхностных соединений характеризуется полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах.
Далее катализатор сульфидируют аналогично примеру 1.
В результате получают катализатор, который содержит, мас. %: Мо - 10,0; Ni - 3,0; S - 6,7; бор в форме поверхностных соединений - 1,0; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.
Далее проводят гидроочистку сырья гидрокрекинга аналогично примеру 1. Результаты гидроочистки сырья гидрокрекинга по обоим вариантам приведены в таблице 2.
Пример 6
Готовят носитель так же, как в примере 3, с той разницей, что формовочную пасту экструдируют при давлении 60,0 МПа через фильеру, обеспечивающую получение частиц с сечением в виде круга диаметром 1,0 мм.
Затем готовят раствор биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2], для чего в 100 мл дистиллированной воды при нагревании до 80°С и перемешивании последовательно растворяют 56,9 г лимонной кислоты C6H8O7; 104,53 г парамолибдата аммония (NH4)6Mo7O24×4H2O и 36,5 г основного карбоната никеля NiCO3⋅mNi(ОН)2⋅nH2O. Далее к раствору добавляют 22,31 г борной кислоты Н3ВО3. После полного растворения всех компонентов добавлением дистиллированной воды объем раствора доводят до 200 мл.
Далее используют пропитку носителя из избытка раствора. 100 г полученного носителя загружают в колбу, помещенную в водяную баню, нагретую до 80°С, в колбу приливают 200 мл раствора биметаллического комплексного соединения [Ni(Н2О)2]2[Mo4O11(C6H5O7]2], также нагретого до 80°С. Пропитку продолжают в течение 20 минут при периодическом перемешивании, после чего избыток раствора отделяют от влажного катализатора. Затем катализатор сушат на воздухе при 200°С. Далее проводят запись ИК-спектров и делают снимки ПЭМВР аналогично примеру 1. Данные ИК-спектроскопии приведены в таблице 1.
Полученный катализатор содержит, мас. %: [Ni(Н2О)2]2[Mo4O11(C6H5O7]2] - 35,8; бор в форме поверхностных соединений - 1,0; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.
Катализатор имеет удельную поверхность 130 м2/г, объем пор 0,35 см3/г, средний диаметр пор 10 нм и представляет собой частицы с сечением в виде круга с диаметром 1,0 мм и длиной до 20 мм. Входящий в состав катализатора борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 Å, с углом между ними 53.8°. Бор в форме поверхностных соединений характеризуется полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах.
Далее катализатор сульфидируют аналогично примеру 1.
В результате получают катализатор, который содержит, мас. %: Мо - 14,0; Ni - 4,3; S - 9,4; бор в форме поверхностных соединений - 1,2; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.
Далее проводят гидроочистку сырья гидрокрекинга аналогично примеру 1. Результаты гидроочистки сырья гидрокрекинга по обоим вариантам приведены в таблице 2.
Пример 7
Готовят носитель так же, как в примере 3, с той разницей, что формовочную пасту экструдируют при давлении 60,0 МПа через фильеру, обеспечивающую получение частиц с сечением в виде четырехлистника диаметром 1,6 мм.
Далее используют пропитку носителя из избытка раствора. 100 г полученного носителя загружают в колбу, помещенную в водяную баню, нагретую до 30°С, в колбу приливают 133 мл раствора биметаллического комплексного соединения [Ni(Н2О)2]2[Mo4O11(C6H5O7]2] и борной кислоты из примера 5, также нагретого до 30°С. Пропитку продолжают в течение 60 минут при периодическом перемешивании, после чего избыток раствора отделяют от влажного катализатора. Затем катализатор сушат на воздухе при 120°С. Далее проводят запись ИК-спектров и делают снимки ПЭМВР аналогично примеру 1. Данные ИК-спектроскопии приведены в таблице 1.
Полученный катализатор содержит, мас. %: [Ni(Н2О)2]2[Mo4O11(C6H5O7]2] - 30,6%; бор в форме поверхностных соединений - 1,0; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.
Катализатор имеет удельную поверхность 175 м2/г, объем пор 0,6 см3/г, средний диаметр пор 14 нм и представляет собой частицы с сечением в виде четырехлистника с диаметром описанной окружности 1,6 мм и длиной до 20 мм. Входящий в состав катализатора борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 Å, с углом между ними 53.8°. Бор в форме поверхностных соединений характеризуется полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК -спектрах.
Далее катализатор сульфидируют аналогично примеру 1.
В результате получают катализатор, который содержит, мас. %: Mo - 11,7; Ni - 3,6; S - 7,9; бор в форме поверхностных соединений - 1,2; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; натрий - 0,028; γ-Al2O3 - остальное.
Далее проводят гидроочистку сырья гидрокрекинга аналогично примеру 1. Результаты гидроочистки сырья гидрокрекинга по обоим вариантам приведены в таблице 2.
Таким образом, как видно из приведенных примеров, предлагаемый способ гидроочистки сырья каталитического крекинга позволяет достичь значительно меньшего остаточного содержания серы и азота в продуктах гидроочистки по сравнению с прототипом.
Claims (6)
1. Способ гидроочистки сырья гидрокрекинга, заключающийся в гидроочистке нефтяных фракций, имеющих температуру начала кипения выше 360°C, в присутствии гетерогенного катализатора, отличающийся тем, что используемый катализатор содержит, мас. %: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] 29,0-36,0; бор в форме поверхностных соединений 0,4-1,6; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное.
2. Способ по п. 1, отличающийся тем, что используемый катализатор имеет удельную поверхность 130-180 м2/г, объем пор 0,35-0,65 см3/г, средний диаметр пор 10-15 нм, и представляет собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм, при этом входящий в состав катализатор борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 Å, с углом между ними 53.8°, а входящий в состав катализатора бор в форме поверхностных соединений характеризуется полосами поглощения 930-1040, 1230, 1385-1450 и 3695 см-1 в ИК-спектрах.
3. Способ по п. 1, отличающийся тем, что используемый катализатор содержит сильные бренстедовские кислотные центры, определенные методом ИК из данных низкотемпературной адсорбции СО, 2-6 мкмоль/г (РА (сродство к протону) =1180-1200 кДж/моль) и бренстедовские кислотные центры средней силы 30-60 мкмоль/г (РА=1250-1260 кДж/моль).
4. Способ по п. 1, отличающийся тем, что используемый катализатор перед проведением гидроочистки сульфидируют с получением катализатора, который содержит мас. %: Мо - 10,0-14,0; Ni - 3,0-4,3; S - 6,7-9,4; бор в форме поверхностных соединений 0,5-2,0; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; натрий - не более 0,03; γ-Al2O3 - остальное.
5. Способ по п. 1, отличающийся тем, что гидроочистку проводят при температуре 360-420°C, давлении 9,0-20,0 МПа, расходе сырья 0,5-1,5 ч-1, объемном отношении водород/сырье 800-2000 нм3/м3.
6. Способ по п. 1, отличающийся тем, что в качестве исходного сырья используют прямогонные и смесевые нефтяные фракции, имеющие температуру начала кипения выше 360°C, содержащие до 3,5% серы и 0,2% азота.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017133382A RU2649384C1 (ru) | 2017-09-25 | 2017-09-25 | Способ гидроочистки сырья гидрокрекинга |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017133382A RU2649384C1 (ru) | 2017-09-25 | 2017-09-25 | Способ гидроочистки сырья гидрокрекинга |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2649384C1 true RU2649384C1 (ru) | 2018-04-05 |
Family
ID=61867600
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017133382A RU2649384C1 (ru) | 2017-09-25 | 2017-09-25 | Способ гидроочистки сырья гидрокрекинга |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2649384C1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109301211A (zh) * | 2018-09-29 | 2019-02-01 | 陕西科技大学 | 一种自组装花球状氮掺杂Mo4O11的锂离子电池负极材料及其制备方法 |
RU2739760C1 (ru) * | 2020-07-27 | 2020-12-28 | Федеральное государственное бюджетное учреждение науки «Федеральный исследовательский центр «Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук» (ИК СО РАН) | Способ гидроочистки сырья каталитического крекинга |
RU2773434C1 (ru) * | 2021-05-26 | 2022-06-03 | Акционерное общество «Газпромнефть - Омский НПЗ» (АО «Газпромнефть - ОНПЗ») | Способ получения низкозастывающего дизельного топлива |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2313392C1 (ru) * | 2006-10-13 | 2007-12-27 | Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук | Катализатор гидрообессеривания дизельной фракции и способ его приготовления |
RU2472585C1 (ru) * | 2011-09-23 | 2013-01-20 | Учреждение Российской академии наук Институт катализа им. Г.К. Борескова Сибирского отделения РАН | Катализатор, способ приготовления носителя, способ приготовления катализатора и способ гидроочистки углеводородного сырья |
RU2534998C1 (ru) * | 2013-09-27 | 2014-12-10 | Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук | Катализатор гидроочистки углеводородного сырья |
WO2015067585A1 (en) * | 2013-11-07 | 2015-05-14 | Shell Internationale Research Maatschappij B.V. | Process for preparing a hydrotreating catalyst |
EP2979760A1 (en) * | 2013-03-25 | 2016-02-03 | Cosmo Oil Co., Ltd. | Hydrogenation desulfurization catalyst for diesel oil and hydrogenation treatment method for diesel oil |
RU2626401C1 (ru) * | 2016-11-09 | 2017-07-27 | Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (ИК СО РАН) | Способ гидроочистки сырья гидрокрекинга |
RU2626402C1 (ru) * | 2016-11-09 | 2017-07-27 | Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (ИК СО РАН) | Способ приготовления катализатора гидроочистки сырья гидрокрекинга |
-
2017
- 2017-09-25 RU RU2017133382A patent/RU2649384C1/ru active IP Right Revival
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2313392C1 (ru) * | 2006-10-13 | 2007-12-27 | Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук | Катализатор гидрообессеривания дизельной фракции и способ его приготовления |
RU2472585C1 (ru) * | 2011-09-23 | 2013-01-20 | Учреждение Российской академии наук Институт катализа им. Г.К. Борескова Сибирского отделения РАН | Катализатор, способ приготовления носителя, способ приготовления катализатора и способ гидроочистки углеводородного сырья |
EP2979760A1 (en) * | 2013-03-25 | 2016-02-03 | Cosmo Oil Co., Ltd. | Hydrogenation desulfurization catalyst for diesel oil and hydrogenation treatment method for diesel oil |
RU2534998C1 (ru) * | 2013-09-27 | 2014-12-10 | Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук | Катализатор гидроочистки углеводородного сырья |
WO2015067585A1 (en) * | 2013-11-07 | 2015-05-14 | Shell Internationale Research Maatschappij B.V. | Process for preparing a hydrotreating catalyst |
RU2626401C1 (ru) * | 2016-11-09 | 2017-07-27 | Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (ИК СО РАН) | Способ гидроочистки сырья гидрокрекинга |
RU2626402C1 (ru) * | 2016-11-09 | 2017-07-27 | Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (ИК СО РАН) | Способ приготовления катализатора гидроочистки сырья гидрокрекинга |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109301211A (zh) * | 2018-09-29 | 2019-02-01 | 陕西科技大学 | 一种自组装花球状氮掺杂Mo4O11的锂离子电池负极材料及其制备方法 |
RU2739760C1 (ru) * | 2020-07-27 | 2020-12-28 | Федеральное государственное бюджетное учреждение науки «Федеральный исследовательский центр «Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук» (ИК СО РАН) | Способ гидроочистки сырья каталитического крекинга |
RU2773434C1 (ru) * | 2021-05-26 | 2022-06-03 | Акционерное общество «Газпромнефть - Омский НПЗ» (АО «Газпромнефть - ОНПЗ») | Способ получения низкозастывающего дизельного топлива |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2560925C (en) | Catalyst for hydrotreating hydrocarbon oil, process for producing the same, and method for hydrotreating hydrocarbon oil | |
RU2402380C1 (ru) | Катализатор гидроочистки углеводородного сырья, способ его приготовления и процесс гидроочистки | |
RU2534998C1 (ru) | Катализатор гидроочистки углеводородного сырья | |
RU2639159C2 (ru) | Катализатор, способ приготовления носителя, способ приготовления катализатора и способ гидроочистки углеводородного сырья | |
RU2534997C1 (ru) | Способ приготовления катализатора гидроочистки углеводородного сырья | |
RU2629355C1 (ru) | Способ получения малосернистого дизельного топлива | |
RU2626397C1 (ru) | Способ гидрокрекинга углеводородного сырья | |
RU2663902C1 (ru) | Способ гидроочистки углеводородного сырья | |
RU2609834C1 (ru) | Катализатор, способ его приготовления и способ гидрооблагораживания дизельных дистиллятов | |
RU2726634C1 (ru) | Катализатор гидроочистки дизельного топлива | |
CN105312078B (zh) | 一种烃油脱硫催化剂及其制备方法和烃油脱硫的方法 | |
RU2649384C1 (ru) | Способ гидроочистки сырья гидрокрекинга | |
RU2626402C1 (ru) | Способ приготовления катализатора гидроочистки сырья гидрокрекинга | |
RU2691991C1 (ru) | Способ получения малосернистого дизельного топлива | |
WO2000012213A1 (en) | Hydrocracking catalyst, producing method thereof, and hydrocracking method | |
RU2691069C1 (ru) | Способ получения катализатора деметаллизации нефтяных фракций | |
RU2607908C1 (ru) | Способ приготовления катализатора гидрокрекинга углеводородного сырья | |
RU2626400C1 (ru) | Способ получения малосернистого сырья каталитического крекинга | |
RU2644563C1 (ru) | Катализатор гидроочистки сырья гидрокрекинга | |
RU2732944C1 (ru) | Способ получения малосернистого дизельного топлива | |
RU2633965C1 (ru) | Способ приготовления катализатора гидрокрекинга углеводородного сырья | |
CN107961773B (zh) | 一种加氢脱硫催化剂及其制备方法和硫化态加氢脱硫催化剂的制备方法 | |
EA038249B1 (ru) | Катализатор гидроочистки сырья гидрокрекинга | |
CN105709805B (zh) | 一种化工型加氢裂化催化剂及其制备方法 | |
RU2662232C1 (ru) | Способ гидрокрекинга углеводородного сырья |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PC41 | Official registration of the transfer of exclusive right |
Effective date: 20180925 |
|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20190926 |
|
NF4A | Reinstatement of patent |
Effective date: 20200811 |