[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

RU2599659C1 - Способ генерирования моносилана - Google Patents

Способ генерирования моносилана Download PDF

Info

Publication number
RU2599659C1
RU2599659C1 RU2015112537/05A RU2015112537A RU2599659C1 RU 2599659 C1 RU2599659 C1 RU 2599659C1 RU 2015112537/05 A RU2015112537/05 A RU 2015112537/05A RU 2015112537 A RU2015112537 A RU 2015112537A RU 2599659 C1 RU2599659 C1 RU 2599659C1
Authority
RU
Russia
Prior art keywords
hydrogen
monosilane
plasma
sif
mixture
Prior art date
Application number
RU2015112537/05A
Other languages
English (en)
Inventor
Юрий Николаевич Туманов
Николай Владимирович Дедов
Александр Николаевич Жиганов
Игорь Юрьевич Русаков
Original Assignee
Федеральное государственное автономное образовательное учреждение ысшего профессионального образования "Национальный исследовательский ядерный университет "МИФИ" (НИЯУ МИФИ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение ысшего профессионального образования "Национальный исследовательский ядерный университет "МИФИ" (НИЯУ МИФИ) filed Critical Федеральное государственное автономное образовательное учреждение ысшего профессионального образования "Национальный исследовательский ядерный университет "МИФИ" (НИЯУ МИФИ)
Priority to RU2015112537/05A priority Critical patent/RU2599659C1/ru
Application granted granted Critical
Publication of RU2599659C1 publication Critical patent/RU2599659C1/ru

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Abstract

Изобретение относится к технологии получения соединений кремния, а именно фторсилана, пригодного для генерирования моносилана с целью дальнейшего его использования в микроэлектронной промышленности как сырья для производства поликристаллического кремния высокой чистоты. Способ генерирования моносилана включает плазменно-водородную обработку тетрафторида кремния в цельнометаллическом микроволновом реакторе с использованием электромагнитной волны Н11 с последующим пропусканием образовавшейся смеси фторсиланов и фторида водорода через слой нагретого фторида натрия. Изобретение позволяет увеличить выход моносилана при плазменно-водородной конверсии тетрафторида кремния до 82-90% при одновременном повышении взрывобезопасности производства за счет исключения избытка водорода в исходной смеси. 1 з.п. ф-лы, 2 ил., 2 пр.

Description

Изобретение относится к способам получения соединений кремния, а именно фторсилана, пригодного для генерирования моносилана с целью дальнейшего его использования в микроэлектронной промышленности как сырье для производства поликристаллического кремния высокой чистоты.
Известен способ конверсии тетрафторида кремния в моносилан и фторид водорода [Патент США №2933374, кл. С01В 33/04]. Способ реализуется плазменно-водородной обработкой тетрафторида кремния, SiF4, с образованием фторсиланов общей формулы SiF4-xHx, в котором основная масса кремния содержится в виде SiF3H с небольшим количеством SiF2H2, SiFH3 и SiH4. Смесь SiF4-xHx, HF и Н2, полученную после плазменно-водородной обработки, пропускают через колонку с нагретым фторидом натрия, где происходят химические реакции, описываемые уравнениями:
Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004
Выход моносилана в реакциях (1), (2), (3) составляет 25, 50 и 75%, соответственно, от всего кремния, вступающего в процесс.
Данный способ имеет недостатки, которые препятствуют его промышленному внедрению. Использование низковольтового электродугового разряда в смеси тетрафторида кремния и водорода позволяет конверсировать тетрафторид кремния во фторсиланы преимущественно в форме SiF3H из-за конкурирующей рекомбинации водорода. Как следствие, за один цикл исходный SiF4 конвертировался в SiH4 только на 25%.
Остальные 75% сырья возвращаются в виде Na2SiF6 на переработку, заключающуюся в разложении гексафторсиликата натрия на SiF4 и NaF с последующей конверсией тетрафторида кремния по вышеизложенному способу. Таким образом, интегральная производительность процесса по конечному продукту SiH4 составляет около 25% от теоретического.
Наиболее близким к предлагаемому является способ получения моносилана [RU №2050320, С01В 33/04, опуб. 20.12.1995], заключающийся в том, что смесь тетрафторида кремния и водорода превращают в неравновесную плазму неконтрагированного сверхвысокочастотного разряда, характеризующегося высокой электронной (Те) и колебательной (Tv) температурами и сравнительно низкой температурой (Tg) газа, так что Те>Tv>Tg. При этом Те достигает величин 8000-10000°С, Tv - около 4000°С, а температура газа, в зависимости от давления, находится в пределах 300-3000°С. При таких условиях SiF4 при взаимодействии с атомарным водородом конвертируется преимущественно в смесь SiF2H2 и SiFH3, что позволяет на стадии сорбционной конверсии фторсиланов в моносилан (реакции (1)-(3)) увеличить выход моносилана до 50-70% от теоретического.
Данный способ имеет недостатки, а именно при реализации данного способа используется микроволновой генератор «Фиалка» с плазмотроном из кварца или иного керамического материала, работающий на электромагнитной волне Н01, который не позволяет регулировать глубину плазменно-сорбционной конверсии SiF4, и его возможности ограничивались получением SiF2H2 со следами SiFH3. Для более глубокой конверсии SiF4, т.е. для получения смеси SiFH3 и SiH4 или даже чистого SiH4, необходимо использовать более мощное электроразрядное устройство. Кроме того, в данном способе используется водород, взятый в избытке к стехиометрическому соотношению, который осложняет технологический процесс и отрицательно влияет на взрывобезопасность производства: плазмотрон должен иметь взрывозащитный колпак, системы контроля и блокировок водорода и т.д.
Целью изобретения является увеличение выхода моносилана в процессе плазменно-водородной конверсии SiF4 путем получения смеси SiFH3 и SiH4 при одновременном увеличении взрывобезопасности производства за счет исключения избытка водорода в исходной смеси.
Поставленная цель достигается тем, что в способе генерирования моносилана, включающем плазменно-водородную обработку тетрафторида кремния, пропускание образовавшейся смеси фторсиланов и фторида водорода через слой нагретого фторида натрия, плазменно-водородную обработку проводят с использованием электромагнитной волны H11 в цельнометаллическом микроволновом реакторе.
На фиг. 1 показана схема цельнометаллического микроволнового реактора, на фиг. 2 - внешний вид реактора.
Исходным сырьем для генерации моносилана являются тетрафторид кремния и водород, взятые в количестве, близком или равном к стехиометрическому соотношению. Их подают в цельнометаллический микроволновый реактор (фиг. 1), работающий с использованием электромагнитной волны Н11 и имеющий волноводную связь с микроволновым генератором.
Принцип действия цельнометаллического микроволнового плазматрона основан на трансформации электромагнитной волны H01 в волну Н11 при стыковке прямоугольного волновода 1 (одного или нескольких) с круглым металлическим волноводом 2 под углом 90° (см. фиг. 1). В круглый волновод сверху вводят плазмообразующий газ (водород). При трансформации волны H01 в волну Н11 распределение электрического поля в круглом волноводе меняется так, что поле направлено по оси круглого волновода и совпадает с направлением потока газа. Микроволновой разряд возникает на пересечении потоков микроволновой мощности и газа, а сам разряд стабилизируют вихрем газа (тетрафторида кремния), подаваемым тангенциально. В такой конструкции осуществляется так называемое поперечное возбуждение микроволнового разряда. Мощность такого микроволнового разряда можно наращивать (до сотни киловатт) прямым суммированием мощности, располагая отдельные подводящие мощность прямоугольные волноводы 1 вдоль круглого волновода 2. Диэлектрический элемент 3 представляет собой герметичную вставку между прямоугольным волноводом и зоной плазмообразования в круглом волноводе, чтобы газ, вводимый в круглый волновод, не распространялся по прямоугольному волноводу к магнетрону.
Поскольку в работе цельнометаллического реактора нет ограничений, связанных с его устойчивостью и водородной безопасностью, мощность в разряде и давление поддерживают на уровне, при котором водород полностью диссоциируется (атомизируется). В разряде возникает неравновесная плазма, разряд - объемный (неконтрагированный), температура электронов (Те) составляет около 8000 К, колебательная температура (Tv) - около 3000 К, а температура газа (Tg) в интервале давлений 105-104 Па, в зависимости от мощности разряда, составляет 950-600 К, т.е. выполняется соотношение Те>Tv>Tg. По всем этим причинам в реакторе не обязательно иметь избыток водорода, а можно поддерживать мольное соотношение, близкое к стехиометрическому, при расчете на полную конверсию тетрафторида кремния в моносилан и фтороводород.
При перечисленных выше условиях в реакторе происходит полная атомизация и частичная ионизация водорода, и при взаимодействии таких атомов водорода, имеющих высокую химическую активность, с тетрафторидом кремния в реакторе образуется смесь SiFH3, SiH4 и HF. После реактора в получаемой газовой смеси стабилизируют температуру и направляют в сорбционную колонну, заполненную гранулированным фторидом натрия. Уровень температуры в колонне обеспечивает достаточную полноту и скорость сорбционной конверсии фторсиланов в моносилан по уравнению (1), подавляет конкурирующий процесс сорбции фтороводорода по уравнению (2) и паразитную реакцию (4).
Примеры осуществления способа
Пример 1.
Газообразный тетрафторид кремния и водород подавали в цельнометаллический плазменный реактор. Электропитание плазматрона осуществляли от распределительного устройства трехфазной четырехпроводной сети переменного тока 3×380/220 В ± 5% В, 50 Гц, 50 кВт. Источник электропитания содержал микроволновый генератор КИ-5, максимальная мощность, потребляемая магнетроном из электрической сети, 5 кВт, частота 2450 Гц (фиг. 2).
Инициирование разряда производили при расходе основного потока 2 м3/час на уровнях микроволновой мощности 3-5 кВт. Разряд устойчиво горит в разрядной камере в диапазоне расходов основного потока от 2 до 15 м3/час. Мощность микроволнового генератора была 4,5 кВт. Давление в зоне образования (Si-F-H)-плазмы 150 торр, разряд имел неконтрагированную форму. Интегральное количество SiF4, переработанное в ходе эксперимента, составило 0,94 кг, продолжительность эксперимента 20,2 мин, соотношение тетрафторида кремния и водорода 1:2.
Из реактора получали смесь состава SiF0,7H3,3, HF, Н2, которую направляли в сорбционную колонну. Время контакта фторсилана с фторидом натрия менее 1 с. Выход SiH4 составил 82,5% от теоретического.
Пример 2
Процесс осуществляли в том же оборудовании, что и в примере 1.
Мощность микроволнового генератора составляла 5 кВт. Давление в зоне образования (Si-F-H)-плазмы 150 торр, разряд имел неконтрагированную форму. Интегральное количество SiF4, переработанное в ходе эксперимента, 0,79 кг, продолжительность эксперимента 12,7 мин, соотношение тетрафторида кремния и водорода 1:4.
Из реактора получали смесь состава SiF0,4H3,6, HF, Н2, которую направляли в сорбционную колонну. Время контакта фторсилана с фторидом натрия не менее 1 с. Выход SiH4 составил 90,1% от теоретического.
Таким образом, на практике показано увеличение выхода моносилана до 82-90% при плазменно-водородной конверсии SiF4 с использованием электромагнитной волны Н11 в цельнометаллическом микроволновом реакторе за счет более глубокой конверсии SiF4 и получения в реакторе смеси SiFH3 и SiH4. Предлагаемый способ увеличивает взрывобезопасность производства за счет использования в реакторе водорода в диссоциированной форме, причем количество водорода может быть уменьшено до стехиометрического соотношения.

Claims (2)

1. Способ генерирования моносилана, включающий плазменно-водородную обработку тетрафторида кремния, пропускание образовавшейся смеси фторсиланов и фторида водорода через слой нагретого фторида натрия, отличающийся тем, что плазменно-водородную обработку проводят в реакторе с использованием электромагнитной волны H11.
2. Способ по п. 1, отличающийся тем, что плазменно-водородную обработку проводят в цельнометаллическом микроволновом реакторе.
RU2015112537/05A 2015-04-06 2015-04-06 Способ генерирования моносилана RU2599659C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015112537/05A RU2599659C1 (ru) 2015-04-06 2015-04-06 Способ генерирования моносилана

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015112537/05A RU2599659C1 (ru) 2015-04-06 2015-04-06 Способ генерирования моносилана

Publications (1)

Publication Number Publication Date
RU2599659C1 true RU2599659C1 (ru) 2016-10-10

Family

ID=57127645

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015112537/05A RU2599659C1 (ru) 2015-04-06 2015-04-06 Способ генерирования моносилана

Country Status (1)

Country Link
RU (1) RU2599659C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113233422A (zh) * 2021-06-02 2021-08-10 四川大学 一种SiF4与HF混合气体的分离方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2933374A (en) * 1955-03-29 1960-04-19 Gen Electric Process of treating fluorosilanes to form monosilane
RU2050320C1 (ru) * 1992-09-24 1995-12-20 Всероссийский научно-исследовательский институт химической технологии Способ получения моносилана
JP2011001207A (ja) * 2009-06-16 2011-01-06 Sharp Corp モノシラン生成装置およびモノシラン生成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2933374A (en) * 1955-03-29 1960-04-19 Gen Electric Process of treating fluorosilanes to form monosilane
RU2050320C1 (ru) * 1992-09-24 1995-12-20 Всероссийский научно-исследовательский институт химической технологии Способ получения моносилана
JP2011001207A (ja) * 2009-06-16 2011-01-06 Sharp Corp モノシラン生成装置およびモノシラン生成方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113233422A (zh) * 2021-06-02 2021-08-10 四川大学 一种SiF4与HF混合气体的分离方法及系统
CN113233422B (zh) * 2021-06-02 2023-03-31 四川大学 一种SiF4与HF混合气体的分离方法及系统

Similar Documents

Publication Publication Date Title
KR101172927B1 (ko) 수소 화합물 함유 사염화규소 또는 사염화게르마늄의 정제방법 및 장치
CN101297062B (zh) 等离子体反应器
US9758444B2 (en) Method and device for production of acetylene using plasma technology
WO2010082561A1 (ja) プラズマ生成装置及び方法
Mizeraczyk et al. Studies of atmospheric-pressure microwave plasmas used for gas processing
WO2013085885A1 (en) Gas injector apparatus for plasma applicator
RU2599659C1 (ru) Способ генерирования моносилана
KR20150057663A (ko) 텐덤형 플라즈마소스를 이용한 과불화탄소 분해용 플라즈마 장치
US5648530A (en) Manufacture of carbonyl floride
CN101734666A (zh) 用微波等离子氢化四氯化硅制三氯氢硅和二氯氢硅的方法
RU2601290C1 (ru) Свч-плазмотрон
Sennikov et al. A study of silicon tetrafluoride reduction with hydrogen in radiofrequency discharge
US4950373A (en) Process for the production of disilane from monosilane
Zhenxi et al. Hydrogenation of silicon tetrachloride in microwave plasma
KR101329750B1 (ko) 플라즈마 수소화 반응 장치
TWI585040B (zh) 製備純八氯三矽烷及十氯四矽烷之方法
Vurzel et al. Plasma chemical technology—the future of the chemical industry
JP2011001207A (ja) モノシラン生成装置およびモノシラン生成方法
Ryan et al. Gas-phase chemistry in the processing of materials for the semiconductor industry
KR101829935B1 (ko) 스팀 플라즈마 토치를 이용한 실리콘 산화물 합성 방법 및 이의 실리콘 산화물
Mankelevich et al. Diamond growth enhancement in dc discharge CVD reactors. Effects of noble gas addition and pulsed mode application
KR101649148B1 (ko) 이차 전지용 음극 활물질의 제조 장치
JP2000012283A (ja) プラズマ生成装置
KR101615307B1 (ko) 폴리실리콘 제조 장치
US3679560A (en) Process for the preparation of an anhydride or trivalent phosphorus using excited helium

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170407