RU2589985C2 - Способ работы рекуперационной установки - Google Patents
Способ работы рекуперационной установки Download PDFInfo
- Publication number
- RU2589985C2 RU2589985C2 RU2013134395/06A RU2013134395A RU2589985C2 RU 2589985 C2 RU2589985 C2 RU 2589985C2 RU 2013134395/06 A RU2013134395/06 A RU 2013134395/06A RU 2013134395 A RU2013134395 A RU 2013134395A RU 2589985 C2 RU2589985 C2 RU 2589985C2
- Authority
- RU
- Russia
- Prior art keywords
- expansion machine
- speed
- ocr
- generator
- cycle
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K13/00—General layout or general methods of operation of complete plants
- F01K13/02—Controlling, e.g. stopping or starting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/065—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/10—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
- F01K23/101—Regulating means specially adapted therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/12—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
- F01K25/10—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/10—Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
- Y02P80/15—On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Control Of Turbines (AREA)
Abstract
Изобретение относится к энергетике. Способ управления рекуперационной установкой для источника отходящего тепла, состоящей из органического цикла Ренкина (ОЦР), последовательно предусмотренного после этого источника отходящего тепла, который соединен с нагревательным устройством ОЦР-цикла, а также с расширительной машиной для расширения пара в ОЦР-цикле, связанной с генератором, заключается в том, что расширительная машина для расширения пара в ОЦР-цикле запускается работающим в двигательном режиме генератором и разгоняется им до задаваемой в регулирующем устройстве минимальной пусковой частоты вращения, по достижении которой открывается паровой клапан на входе расширительной машины, в результате чего происходит дальнейшее возрастание частоты вращения, и генератор из двигательного режима переходит на работу в нормальном генераторном режиме. Изобретение позволяет повысить эффективность управления рекуперационной установкой для источника отходящего тепла. 9 з.п. ф-лы, 1 ил.
Description
Настоящее изобретение относится к способу управления рекуперационной установкой (установкой для использования или утилизации отходящего тепла) согласно п.1 формулы изобретения.
Под аббревиатурой ОЦР (или OCR от англ. "Organic Rankine Cycle", органический цикл Ренкина) подразумевается термодинамический цикл, предложенный Ренкином. Сказанное означает, что рабочее тело проходит различные термодинамические состояния и в конце цикла вновь переводится в жидкое исходное состояние. При этом давление рабочего тела доводится насосом до повышенного уровня. После этого рабочее тело подогревается до температуры испарения и затем испаряется.
Речь, таким образом, идет о паровом цикле, в котором вместо воды испаряют органическую среду. Образующийся пар приводит в действие расширительную машину, например турбину, поршневой или винтовой двигатель, которая для выработки электрического тока в свою очередь связана с электрическим генератором. После расширительной машины рабочее тело поступает в конденсатор и вновь охлаждается в нем с отдачей тепла. Поскольку вода при атмосферных условиях испаряется при 100°С, тепло с температурой ниже этого уровня, такое, например, как тепло промышленных отходящих газов или теплота Земли, часто невозможно использовать для выработки электрического тока. Применение же органических сред с меньшими температурами кипения позволяет вырабатывать низкотемпературный пар.
ОЦР-установки предпочтительны в применении, например, и при утилизации биомассы в рамках комбинированного производства электроэнергии и тепла, прежде всего при сравнительно малой мощности, т.е. в тех случаях, когда традиционная технология, основанная на сжигании биомассы, представляется относительно дорогостоящей. Установки для выработки энергии из биомассы часто имеют предназначенный для выработки биогаза ферментер, который обычно требуется обогревать.
Рекуперационные установки указанного в ограничительной части независимого пункта формулы изобретения типа известны по их применению в области комбинированного производства электроэнергии и тепла и состоят из блочной тепловой электростанции, скомбинированной с последующим ОЦР-циклом. Из DE 19541521 А1 известна установка для повышения электрического кпд при использовании особых газов для выработки электроэнергии с помощью двигателей внутреннего сгорания (ДВС), тепло отработавших газов которых используется в последующей системе преобразования энергии в целях последующей выработки электроэнергии. При этом, однако, утилизируется только высокотемпературное тепло из контура охлаждения, а также из теплообменника на отработавших газах двигателя.
Из US 4901531 известен далее интегрированный в цикл Ренкина дизельный электроагрегат, один цилиндр которого служит при этом для расширения по Ренкину, а другие цилиндры работают как дизельный двигатель. Из US 4334409 известна работающая по циклу Ренкина система, в которой рабочая жидкость подогревается посредством теплообменника, снаружи которого пропускается воздух с выхода компрессора ДВС.
Блочные тепловые электростанции в качестве установок для комбинированного производства электроэнергии и тепла общеизвестны. Речь при этом идет о децентрализованных генераторных установках, по большей части приводимых в действие двигателями внутреннего сгорания и одновременно использующих тепло их отработавших газов. При этом тепло, выделяющееся при сгорании и отводимое охлаждающими средами, максимально полно используется для обогрева или теплоснабжения соответствующих объектов.
Для применения прежде всего в установках для комбинированного производства электроэнергии и тепла с последующим ОЦР-циклом в качестве электростанции, использующей отходящее тепло, хорошо зарекомендовали себя машины на основе двигателей с работающими на отработавших газах турбонагнетателями для наддува. В этой связи возникает потребность в двигателях с исключительно высоким электрическим кпд, достижимым только при использовании турбонаддува и обратного охлаждения горючей смеси, нагревшейся в результате сжатия. В целом охлаждение горючей смеси необходимо постольку, поскольку в противном случае наполнение цилиндров оказалось бы сравнительно плохим. Благодаря охлаждению горючей смеси, поступающей в цилиндры, повышается ее плотность и одновременно возрастает коэффициент наполнения цилиндров. В результате возрастают выход мощности двигателя и его механический кпд.
Для возможности достаточного охлаждения горючей смеси предписываемая производителями двигателей температура охлаждающей жидкости на входе должна составлять лишь примерно 40-50°С. Поскольку такой уровень температуры сравнительно низок, отбираемое от горючей смеси тепло в известных в настоящее время установках для комбинированного производства электроэнергии и тепла отводится в окружающую среду, например, с помощью сухого охладителя.
Из DE 102005048795 В3 известен далее двухступенчатый подогрев рабочего тела в ОЦР-цикле в нагревательном устройстве, а именно рабочее тело в ОЦР-цикле нагревают в двух подсоединенных последовательно к питательному насосу теплообменниках, первый из которых, установленный после питательного насоса, служит в качестве первой ступени для подвода низкотемпературного тепла, а следующий теплообменник служит в качестве второй ступени для подвода высокотемпературного тепла. С первым теплообменником, установленным после питательного насоса, циркуляционным контуром соединена система охлаждения горючей смеси, поступающей в ДВС, при этом тепло, отбираемое от поступающей в ДВС горючей смеси в системе ее охлаждения, служит для подогрева рабочего тела в ОЦР-цикле и в качестве низкотемпературного тепла подводится к рабочему телу в первом теплообменнике. Второй нагревательный контур использует тепло, отбираемое от жидкости для охлаждения ДВС и от его отработавших газов, и соединен со вторым теплообменником, установленным после питательного насоса, при этом тепло, отбираемое от охлаждающей жидкости в контуре ее циркуляции и от отработавших газов ДВС, служит для перегрева и испарения рабочего тела в ОЦР-цикле и в качестве высокотемпературного тепла подводится к рабочему телу во втором теплообменнике, установленном после питательного насоса.
Исходя из вышеизложенного, в основу настоящего изобретения была положена задача оптимизировать рекуперационную установку с последовательно предусмотренным после источника отходящего тепла ОЦР-циклом в отношении ее конструкции и рабочих характеристик.
Согласно изобретению указанная задача решается с помощью объекта изобретения с отличительными признаками, представленными в п.1 формулы изобретения. В зависимых пунктах формулы изобретения приведены различные предпочтительные варианты осуществления изобретения.
Предлагаемая в изобретении рекуперационная установка отличается тем, что расширительная машина для расширения пара в ОЦР-цикле запускается работающим в двигательном режиме генератором и разгоняется им до задаваемой в регулирующем устройстве минимальной пусковой частоты вращения. Минимальная пусковая частота вращения в предпочтительном варианте соответствует при этом примерно двум третям минимальной рабочей частоты вращения. Решающее преимущество, связанное с работой генератора в двигательном режиме, состоит в малой нагрузке на подшипники в пусковой фазе, поскольку в расширительную машину еще не подается хладагент.В противном случае в еще холодной расширительной машине при определенных условиях могла бы произойти нежелательная конденсация небольших количеств хладагента. Однако в этом случае уже происходит ее охлаждение, также частичным потоком хладагента, хотя и находящимся в жидкой фазе.
Согласно изобретению по достижении минимальной пусковой частоты вращения открывается паровой клапан на входе расширительной машины для расширения пара в ОЦР-цикле и при дальнейшем открытии этого парового клапана происходит дальнейшее возрастание частоты вращения, в результате чего генератор из двигательного режима переходит на работу в нормальном генераторном режиме. Данный аспект предпочтителен постольку, поскольку расширительная машина сразу же с момента пуска, соответственно первоначально подключена к генератору в качестве электродвигателя и не требует синхронизации с сетью. При полностью открытом паровом клапане и при достигнутой минимальной рабочей частоте вращения затем в регулирующем устройстве инициируется процесс оптимизации частоты вращения с учетом фактической рабочей ситуации.
В еще одном предпочтительном варианте осуществления изобретения регулирующее устройство определяет для расширительной машины для расширения пара в ОЦР-цикле оптимальную для фактической рабочей точки частоту вращения. При этом на первой стадии происходит, начиная с минимальной частоты вращения, медленное ее регулируемое повышение при анализе мощности генератора до тех пор, пока на второй стадии при возрастающей частоте вращения и при одновременно падающей мощности генератора не будет распознано превышение пикового уровня. Далее на третьей стадии осуществляется уменьшение частоты вращения, а на последующих стадиях процессы, выполняемые на второй и третьей стадиях, повторяются до тех пор, пока частота вращения не стабилизируется в точке максимальной мощности генератора.
Предпочтителен далее вариант, в котором в регулирующем устройстве для расширительной машины для расширения пара в ОЦР-цикле предусмотрена возможность задания оптимальной для фактической рабочей точки частоты вращения по многопараметровой характеристике.
Так, в частности, в предпочтительном варианте осуществления изобретения в многопараметровой характеристике оптимальной частоте вращения поставлено в соответствие давление на входе и/или выходе расширительной машины и для определения фактического рабочего состояния измеряется, анализируется и корректируется в регулирующем устройстве по многопараметровой характеристике фактическое давление на входе и/или выходе расширительной машины для настройки таким путем частоты вращения. Альтернативно этому или дополнительно к этому в многопараметровой характеристике оптимальной частоте вращения может быть поставлена в соответствие температура на входе и/или выходе расширительной машины и для определения фактического рабочего состояния может измеряться, анализироваться и корректироваться в регулирующем устройстве по многопараметровой характеристике фактическая температура на входе и/или выходе расширительной машины для настройки таким путем частоты вращения.
Предпочтителен также вариант, в котором объединенный с расширительной машиной для расширения пара в ОЦР-цикле генератор имеет связанный с ним преобразователь частоты для работы с переменной, соответственно регулируемой частотой вращения.
В еще одном предпочтительном варианте осуществления изобретения предусмотрен идущий в обход расширительной машины регулируемый байпас с по меньшей мере одним дроссельным клапаном в ОЦР-контуре. Такой байпас сначала в пусковой фазе, т.е. при еще сравнительно низкой температуре рабочего тела, открыт, и поэтому рабочее тело направляется в обход расширительной машины во избежание нежелательного попадания присутствующих в рабочем теле остатков его жидкой фазы в расширительную машину. Сразу же по достижении ОЦР-контуром своего заданного рабочего состояния, что определяется, например, по соответствующему, задаваемому уровню температуры или по иным параметрам, байпас закрывается, а установленный перед расширительной машиной паровой клапан открывается.
Предлагаемое в изобретении решение позволяет оптимизировать конструкцию и рабочие характеристики рекуперационной установки с последовательно предусмотренным после источника отходящего тепла ОЦР-циклом. В качестве примера источников отходящего тепла можно назвать блочные тепловые электростанции, промышленные установки или котельные установки.
Согласно изобретению оптимизируется также пусковая фаза работы расширительной машины. Одновременно с этим достигаются максимальная эксплуатационная надежность и защита от конденсации хладагента в том случае, когда разгон расширительной машины работающим в двигательном режиме генератором происходит в отсутствие хладагента. Поскольку со стороны охлаждения используемый в этих целях частичный поток хладагента пропускается через генераторный блок, при его работе в двигательном режиме этот частичный поток хладагента поглощает в этом месте тепло потерь.
Равным образом контролируется и тепловое состояние расширительной машины, равно как и другие граничные условия. К таковым в качестве пусковых условий относятся, например, наименьшее давление хладагента в ОЦР-контуре, условия включения системы магнитных опор рабочего колеса турбины, т.е. системы ее магнитных подшипников, а также контроль всех функционально необходимых агрегатов.
Согласно изобретению, таким образом, процесс пуска рекуперационной установки происходит в полностью автоматическом режиме под управлением электроники. Сказанное равным образом относится и к автоматизированному нормальному режиму работы с переменной частотой вращения, согласованной с конкретной рабочей ситуацией, а также к режиму останова.
Ниже изобретение более подробно рассмотрено на примере одного из вариантов его осуществления со ссылкой на прилагаемый к описанию единственный чертеж, на котором показана принципиальная схема рекуперационной установки с последовательно предусмотренным после источника отходящего тепла ОЦР-циклом.
Функционально важными для ОЦР-цикла компонентами являются ОЦР-контур 1 (контур, работающий по органическому циклу Ренкина), питательный насос 2, испаритель 3, расширительная машина 4 для расширения пара, связанная с генератором 5, конденсатор 6 для обратного охлаждения посредством теплоотвода 7, а также теплообменники 8, 9 для подогрева рабочего тела в ОЦР-контуре 1.
Оба теплообменника 8, 9 последовательно подсоединены к питательному насосу 2. Первый теплообменник 8, установленный после питательного насоса 2, служит при этом первой ступенью для подвода низкотемпературного тепла к рабочему телу, а следующий теплообменник 9 служит второй ступенью для подвода высокотемпературного тепла от источника 10 отходящего тепла к рабочему телу.
Второй нагревательный контур 11 своей подающей линией соединен с испарителем 3 ОЦР-контура, поскольку уровень температуры сначала достаточно высок для его прямого нагрева. После этого второй нагревательный контур 11 своей обратной линией входит во второй теплообменник 9 и отдает в нем еще имеющееся остаточное тепло рабочему телу ОЦР.
Для охлаждения расширительной машины 4 отводится частичный поток 12 жидкого хладагента, пропускаемый сначала через генератор 5. После этого охлаждающая среда проходит через корпус расширительной машины 4 и обеспечивает в этом месте достаточный отвод тепла.
По достижении минимальной пусковой частоты вращения открывается паровой клапан 13 на входе расширительной машины 4 для расширения пара в ОЦР-цикле, и при дальнейшем открытии этого парового клапана 13 происходит дальнейшее возрастание частоты вращения, в результате чего генератор 5 из двигательного режима переходит на работу в нормальном генераторном режиме.
В обход расширительной машины 4 предусмотрен регулируемый байпас 14 с по меньшей мере одним дроссельным клапаном 15. Сначала такой байпас 14 в пусковой фазе, т.е. при еще сравнительно низкой температуре рабочего тела, открыт.Таким путем рабочее тело направляется в обход расширительной машины 4. Сразу же по достижении ОЦР-контуром 1 своего заданного рабочего состояния дроссельный клапан 15 в байпасе 14 закрывается, а установленный перед расширительной машиной 4 паровой клапан 13 открывается.
Claims (10)
1. Способ управления рекуперационной установкой для источника (10) отходящего тепла, состоящей из органического цикла Ренкина (ОЦР), последовательно предусмотренного после этого источника (10) отходящего тепла, который соединен с нагревательным устройством ОЦР-цикла, а также с расширительной машиной (4) для расширения пара в ОЦР-цикле, которая связана с генератором (5)и которая запускается работающим в двигательном режиме генератором (5) и разгоняется им до задаваемой в регулирующем устройстве минимальной пусковой частоты вращения, по достижении которой открывается паровой клапан (13) на входе расширительной машины (4) для расширения пара в ОЦР-цикле, и при дальнейшем открытии этого парового клапана (13) происходит дальнейшее возрастание частоты вращения, в результате чего генератор (5) из двигательного режима переходит на работу в нормальном генераторном режиме.
2. Способ по п.1, отличающийся тем, что минимальная пусковая частота вращения соответствует примерно двум третям минимальной рабочей частоты вращения.
3. Способ по п.2, отличающийся тем, что при полностью открытом паровом клапане (13) и при достигнутой минимальной рабочей частоте вращения в регулирующем устройстве инициируется процесс оптимизации частоты вращения.
4. Способ по п.1, отличающийся тем, что регулирующее устройство определяет для расширительной машины (4) для расширения пара в ОЦР-цикле оптимальную для фактической рабочей точки частоту вращения, для чего на первой стадии происходит, начиная с минимальной частоты вращения, медленное ее регулируемое повышение при анализе мощности генератора, на второй стадии при возрастающей частоте и при одновременно падающей мощности генератора распознается превышение пикового уровня и на третьей стадии осуществляется уменьшение частоты вращения, а на последующих стадиях процессы, выполняемые на второй и третьей стадиях, повторяются до тех пор, пока частота вращения не стабилизируется в точке максимальной мощности генератора.
5. Способ по одному из пп.1-3, отличающийся тем, что в регулирующем устройстве для расширительной машины (4) для расширения пара в ОЦР-цикле предусмотрена возможность задания оптимальной для фактической рабочей точки частоты вращения по многопараметровой характеристике.
6. Способ по п.5, отличающийся тем, что в многопараметровой характеристике оптимальной частоте вращения поставлено в соответствие давление на входе и/или выходе расширительной машины (4) и для определения фактического рабочего состояния измеряется, анализируется и корректируется в регулирующем устройстве по многопараметровой характеристике фактическое давление на входе и/или выходе расширительной машины (4) для настройки таким путем частоты вращения.
7. Способ по п.5, отличающийся тем, что в многопараметровой характеристике оптимальной частоте вращения поставлена в соответствие температура на входе и/или выходе расширительной машины (4) и для определения фактического рабочего состояния измеряется, анализируется и корректируется в регулирующем устройстве по многопараметровой характеристике фактическая температура на входе и/или выходе расширительной машины (4) для настройки таким путем частоты вращения.
8. Способ по п.1, отличающийся тем, что объединенный с расширительной машиной (4) для расширения пара в ОЦР-цикле генератор (5) имеет связанный с ним преобразователь частоты для работы с переменной, соответственно регулируемой частотой вращения.
9. Способ по п.1, отличающийся тем, что предусмотрен идущий в обход расширительной машины (4) регулируемый байпас (14) с по меньшей мере одним дроссельным клапаном (15) в ОЦР-контуре (1).
10. Способ по п.9, отличающийся тем, что регулируемый байпас (14), идущий в обход расширительной машины (4), сначала в пусковой фазе открыт и закрывается по достижении температурой в ОЦР-контуре (1) задаваемого уровня.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010056272A DE102010056272A1 (de) | 2010-12-24 | 2010-12-24 | Abwärmenutzungsanlage |
DE102010056272.6 | 2010-12-24 | ||
PCT/EP2011/073602 WO2012085093A1 (de) | 2010-12-24 | 2011-12-21 | Abwärmenutzungsanlage |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2013134395A RU2013134395A (ru) | 2015-01-27 |
RU2589985C2 true RU2589985C2 (ru) | 2016-07-10 |
Family
ID=45440538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2013134395/06A RU2589985C2 (ru) | 2010-12-24 | 2011-12-21 | Способ работы рекуперационной установки |
Country Status (6)
Country | Link |
---|---|
US (1) | US20140013750A1 (ru) |
EP (1) | EP2655810A1 (ru) |
CN (1) | CN103270254B (ru) |
DE (1) | DE102010056272A1 (ru) |
RU (1) | RU2589985C2 (ru) |
WO (1) | WO2012085093A1 (ru) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012021326B4 (de) * | 2012-10-26 | 2014-05-15 | Voith Patent Gmbh | Verfahren zum Erzeugen von elektrischer Energie und Energieerzeugungsanlage |
EP3447257A1 (de) * | 2017-08-21 | 2019-02-27 | Siemens Aktiengesellschaft | Verfahren zum beschleunigen einer dampfturbine |
CN108868931B (zh) * | 2018-08-07 | 2024-07-05 | 西安热工研究院有限公司 | 高效灵活的燃气超临界二氧化碳联合循环热电联产系统 |
CN112160808B (zh) * | 2020-09-23 | 2021-12-21 | 昆明理工大学 | 一种舰船燃气轮机余热回收功冷联供系统 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2111422C1 (ru) * | 1995-03-06 | 1998-05-20 | Энергетический научно-исследовательский институт им.Г.М.Кржижановского | Солнечная комбинированная электростанция |
RU66016U1 (ru) * | 2007-04-25 | 2007-08-27 | Степан Иванович ВАСИЛЕВСКИЙ | Автономный энергетический модуль (варианты) |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2449780A1 (fr) | 1979-02-22 | 1980-09-19 | Semt | Procede et dispositif de recuperation d'energie thermique dans un moteur a combustion interne suralimente |
US4901531A (en) | 1988-01-29 | 1990-02-20 | Cummins Engine Company, Inc. | Rankine-diesel integrated system |
DE19541521A1 (de) | 1995-11-08 | 1997-07-31 | Schmeink & Cofreth En Manageme | Steigerung des elektrischen Wirkungsgrades bei der Verstromung von Sondergasen |
US6494042B2 (en) * | 2001-02-12 | 2002-12-17 | Ormat Industries Ltd. | Method of and apparatus for producing uninterruptible power |
US20030213246A1 (en) * | 2002-05-15 | 2003-11-20 | Coll John Gordon | Process and device for controlling the thermal and electrical output of integrated micro combined heat and power generation systems |
US8061139B2 (en) * | 2002-05-22 | 2011-11-22 | Ormat Technologies, Inc. | Integrated engine generator rankine cycle power system |
JP3901609B2 (ja) * | 2002-07-25 | 2007-04-04 | 本田技研工業株式会社 | ランキンサイクル装置 |
US6986251B2 (en) * | 2003-06-17 | 2006-01-17 | Utc Power, Llc | Organic rankine cycle system for use with a reciprocating engine |
US7200996B2 (en) * | 2004-05-06 | 2007-04-10 | United Technologies Corporation | Startup and control methods for an ORC bottoming plant |
US7290393B2 (en) * | 2004-05-06 | 2007-11-06 | Utc Power Corporation | Method for synchronizing an induction generator of an ORC plant to a grid |
US7225621B2 (en) * | 2005-03-01 | 2007-06-05 | Ormat Technologies, Inc. | Organic working fluids |
JP2006250075A (ja) * | 2005-03-11 | 2006-09-21 | Honda Motor Co Ltd | ランキンサイクル装置 |
JP4493531B2 (ja) * | 2005-03-25 | 2010-06-30 | 株式会社デンソー | 膨張機付き流体ポンプおよびそれを用いたランキンサイクル |
WO2006104490A1 (en) * | 2005-03-29 | 2006-10-05 | Utc Power, Llc | Cascaded organic rankine cycles for waste heat utilization |
DE102005048795B3 (de) | 2005-10-12 | 2006-12-28 | Köhler & Ziegler Anlagentechnik GmbH | Kraft-Wärme-Kopplungsanlage |
JP4823936B2 (ja) * | 2006-04-19 | 2011-11-24 | 株式会社デンソー | 廃熱利用装置およびその制御方法 |
WO2008082388A1 (en) * | 2006-12-28 | 2008-07-10 | Utc Power Corporation | A power split device for a combined heat and power (chp) system |
EP2014880A1 (en) * | 2007-07-09 | 2009-01-14 | Universiteit Gent | An improved combined heat power system |
US7950230B2 (en) * | 2007-09-14 | 2011-05-31 | Denso Corporation | Waste heat recovery apparatus |
JP4302759B2 (ja) * | 2007-09-14 | 2009-07-29 | 株式会社デンソー | 廃熱利用装置 |
JP2009097434A (ja) * | 2007-10-17 | 2009-05-07 | Sanden Corp | 内燃機関の廃熱利用装置 |
RU2464436C2 (ru) * | 2008-03-28 | 2012-10-20 | Мицубиси Хеви Индастрис, Лтд. | Способ управления турбинной установкой и турбинная установка |
CN101566113B (zh) * | 2009-06-03 | 2011-06-08 | 浙江银轮机械股份有限公司 | 基于有机朗肯循环的发动机废热回收系统 |
JP5163620B2 (ja) * | 2009-10-15 | 2013-03-13 | 株式会社豊田自動織機 | 廃熱回生システム |
JP5552986B2 (ja) * | 2010-09-24 | 2014-07-16 | 株式会社豊田自動織機 | ランキンサイクル装置 |
-
2010
- 2010-12-24 DE DE102010056272A patent/DE102010056272A1/de not_active Ceased
-
2011
- 2011-12-21 EP EP11802938.8A patent/EP2655810A1/de not_active Withdrawn
- 2011-12-21 US US13/997,587 patent/US20140013750A1/en not_active Abandoned
- 2011-12-21 CN CN201180062100.1A patent/CN103270254B/zh not_active Expired - Fee Related
- 2011-12-21 RU RU2013134395/06A patent/RU2589985C2/ru not_active IP Right Cessation
- 2011-12-21 WO PCT/EP2011/073602 patent/WO2012085093A1/de active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2111422C1 (ru) * | 1995-03-06 | 1998-05-20 | Энергетический научно-исследовательский институт им.Г.М.Кржижановского | Солнечная комбинированная электростанция |
RU66016U1 (ru) * | 2007-04-25 | 2007-08-27 | Степан Иванович ВАСИЛЕВСКИЙ | Автономный энергетический модуль (варианты) |
Also Published As
Publication number | Publication date |
---|---|
EP2655810A1 (de) | 2013-10-30 |
CN103270254B (zh) | 2015-09-23 |
DE102010056272A1 (de) | 2012-06-28 |
US20140013750A1 (en) | 2014-01-16 |
CN103270254A (zh) | 2013-08-28 |
WO2012085093A1 (de) | 2012-06-28 |
RU2013134395A (ru) | 2015-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2015353C1 (ru) | Способ эксплуатации парогазотурбинной энергетической установки | |
RU2551458C2 (ru) | Комбинированная тепловая система с замкнутым контуром для рекуперации отработанного тепла и способ ее эксплуатации | |
US20180313232A1 (en) | Waste heat recovery simple cycle system and method | |
JP2019502051A (ja) | 逆ブレイトンサイクル熱機関 | |
JP2010265899A (ja) | ランキンサイクルに従って動作する閉じた循環路内を循環する作動流体の制御装置及びその使用方法 | |
EP2646658A2 (en) | Driven starter pump and start sequence | |
CN102549239A (zh) | 发动机废热回收发电涡轮系统及具备该涡轮系统的往复移动式发动机系统 | |
CA2963336A1 (en) | Method and apparatus for cogeneration power plant waste heat source utilization by incorporated water source high temperature heat pump | |
US9030034B2 (en) | Stationary power plant, in particular a gas power plant, for generating electricity | |
RU2589985C2 (ru) | Способ работы рекуперационной установки | |
US20140013749A1 (en) | Waste-heat recovery system | |
CN201891525U (zh) | 两级单螺杆膨胀机有机朗肯循环柴油机尾气余热利用系统 | |
RU2583478C2 (ru) | Рекуперационная установка | |
RU2757468C1 (ru) | Способ работы парогазовой установки в период прохождения провалов графика электропотребления | |
US9540961B2 (en) | Heat sources for thermal cycles | |
KR101922026B1 (ko) | 선박의 폐열을 이용한 에너지 절감 시스템 | |
CN111527297B (zh) | 用于转换来自内燃机损失热的热能的装置 | |
RU2630284C1 (ru) | Когенерационная установка с глубокой утилизацией тепловой энергии теплового двигателя | |
KR101753526B1 (ko) | 복합화력발전시스템 | |
RU2237820C2 (ru) | Двигатель внутреннего сгорания с газотурбинным наддувом и способ эксплуатации этого двигателя | |
CN104594964A (zh) | 一种新型单轴天然气联合循环供热机组系统 | |
CN213574266U (zh) | 一种酯化蒸汽发电装置 | |
CN212535796U (zh) | 半封闭螺杆式余热发电系统 | |
US20110278859A1 (en) | Cooling heat generating equipment | |
RU2811448C2 (ru) | Газопаровая энергетическая установка |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20191222 |