[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

RU2589304C1 - Способ амплитудно-фазовой модуляции высокочастотного сигнала и устройство его реализации - Google Patents

Способ амплитудно-фазовой модуляции высокочастотного сигнала и устройство его реализации Download PDF

Info

Publication number
RU2589304C1
RU2589304C1 RU2014144476/08A RU2014144476A RU2589304C1 RU 2589304 C1 RU2589304 C1 RU 2589304C1 RU 2014144476/08 A RU2014144476/08 A RU 2014144476/08A RU 2014144476 A RU2014144476 A RU 2014144476A RU 2589304 C1 RU2589304 C1 RU 2589304C1
Authority
RU
Russia
Prior art keywords
frequency signal
complex
terminal
frequency
amplitude
Prior art date
Application number
RU2014144476/08A
Other languages
English (en)
Inventor
Александр Афанасьевич Головков
Владимир Александрович Головков
Original Assignee
Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации filed Critical Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации
Priority to RU2014144476/08A priority Critical patent/RU2589304C1/ru
Application granted granted Critical
Publication of RU2589304C1 publication Critical patent/RU2589304C1/ru

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

Изобретение относится к области радиосвязи и радиолокации. Технический результат изобретения заключается в обеспечении модуляции амплитуды и фазы высокочастотного сигнала при заданных зависимостях отношения модулей и разности фаз передаточной функции модулятора в двух состояниях управляемого нелинейного элемента, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты в заданной полосе частот за счет оптимизации схемы и значений параметров комплексного четырехполюсника. Способ амплитудно-фазовой модуляции высокочастотного сигнала состоит в том, что сигнал подают на модулятор, выполненный из четырехполюсника, управляемого двухэлектродного нелинейного элемента, источника управляющего низкочастотного сигнала и нагрузки, амплитуду и фазу сигнала изменяют путем изменения амплитуды управляющего низкочастотного сигнала на нелинейном элементе, нелинейный элемент включают в продольную цепь между источником высокочастотного сигнала и входом четырехполюсника, к выходу которого подключают нагрузку. Заданные зависимости отношения модуля и фазы передаточной функции модулятора обеспечивают за счет выбора зависимости элемента матрицы сопротивлений комплексного четырехполюсника от частоты. 2 н.п. ф-лы, 4 ил.

Description

Изобретения относятся к области радиосвязи и радиолокации и могут быть использованы для амплитудной, фазовой и амплитудно-фазовой модуляции или манипуляции высокочастотных сигналов.
Известен способ манипуляции (модуляции) параметров отраженного сигнала, состоящий в том, что входное сопротивление устройства манипуляции изменяют таким образом, что коэффициент отражения этого устройства изменяет фазу на π, π/2, π/4, причем для разделения входного и отраженного сигналов используют циркулятор [Радиопередающие устройства. / Под редакцией О.А. Челнокова - М.: Радио и связь, 1982, стр. 152-156]. Известно устройство реализации этого способа [там же], состоящее из циркулятора, первый вход которого подключен к источнику сигнала, третий вход подключен к нагрузке, а второй подключен к отрезку разомкнутой линии передачи длиной λ/4, вначале которой включен p-i-n диод.
Если диод закрыт, то от сечения, в котором он включен, происходит отражение, отраженная волна попадает в нагрузку с сопротивлением 50 Ом. Если диод открыт, то отражение происходит от конца линии. Фаза отраженного сигнала в одном состоянии диода отличается от фазы отраженного сигнала в другом состоянии диода на π радиан. При необходимости изменения разности фаз длина отрезка линии передачи изменяется соответствующим образом.
Недостатком этого способа и устройства его реализации является то, что в двух состояниях диода изменяется только фаза отраженного сигнала, причем заданные значения разности фаз отраженного сигнала в двух состояниях диода обеспечивается только на одной фиксированной частоте. Другим недостатком является постоянство амплитуды отраженного сигнала в двух состояниях диода, то есть отсутствие манипуляции амплитуды, что сужает функциональные возможности. Например, это не позволяет обеспечить два канала радиосвязи на одной несущей частоте (один канал можно образовать с помощью манипуляции амплитуды, а другой с помощью манипуляции фазы или не позволяет обеспечить кодировку передаваемой информации). Третьим недостатком следует считать большие массы и габариты, связанные с необходимостью использования отрезков линии передачи. Следующим важным недостатком является то, что данный способ и данное устройство не обеспечивают манипуляцию (модуляцию) амплитуды и фазы проходного сигнала. Основным недостатком является отсутствие возможности обеспечения манипуляции (модуляции) амплитуды и фазы проходного сигнала в заданной полосе частот при произвольных частотных характеристиках нагрузки.
Известен способ манипуляции фазы отраженного сигнала, основанный на использовании двухимпедансных устройств СВЧ [В.Г. Соколинский, В.Г. Шейнкман. Частотные и фазовые модуляторы и манипуляторы. - М.: Радио и связь, 1983, стр. 146-158]. Известно устройство реализации этого способа [там же], состоящее из определенного количества реактивных элементов типа L, C параметры которых выбраны из условия обеспечения требуемой произвольной разности фаз коэффициента отражения.
По сравнению с предыдущим способом и устройством данный способ и устройство его реализации не требуют использования полупроводниковых диодов только в открытом и только закрытом состояниях. При любых состояниях диодов, определяемых двумя уровнями низкочастотного управляющего воздействия, при определенных значениях параметров типа L, С может быть обеспечено заданное значение разности фаз отраженного сигнала на фиксированной частоте. Если амплитуда управляющего низкочастотного сигнала между указанными двумя уровнями изменяется непрерывно, то обеспечивается модуляция.
Основным недостатком (как и в первом способе и устройстве) является отсутствие возможности одновременного обеспечения манипуляции (модуляции) амплитуды и фазы проходного сигнала в заданной полосе частот при произвольных частотных характеристиках нагрузки.
Наиболее близким по технической сущности и достигаемому результату (прототипом) является способ [Головков А.А. Устройство для модуляции отраженного сигнала. Авт. св-во №1800579 от 09.10 1992 года], состоящий в том, что неуправляемую часть (согласующе-фильтрующее устройство) формируют из определенным образом соединенных между собой двухполюсников, сопротивление каждого двухполюсника выбирают из условия обеспечения одинакового заданного двухуровневого закона изменения амплитуды и фазы отраженного сигнала при изменении управляемого элемента из одного состояния в другое под действием управляющего низкочастотного напряжения или тока.
Известно устройство (прототип) реализации способа [там же], содержащее циркулятор, первое и третье плечи которого являются СВЧ-входом и выходом, а во второе плечо включены реактивный четырехполюсник и полупроводниковый диод, подключенный к источнику низкочастотного управляющего воздействия, при этом четерехполюсник выполнен в виде Т-образного соединения двухполюсников со значениями реактивных сопротивлений, которые выбраны из условия обеспечения требуемых законов двухуровневого изменения амплитуды и фазы отраженного сигнала на двух заданных частотах. Также, как и в предыдущих способе и устройстве реализации, возможна модуляция фазы и амплитуды, если управляющий сигнал изменяется непрерывно.
Основным недостатком (как и в предыдущих способах и устройствах) является отсутствие возможности одновременного обеспечения манипуляции (модуляции) амплитуды и фазы проходного сигнала в заданной полосе частот по заданному закону при произвольных частотных характеристиках нагрузки. Следующим важным недостатком всех перечисленных способов и устройств является то, что все элементы четырехполюсников выполнены реактивными, что связано со стремлением разработчиков не вносить дополнительных потерь путем использования комплексных двухполюсников на основе как реактивных, так и резистивных элементов. При использовании в согласующих устройствах только реактивных или только резистивных элементов не всегда удается обеспечить условия согласования по критерию обеспечения требуемого отношения модулей и требуемой разности фаз коэффициентов передачи в двух состояниях управляемого нелинейного элемента, определяемых двумя уровнями низкочастотного управляющего сигнала, поскольку они имеют определенные области физической реализуемости (области изменения действительной и мнимой составляющих сопротивлений источника сигнала и нагрузки), в пределах которых реализуются эти условия согласования (Головков А.А. Комплексированные радиоэлектронные устройства. М.: Радио и связь, 1996. - 128 с.).
Техническим результатом изобретения является расширение областей физической реализуемости как областей изменения действительной и мнимой составляющих сопротивлений источника сигнала и нагрузки, в пределах которых одновременно обеспечивается модуляция амплитуды и фазы высокочастотного сигнала при заданных зависимостях отношения модулей и разности фаз передаточной функции модулятора в двух состояниях управляемого нелинейного элемента, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты в заданной полосе частот за счет оптимизации схемы и значений параметров комплексного четырехполюсника. Возможность изменения варианта включения нелинейного элемента относительно согласующего комплексного четырехполюсника еще более расширяет области физической реализуемости.
1. Указанный результат достигается тем, что в известном способе амплитудно-фазовой модуляции высокочастотного сигнала, состоящем в том, что высокочастотный сигнал подают на модулятор, выполненный из четырехполюсника, управляемого двухэлектродного нелинейного элемента, источника управляющего низкочастотного сигнала и нагрузки, амплитуду и фазу высокочастотного сигнала изменяют путем изменения амплитуды управляющего низкочастотного сигнала на нелинейном элементе, дополнительно четырехполюсник выполняют комплексным из реактивных и резистивных элементов, нелинейный элемент включают в продольную цепь между источником высокочастотного сигнала и входом четырехполюсника, к выходу которого подключают нагрузку, заданные зависимости отношения модулей и разности фаз передаточной функции модулятора в двух состояниях, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты и заданные зависимости модуля и фазы передаточной функции модулятора от амплитуды управляющего низкочастотного сигнала, непрерывно изменяемой в пределах от одного уровня управляющего низкочастотного сигнала до другого, в заданной полосе частот обеспечивают за счет выбора зависимости элемента z11 матрицы сопротивлений комплексного четырехполюсника от частоты с помощью следующего математического выражения:
Figure 00000001
,
где
Figure 00000002
; z11, z21 - заданные зависимости соответствующих элементов матрицы сопротивлений комплексного четырехполюсника от частоты; m21, φ21 - заданные зависимости отношения модулей и разности фаз передаточной функции в двух состояниях управляемого нелинейного элемента, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты в заданной полосе частот; z1,2 - заданные зависимости комплексного сопротивления двухполюсного нелинейного элемента в двух состояниях, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты в заданной полосе частот; z0, zn - заданные зависимости комплексных сопротивлений источника высокочастотного сигнала и нагрузки от частоты.
2. Указанный результат достигается тем, что в известном устройстве амплитудно-фазовой модуляции высокочастотного сигнала, состоящем из источника высокочастотного сигнала, четырехполюсника, двухэлектродного нелинейного элемента, источника управляющего низкочастотного сигнала и нагрузки, дополнительно четырехполюсник выполнен комплексным в виде Т-образного соединения трех комплексных двухполюсников, нелинейный элемент включен в продольную цепь между источником высокочастотного сигнала и входом комплексного четырехполюсника, к выходу комплексного четырехполюсника подключена нагрузка, второй двухполюсник Т-образного соединения сформирован из последовательно соединенных первого резистивного двухполюсника с сопротивлением R1, первой катушки с индуктивностью L1 и параллельно соединенных между собой второго резистивного двухполюсника с сопротивлением R2 и второй катушки с индуктивностью L2, значения параметров второго двухполюсника Т-образного соединения определены в соответствии со следующими математическими выражениями:
Figure 00000003
;
Figure 00000004
;
Figure 00000005
;
Figure 00000006
,
где r1, r2, x1, x2 - оптимальные значения действительных и мнимых составляющих сопротивления второго комплексного двухполюсника комплексного четырехполюсника на двух частотах;
Figure 00000007
- оптимальные значения комплексного сопротивления второго комплексного двухполюсника Т-образного соединения на двух частотах;
Figure 00000008
; Z1n, Z3n - заданные значения комплексного сопротивления первого и третьего комплексных двухполюсников Т-образного соединения на двух частотах; m21n, φ21n - заданные значения отношений модулей и разностей фаз передаточной функции в двух состояниях управляемого нелинейного элемента, определяемых двумя уровнями управляющего низкочастотного сигнала, на двух частотах; z1n, 2n - заданные значения комплексного сопротивления двухполюсного нелинейного элемента в двух состояниях, определяемых двумя уровнями управляющего низкочастотного сигнала, на двух частотах; z0n, znn - заданные значения комплексных сопротивлений источника высокочастотного сигнала и нагрузки на двух частотах; ω1,2=2π/f1,2; n=1,2 - номера заданных двух частот f1,2.
На фиг. 1 показана схема устройства модуляции амплитуды и фазы высокочастотных сигналов (прототип), реализующего способ-прототип.
На фиг. 2 показана структурная схема предлагаемого устройства по п. 2, реализующего предлагаемый способ по п. 1.
На фиг. 3 приведена схема комплексного четырехполюсника предлагаемого устройства по п. 2.
На фиг. 4 приведена схема второго комплексного двухполюсника, входящего в состав комплексного четырехполюсника предлагаемого устройства по п. 2.
Устройство-прототип содержит циркулятор 1 с входным 2, нагрузочным 3 и выходным 4 плечами, четырехполюсник из трех двухполюсников с реактивными сопротивлениями x1k - 5, x2k - 6, x3k - 7, соединенных между собой по T-схеме, а также полупроводниковый диод 8, подключенный параллельно к источнику сигнала модуляции 9. Двухполюсник 7 подключен к диоду 8, двухполюсник 5 - к нагрузочному плечу 3 циркулятора 1.
Принцип действия устройства манипуляции и модуляции параметров сигнала (прототипа) состоит в следующем.
Высокочастотный сигнал от источника (на фиг. 1 не показан) через входное плечо 2 циркулятора 1 поступает в нагрузочное плечо (нагрузка не показана) 3. В результате взаимодействия пришедшего сигнала с реактивными элементами и диодом и благодаря специальному выбору значений реактивных элементов двухполюсников значения фаз и амплитуд отраженных сигналов на двух частотах оказывается такими, что в результате их интерференции на выходное плечо 4 циркулятора 1 поступают сигналы, амплитуда и фаза которых в одном состоянии диода 8, определяемом одним крайним значением сигнала модуляции источника 9, отличаются от амплитуды и фазы этих сигналов в другом состоянии диода 8 на заданные величины на соответствующих двух частотах. Максимальная девиация фазы может составлять 360°, минимальная - ноль, максимальное отношение амплитуд равно ∞. Отношения модулей и разности фаз коэффициента отражения реализуются на обеих частотах одинаковыми.
Основные недостатки этого способа и устройства описаны выше.
Структурная схема предлагаемого устройства по п. 2 (фиг. 2) состоит из двухэлектродного нелинейного элемента - 8 с сопротивлениями z1,2, в двух состояниях управляющего низкочастотного сигнала, источника управляющего низкочастотного сигнала 9, источника высокочастотного сигнала с комплексным сопротивлением z0 10, комплексного четырехполюсника (КЧ) 11 и нагрузки с комплексным сопротивлением zн 12. Комплексный четырехполюсник выполнен в виде Т-образного соединения трех комплексных двухполюсников (фиг. 3) с сопротивлениями Ζ1,2,3 13, 14, 15. Частотные зависимости элемента матрицы сопротивлений z22 КЧ 11 и сопротивления второго комплексного двухполюсника Ζ2 14 выбраны из условия достижения технического результата, а сопротивления первого и третьего комплексных двухполюсников Ζ1,3 13, 15 могут быть выбраны произвольно или из каких-либо физических соображений.
Источник сигнала, нелинейный элемент в продольной цепи, КЧ и нагрузка включены по каскадной схеме в порядке перечисления. Частотные зависимости элемента матрицы сопротивлений z11 КЧ 11 и сопротивления второго комплексного двухполюсника Z2 14 выбраны из условий обеспечения заданных зависимостей отношения модулей и разности фаз передаточной функции модулятора в двух состояниях, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты и заданных зависимостей модуля и фазы передаточной функции модулятора от амплитуды управляющего низкочастотного сигнала, непрерывно изменяемой в пределах от одного уровня управляющего низкочастотного сигнала до другого (при этом уровни выбираются из условия реализации квазилинейного участка модуляционной характеристики), в заданной полосе частот. Реализация этой зависимости осуществлена вторым комплексным двухполюсником 14 комплексного четырехполюсника 11 в виде последовательно соединенных первого резистивного двухполюсника с сопротивлением R1 16, первой катушки с индуктивностью L1 17 и параллельно соединенных между собой второго резистивного двухполюсника с сопротивлением R2 17 и второй катушки с индуктивностью L2 18 (фиг. 4), значения параметров которых выбраны из указанных условий с помощью определенных математических выражений.
Принцип действия данного устройства состоит в том, что при подаче несущего высокочастотного сигнала от источника 10 с сопротивлением z0 в результате специального выбора значений элементов второго комплексного двухполюсника 14 комплексного четырехполюсника 11 будут реализованы заданные зависимости отношения модулей и разности фаз передаточной функции модулятора в двух состояниях, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты и заданные зависимости модуля и фазы передаточной функции модулятора от амплитуды управляющего низкочастотного сигнала, непрерывно изменяемой в пределах от одного уровня управляющего низкочастотного сигнала до другого, в заданной полосе частот. В результате возникают свойства формирования дискретных или аналоговых модулированных по амплитуде и фазе высокочастотных сигналов при увеличенных областях физической реализуемости как областей изменения действительной и мнимой составляющих сопротивлений источника сигнала и нагрузки, в пределах которых одновременно обеспечивается модуляция амплитуды и фазы высокочастотного сигнала при заданных зависимостях отношения модулей и разности фаз передаточной функции модулятора в двух состояниях управляемого нелинейного элемента, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты в заданной полосе частот.
Докажем возможность реализации указанных свойств.
Пусть известны зависимости действительных составляющих комплексных сопротивлений нагрузки zн и источника высокочастотного сигнала z0 от частоты. Известна также зависимость комплексных сопротивлений двухполюсного управляемого нелинейного элемента z1,2 в двух состояниях, определяемых двумя уровнями амплитуды низкочастотного сигнала, от частоты. Здесь и далее аргумент (частота) для простоты опущен. Таким образом, нелинейный элемент характеризуется матрицей передачи:
Figure 00000009
Комплексный четырехполюсник (КЧ) описывается матрицей передачи:
Figure 00000010
где
Figure 00000011
; z11, z21, z22 - определитель и элементы матрицы сопротивлений СФУ с учетом условия взаимности z12=-z21 [Фельдштейн А.Л., Явич Л.Р. Синтез четырехполюсников и восьмиполюсников на СВЧ. М.: Связь, 1965. 40 с].
Общая нормированная классическая матрица передачи манипулятора (модулятора) получается путем перемножения матриц (1) и (2) с учетом условий нормировки:
Figure 00000012
Используя известную связь элементов матрицы рассеяния с элементами матрицы передачи и (3), получим выражение для коэффициента передачи манипулятора в двух состояниях диода:
Figure 00000013
Пусть требуется определить схему комплексного четырехполюсника и значения комплексных сопротивлений двухполюсников, входящих в него, при которых возможно обеспечить заданные зависимости отношения модулей m21 и разности фаз φ21 коэффициентов передачи в двух состояниях диода от частоты:
Figure 00000014
После подстановки (4) в (5) получим комплексное уравнение, решение которого имеет вид взаимосвязи между элементами искомой матрицы сопротивлений СФУ, оптимальной по критерию обеспечения заданного закона изменения параметров проходного сигнала (5) во всем частотном диапазоне:
Figure 00000015
где
Figure 00000016
Полученная взаимосвязь (6) между элементами матрицы передачи комплексного четырехполюсника означает, что двухуровневые манипуляторы амплитуды и (или) фазы проходного сигнала должны содержать не менее одного независимого двухполюсника с комплексным сопротивлением, значение которого должно удовлетворять уравнению, сформированному на основе этой взаимосвязи. Для отыскания оптимальных значений параметров комплексного четырехполюсника необходимо выбрать какую-либо схему из M≥1 двухполюсника с комплексным сопротивлением, найти ее матрицу сопротивлений, элементы которой выражены через параметры схемы комплексного четырехполюсника, и подставить их в (6). Сформированное таким образом уравнение должно быть решено относительно сопротивления выбранного комплексного двухполюсника. Значения параметров остальных М-1 комплексных двухполюсников могут быть заданы произвольно или выбраны из каких-либо других физических соображений. В соответствии с описанным алгоритмом получена оптимальная по критерию (5) зависимость сопротивления второго комплексного двухполюсника Т-образного соединения трех комплексных двухполюсников (фиг. 3) от частоты:
Figure 00000017
где n=1, 2… - номера частот интерполяции. Сопротивления Z1n,3n могут быть выбраны произвольно или исходя из каких-либо других физических соображений. Индекс n необходимо ввести и в другие обозначения физических величин, явным образом зависящих от частоты. При частотной характеристике (7) второго комплексного двухполюсника Т-образного соединения обеспечивались бы заданные зависимости отношения модулей m21 и разности фаз φ21 коэффициентов передачи в двух состояниях диода от частоты на всем спектре частот. Однако реализация (7) в сплошной, даже очень узкой полосе частот, не возможна.
Для реализации оптимальной аппроксимации (7) на конечном числе частот методом интерполяции необходимо сформировать двухполюсник с сопротивлением Z2n из не менее чем 2N (N - число частот интерполяции) элементов типа R, L, C, найти выражения для их сопротивлений, приравнять их оптимальным значениям сопротивлений двухполюсника на заданных частотах, определенным по формулам (7), и решить сформированную таким образом систему 2N уравнений относительно 2N выбранных параметров R, L, C. Значения параметров остальных элементов могут быть выбраны произвольно или исходя из каких-либо других физических соображений, например из условия физической реализуемости. Пусть второй двухполюсник КЧ с сопротивлением Z2n сформирован из последовательно соединенных первого резистивного двухполюсника с сопротивлением R1, первой катушки с индуктивностью L1 и параллельно соединенных между собой второго резистивного двухполюсника с сопротивлением R2 и второй катушки с индуктивностью L2 (фиг. 4). Комплексное сопротивление второго двухполюсника КЧ:
Figure 00000018
Разделим в (8) между собой действительную и мнимую части и для N=2 составим систему четырех уравнений:
Figure 00000019
;
Figure 00000020
;
Figure 00000021
Решение:
Figure 00000022
;
Figure 00000023
;
Figure 00000024
;
Figure 00000025
r1, r2, x1, x2 - оптимальные значения действительных и мнимых составляющих сопротивления второго комплексного двухполюсника комплексного четырехполюсника на двух частотах.
Реализация оптимальных аппроксимаций частотных характеристик КЧ (6) с помощью Т-образного соединения трех комплексных двухполюсников и частотных характеристик второго комплексного двухполюсника (7) этого соединения с помощью (8), (10) обеспечивает увеличение полосы частот, в пределах которой с определенными отклонениями обеспечиваются заданные зависимости отношения модулей m21 и разности фаз φ21 коэффициентов передачи в двух состояниях диода от частоты (5). Это позволяет при разумном выборе положений заданных частот ω1, ω2 относительно друг друга расширить полосу частот, в пределах которой обеспечиваются заданные зависимости отношения модулей и разности фаз передаточной функции модулятора в двух состояниях, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты и заданные зависимости модуля и фазы передаточной функции модулятора от амплитуды управляющего низкочастотного сигнала, непрерывно изменяемой в пределах от одного уровня управляющего низкочастотного сигнала до другого, в заданной полосе частот. При разумном выборе обоих уровней амплитуды управляющего сигнала при этом будут сформированы квазилинейные участки фазовой и амплитудной модуляционных характеристик для осуществления режима модуляции. Переменное использование обоих уровней обеспечивает режим манипуляции. Частотные характеристики сопротивлений источника сигнала и нагрузки могут быть заданы любыми.
Предлагаемые технические решения являются новыми, поскольку из общедоступных сведений неизвестны способ и устройство амплитудно-фазовой модуляции, обеспечивающие заданные зависимости отношения модулей и разности фаз передаточной функции модулятора в двух состояниях, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты и заданные зависимости модуля и фазы передаточной функции модулятора от амплитуды управляющего низкочастотного сигнала, непрерывно изменяемой в пределах от одного уровня управляющего низкочастотного сигнала до другого (при этом уровни выбираются из условия реализации квазилинейного участка модуляционной характеристики), в заданной полосе частот за счет специального выбора частотной зависимости элемента z22 матрицы сопротивлений комплексного четырехполюсника, реализуемой выполнением этого четырехполюсника в виде Т-образного соединения трех комплексных двухполюсников, формированием второго комплексного двухполюсника Т-образного соединения из последовательно соединенных первого резистивного двухполюсника с сопротивлением R1, первой катушки с индуктивностью L1 и параллельно соединенных между собой второго резистивного двухполюсника с сопротивлением R2 и второй катушки с индуктивностью L2 и выбором указанных параметров по соответствующим математическим выражениям.
Предлагаемые технические решения имеют изобретательский уровень, поскольку из опубликованных научных данных и известных технических решений явным образом не следует, что заявленная последовательность операций (выполнение четырехполюсника комплексным в виде указанной выше схемы, включение двухполюсного нелинейного элемента между четырехполюсником и нагрузкой в продольную цепь, реализация оптимальной частотной зависимости элемента z11 матрицы сопротивлений комплексного четырехполюсника выполнением этого четырехполюсника в виде Т-образного соединения трех комплексных двухполюсников, формированием второго комплексного двухполюсника Т-образного соединения из последовательно соединенных первого резистивного двухполюсника с сопротивлением R1, первой катушки с индуктивностью L1 и параллельно соединенных между собой второго резистивного двухполюсника с сопротивлением R2 и второй катушки с индуктивностью L2 и выбором указанных параметров по соответствующим математическим выражениям) обеспечивают заданные зависимости отношения модулей и разности фаз передаточной функции модулятора в двух состояниях, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты и заданные зависимости модуля и фазы передаточной функции модулятора от амплитуды управляющего низкочастотного сигнала, непрерывно изменяемой в пределах от одного уровня управляющего низкочастотного сигнала до другого.
Предлагаемые технические решения практически применимы, так как для их реализации могут быть использованы серийно выпускаемые промышленностью полупроводниковые диоды (параметрические диоды, p-i-n диоды, ЛПД, туннельные диоды, диоды Ганна и т.д.), индуктивности и емкости, сформированные в заявленную схему устройства модуляции. Частотные характеристики КЧ и второго комплексного двухполюсника Т-образного соединения, значения сопротивлений резистивных элементов и индуктивностей могут быть определены с помощью математических выражений, приведенных в формуле изобретения.
Технико-экономическая эффективность предложенного способа и устройства заключается в одновременном обеспечении заданных зависимостей отношения модулей и разности фаз передаточной функции модулятора в двух состояниях, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты и заданные зависимости модуля и фазы передаточной функции модулятора от амплитуды управляющего низкочастотного сигнала, непрерывно изменяемой в пределах от одного уровня управляющего низкочастотного сигнала до другого, что способствует формированию модулированных или манипулированных по амплитуде и (или) по фазе высокочастотных сигналов в большей полосе частот при увеличенных областях физической реализуемости как областей изменения действительной и мнимой составляющих сопротивлений источника сигнала и нагрузки.

Claims (2)

1. Способ амплитудно-фазовой модуляции высокочастотного сигнала, состоящий в том, что высокочастотный сигнал подают на модулятор, выполненный из четырехполюсника, управляемого двухэлектродного нелинейного элемента, источника управляющего низкочастотного сигнала и нагрузки, амплитуду и фазу высокочастотного сигнала изменяют путем изменения амплитуды управляющего низкочастотного сигнала на нелинейном элементе, отличающийся тем, что четырехполюсник выполняют комплексным из реактивных и резистивных элементов, нелинейный элемент включают в продольную цепь между источником высокочастотного сигнала и входом четырехполюсника, к выходу которого подключают нагрузку, заданные зависимости отношения модулей и разности фаз передаточной функции модулятора в двух состояниях, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты и заданные зависимости модуля и фазы передаточной функции модулятора от амплитуды управляющего низкочастотного сигнала, непрерывно изменяемой в пределах от одного уровня управляющего низкочастотного сигнала до другого, в заданной полосе частот обеспечивают за счет выбора зависимости элемента z11 матрицы сопротивлений комплексного четырехполюсника от частоты с помощью следующего математического выражения:
Figure 00000026
,
где
Figure 00000027
; z11, z21 - заданные зависимости соответствующих элементов матрицы сопротивлений комплексного четырехполюсника от частоты; m21, φ21 - заданные зависимости отношения модулей и разности фаз передаточной функции в двух состояниях управляемого нелинейного элемента, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты в заданной полосе частот; z1,2 - заданные зависимости комплексного сопротивления двухполюсного нелинейного элемента в двух состояниях, определяемых двумя уровнями управляющего низкочастотного сигнала, от частоты в заданной полосе частот; z0, zn - заданные зависимости комплексных сопротивлений источника высокочастотного сигнала и нагрузки от частоты.
2. Устройство амплитудно-фазовой модуляции высокочастотного сигнала, состоящее из источника высокочастотного сигнала, четырехполюсника, двухэлектродного нелинейного элемента, источника управляющего низкочастотного сигнала и нагрузки, отличающееся тем, что четырехполюсник выполнен комплексным в виде Т-образного соединения трех комплексных двухполюсников, нелинейный элемент включен в продольную цепь между источником высокочастотного сигнала и входом комплексного четырехполюсника, к выходу комплексного четырехполюсника подключена нагрузка, второй двухполюсник Т-образного соединения сформирован из последовательно соединенных первого резистивного двухполюсника с сопротивлением R1, первой катушки с индуктивностью L1 и параллельно соединенных между собой второго резистивного двухполюсника с сопротивлением R2 и второй катушки с индуктивностью L2, значения параметров второго двухполюсника Т-образного соединения определены в соответствии со следующими математическими выражениями:
Figure 00000028
;
Figure 00000029
;
Figure 00000030
;
где r1, r2, x1, x2 - оптимальные значения действительных и мнимых составляющих сопротивления второго комплексного двухполюсника комплексного четырехполюсника на двух частотах;
Figure 00000031
- оптимальные значения комплексного сопротивления второго комплексного двухполюсника Т-образного соединения на двух частотах;
Figure 00000032
; Z1n, Z3n - заданные значения комплексного сопротивления первого и третьего комплексных двухполюсников Т-образного соединения на двух частотах; m21n, φ21n - заданные значения отношений модулей и разностей фаз передаточной функции в двух состояниях управляемого нелинейного элемента, определяемых двумя уровнями управляющего низкочастотного сигнала, на двух частотах; z1n, 2n - заданные значения комплексного сопротивления двухполюсного нелинейного элемента в двух состояниях, определяемых двумя уровнями управляющего низкочастотного сигнала, на двух частотах; z0n, znn - заданные значения комплексных сопротивлений источника высокочастотного сигнала и нагрузки на двух частотах; ω1,2=2πf1,2; n=1,2 - номера заданных двух частот f1,2.
RU2014144476/08A 2014-11-05 2014-11-05 Способ амплитудно-фазовой модуляции высокочастотного сигнала и устройство его реализации RU2589304C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014144476/08A RU2589304C1 (ru) 2014-11-05 2014-11-05 Способ амплитудно-фазовой модуляции высокочастотного сигнала и устройство его реализации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014144476/08A RU2589304C1 (ru) 2014-11-05 2014-11-05 Способ амплитудно-фазовой модуляции высокочастотного сигнала и устройство его реализации

Publications (1)

Publication Number Publication Date
RU2589304C1 true RU2589304C1 (ru) 2016-07-10

Family

ID=56371124

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014144476/08A RU2589304C1 (ru) 2014-11-05 2014-11-05 Способ амплитудно-фазовой модуляции высокочастотного сигнала и устройство его реализации

Country Status (1)

Country Link
RU (1) RU2589304C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2663554C1 (ru) * 2017-06-27 2018-08-07 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ модуляции амплитуды и фазы высокочастотных сигналов и устройство его реализации

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1800579A1 (ru) * 1990-10-11 1993-03-07 Voron K B Radiosvyazi Устройство для модуляции отраженного сигнала
RU2486639C1 (ru) * 2011-11-21 2013-06-27 Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации Способ генерации и частотной модуляции высокочастотных сигналов и устройство его реализации
RU2488947C2 (ru) * 2011-10-13 2013-07-27 Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации Способ амплитудной, фазовой и частотной модуляции высокочастотных сигналов и многофункциональное устройство его реализации

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1800579A1 (ru) * 1990-10-11 1993-03-07 Voron K B Radiosvyazi Устройство для модуляции отраженного сигнала
RU2488947C2 (ru) * 2011-10-13 2013-07-27 Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации Способ амплитудной, фазовой и частотной модуляции высокочастотных сигналов и многофункциональное устройство его реализации
RU2486639C1 (ru) * 2011-11-21 2013-06-27 Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации Способ генерации и частотной модуляции высокочастотных сигналов и устройство его реализации

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2663554C1 (ru) * 2017-06-27 2018-08-07 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ модуляции амплитуды и фазы высокочастотных сигналов и устройство его реализации

Similar Documents

Publication Publication Date Title
RU2342769C2 (ru) Устройство модуляции амплитуды и фазы радиочастотных сигналов
RU2354039C1 (ru) Способ модуляции амплитуды и фазы радиочастотных сигналов и устройство его реализации
RU2341006C2 (ru) Способ модуляции амплитуды и фазы радиочастотных сигналов и устройства его реализации
RU2462811C2 (ru) Способ генерации высокочастотных сигналов и устройство его реализации
RU2341866C2 (ru) Устройство модуляции амплитуды и фазы радиочастотных сигналов
RU2341867C2 (ru) Способ модуляции амплитуды и фазы многочастотных сигналов и устройство его реализации
RU2354040C1 (ru) Способ модуляции амплитуды и фазы радиочастотных сигналов и устройство его реализации
RU2589304C1 (ru) Способ амплитудно-фазовой модуляции высокочастотного сигнала и устройство его реализации
RU2353049C1 (ru) Способ модуляции амплитуды и фазы радиочастотных сигналов и устройство его реализации
RU2341011C2 (ru) Устройство модуляции амплитуды и фазы радиочастотных сигналов
RU2496224C2 (ru) Способ амплитудно-фазовой модуляции высокочастотного сигнала и устройство его реализации
RU2342768C2 (ru) Устройство модуляции амплитуды и фазы радиочастотных сигналов
RU2568931C1 (ru) Способ амплитудно-фазовой модуляции высокочастотного сигнала и устройство его реализации
RU2589864C1 (ru) Способ амплитудно-фазовой модуляции высокочастотного сигнала и устройство его реализации
RU2494529C2 (ru) Способ амплитудно-фазовой модуляции высокочастотного сигнала и устройство его реализации
RU2341008C2 (ru) Устройство модуляции амплитуды и фазы радиочастотных сигналов
RU2341007C2 (ru) Устройство модуляции амплитуды и фазы радиочастотных сигналов
RU2341865C2 (ru) Устройство модуляции амплитуды и фазы многочастотных сигналов
RU2342770C2 (ru) Способ модуляции амплитуды и фазы радиочастотных сигналов и устройство его реализации
RU2341010C2 (ru) Устройство модуляции амплитуды и фазы радиочастотных сигналов
RU2665903C1 (ru) Способ модуляции амплитуды и фазы высокочастотных сигналов и устройство его реализации
RU2341012C2 (ru) Способ модуляции амплитуды и фазы радиочастотных сигналов и устройство его реализации
RU2354038C1 (ru) Способ модуляции амплитуды и фазы радиочастотных сигналов и устройство его реализации
RU2341868C2 (ru) Устройство модуляции амплитуды и фазы многочастотных сигналов
RU2496225C2 (ru) Способ амплитудно-фазовой модуляции высокочастотного сигнала и устройство его реализции

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20161106