RU2556593C2 - Совмещение и навигация для эндоскопической хирургии на основе интеграции изображений - Google Patents
Совмещение и навигация для эндоскопической хирургии на основе интеграции изображений Download PDFInfo
- Publication number
- RU2556593C2 RU2556593C2 RU2012134327/14A RU2012134327A RU2556593C2 RU 2556593 C2 RU2556593 C2 RU 2556593C2 RU 2012134327/14 A RU2012134327/14 A RU 2012134327/14A RU 2012134327 A RU2012134327 A RU 2012134327A RU 2556593 C2 RU2556593 C2 RU 2556593C2
- Authority
- RU
- Russia
- Prior art keywords
- image
- matrix
- endoscopic
- tracking
- intraoperative
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00002—Operational features of endoscopes
- A61B1/00043—Operational features of endoscopes provided with output arrangements
- A61B1/00045—Display arrangement
- A61B1/0005—Display arrangement combining images e.g. side-by-side, superimposed or tiled
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
- A61B1/042—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by a proximal camera, e.g. a CCD camera
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
- A61B2034/101—Computer-aided simulation of surgical operations
- A61B2034/105—Modelling of the patient, e.g. for ligaments or bones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2065—Tracking using image or pattern recognition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B2090/364—Correlation of different images or relation of image positions in respect to the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/376—Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/361—Image-producing devices, e.g. surgical cameras
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Radiology & Medical Imaging (AREA)
- Pathology (AREA)
- Optics & Photonics (AREA)
- Biophysics (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- Robotics (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Endoscopes (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Группа изобретений относится к медицинской технике, а именно к хирургическим навигационным системам для интеграции множества изображений анатомической области тела. Система содержит блок интеграции изображений, выполненный с возможностью формирования интегрированной матрицы (TX-E) изображения, содержащей интеграцию матрицы (TX-CT) флюороскопического изображения и матрицы (TCT-E) эндоскопического изображения. Матрица (TX-CT) флюороскопического изображения содержит преобразование между интраоперационным флюороскопическим изображением и предоперационным сканированным изображением. Матрица (TCT-E) эндоскопического изображения содержит преобразование между предоперационным сканированным изображением и интраоперационным эндоскопическим изображением. Система также содержит блок отслеживания инструмента, выполненный с возможностью формирования интегрированной матрицы (TT-X) слежения и матрицы (TT-CT) сканированного слежения. Интегрированная матрица (TT-X) слежения содержит интеграцию интегрированной матрицы (TX-E) изображения и матрицы (TT-E) эндоскопического слежения. Матрица (TT-CT) сканированного слежения содержит интеграцию матрицы (TCT-E) эндоскопического изображения и матрицы (TT-E) эндоскопического слежения. Матрица (TT-E) эндоскопического слежения представляет отслеживание хирургического инструмента (21) в пределах интраоперационного эндоскопического изображения (23). Использование изобретения облегчает отслеживание положений и ориентаций хирургического инструмента. 2 н. и 13 з.п. ф-лы, 7 ил.
Description
Настоящее изобретение относится, в общем, к отслеживанию в реальном времени хирургических инструментов внутри анатомической области тела относительно предоперационного плана и интраоперационных изображений. Настоящее изобретение относится, в частности, к интеграции предоперационных сканированных изображений, интраоперационных флюороскопических изображений и интраоперационных эндоскопических изображений для отслеживания и определения местоположения хирургических инструментов.
Минимально инвазивная эндоскопическая хирургическая операция является хирургической операцией, во время которой жесткий или гибкий эндоскоп вводят в тело пациента через естественное отверстие или небольшой разрез в коже (т.е. порт). Дополнительные хирургические инструменты вводят в тело пациента через аналогичные порты с эндоскопом, применяемым для обеспечения визуальной обратной связи для хирурга, работающего с хирургическими инструментами, относительно хирургического поля.
Например, на фиг. 1 схематически показана артроскопическая хирургическая операция на передней крестообразной связке («ACL») колена 10, в котором показаны связка ACL 11, хрящ 12 и надколенная чашечка 13. Артроскопическая хирургическая операция содержит предоперационную фазу и интраоперационную фазу.
Предоперационная фаза включает в себя формирование трехмерного («3-мерного») сканированного изображения колена 10 (например, КТ-изображения (полученного методом компьютерной томографии), МРТ-изображения (полученного методом магнитно-резонансной томографии), ультразвукового изображения, рентгеновского изображения и т.п.) для диагностического исследования колена 10 и для планирования артроскопической хирургической операции на связке ACL колена 10.
Интраоперационная фаза включает в себя введение артроскопа 20 (т.е. эндоскопа для суставов) через порт в передней зоне колена 10 таким образом, что артроскоп 20 можно перемещать и/или поворачивать для получения в реальном времени изображений различных областей колена 10, в частности связки ACL 11 и поврежденной зоны хряща 12. Кроме того, через порт в задней зоне колена 10 вводят ирригационный инструмент 22 и через порт в передней зоне колена 10 вводят различные хирургические инструменты типа режущего инструмента 21, под углом, перпендикулярным углу наблюдения артроскопа 20, чтобы облегчить визуализацию операционного поля для поврежденного хряща 12.
До создания настоящего изобретения существовало два основных подхода к отслеживанию положений и ориентации хирургических инструментов 20-22.
Первый подход представляет собой ручной метод без навигации, в соответствии с которым хирург наблюдает операционное поле с помощью трех (3) разных средств. Например, как показано на фиг. 2, для получения предоперационного сканированного КТ-изображения 31 в целях диагностики и планирования оперативного вмешательства применяют КТ-сканер (компьютерный томографический сканер) 30. Рентгеновское устройство 40 применяют для получения по меньшей мере одного интраоперационного двумерного («2-мерного») флюороскопического изображения, подобного примерному изображению 41, для наблюдения положения и ориентации по меньшей мере одного хирургического инструмента 20-22 относительно колена 10. Артроскоп 20 применяют для повторяющегося получения интраоперационных артроскопических изображений, например примерного изображения 23, для наблюдения хирургического поля колена 10.
Хирург может просматривать изображения на разных экранах дисплея или одном экране дисплея. В любом случае приведенный подход не способен установить взаимосвязь между изображениями, которая облегчает отслеживание положений и ориентаций по меньшей мере одного хирургического инструмента 20-22 относительно колена 10, в частности операционного поля колена 10.
Вторым подходом является хирургическая операция с навигационной поддержкой, которая решает проблему отслеживания положений и ориентаций по меньшей мере одного хирургического инструмента 20-22 относительно колена 10 путем применения внешних систем отслеживания положения. Например, на фиг. 3 показана оптическая следящая система 50 для отслеживания положений и ориентаций режущего инструмента 21 в системе координат следящей камеры системы 50, вследствие чего необходимо выполнять процедуру совмещения пациента, чтобы представлять режущий инструмент 21 в виде накладок на сканированное изображение и флюороскопическое(ие) изображение(ия), подобно примерным накладкам 32 и 43, в соответствующих системах координат сканированного изображения 31 и флюороскопических изображений 42. Совмещение может использовать опорные метки, которые заметны на флюороскопических изображениях 42 и которые прикрепляют к коже или кости пациента и ощущаются режущим инструментом 21. В альтернативном варианте возможно выполнение совмещения без меток, с применением сканированного КТ-изображения 31 и флюороскопических изображений 42.
Второй подход, как показано на фиг. 3, снабжает хирурга обратной связью в реальном времени по положениям и ориентациям режущего инструмента 21 относительно колена 10 и предоперационного плана. Однако применение оптической следящей системы 50 или альтернативной внешней следящей системы (например, электромагнитной следящей системы) увеличивает время хирургической операции из-за совмещения пациента, не позволяет отслеживать все инструменты 20-22 и может дополнительно создавать для хирурга физические ограничения на перемещение (например, следует всегда поддерживать линию прямой видимости между системой 50 и режущим инструментом 21).
В соответствии с настоящим изобретением предлагается отслеживание в реальном времени хирургических инструментов относительно предоперационного плана и интраоперационных изображений, при этом упомянутое отслеживание предусматривает совмещение по изображениям и отслеживание инструмента. Совмещение по изображениям осуществляет интеграцию множества изображений анатомической области тела, содержащих предоперационное сканированное изображение (например, 3-мерное КТ/МРТ-изображение), интраоперационное флюороскопическое изображение (например, 2-мерное рентгеновское изображение) и интраоперационное эндоскопическое изображение (например, 2-мерное артроскопическое изображение). Отслеживание инструментов осуществляет представление, в пределах предоперационного сканированного изображения и/или интраоперационного флюороскопического изображения, отслеживания, по меньшей мере, хирургического инструмента при посредстве интраоперационного эндоскопического изображения.
Одним из вариантов осуществления настоящего изобретения является хирургическая навигационная система для интеграции множества изображений анатомической области тела, содержащих предоперационное сканированное изображение (например, 3-мерное КТ/МРТ-изображение), интраоперационное флюороскопическое изображение (например, 2-мерное рентгеновское изображение) и интраоперационное эндоскопическое изображение (например, 2-мерное артроскопическое изображение). Хирургическая навигационная система содержит блок интеграции изображений и блок отслеживания инструмента. Во время работы блок интеграции изображений формирует интегрированную матрицу изображения, содержащую интеграцию (например, мультипликацию матриц) матрицы флюороскопического изображения и матрицы эндоскопического изображения, при этом матрица флюороскопического изображения содержит преобразование между интраоперационным флюороскопическим изображением и предоперационным сканированным изображением, и причем матрица эндоскопического изображения содержит преобразование между предоперационным сканированным изображением и интраоперационным эндоскопическим изображением. В свою очередь, блок отслеживания инструментов формирует интегрированную матрицу слежения, при этом интегрированная матрица слежения содержит интеграцию (например, мультипликацию матриц) интегрированной матрицы изображения и матрицы эндоскопического слежения, причем матрица эндоскопического слежения представляет отслеживание хирургического инструмента в пределах интраоперационного эндоскопического изображения.
Отслеживание инструментов может дополнительно или, в качестве альтернативы, формировать матрицу сканированного слежения, при этом матрица сканированного слежения содержит интеграцию (например, мультипликацию матриц) матрицы эндоскопического изображения и матрицы эндоскопического слежения.
В целях настоящего изобретения, термин «формирование», в контексте настоящей заявки, установлен, в широком смысле, для включения в себя любого метода, который известен в настоящее время или получит известность в дальнейшем в области техники создания, обеспечения, предоставления, получения, выработки, формирования, разработки, выделения, видоизменения, преобразования, изменения или иного предоставления информации (например, данных, текста, изображений, речевой и видео информации) в целях компьютерной обработки и хранения/поиска в памяти, в частности, наборов данных изображений и видеокадров, и термин «совмещение», в контексте настоящей заявки, установлен, в широком смысле, для заключения в себе любого метода, который известен в настоящее время или получит известность в дальнейшем в области техники преобразования разных наборов данных изображений в одну систему координат.
Кроме того, термин «предоперационный», в контексте настоящей заявки, установлен, в широком смысле, для описания любого действия, происходящего или относящегося к периоду или подготовительным работам перед выполнением эндоскопической задачи, (например, планирование траектории для эндоскопа), и термин «интраоперационный», в контексте настоящей заявки, установлен, в широком смысле, для описания любого действия, происходящего, выполняемого или встречающегося в процессе выполнения эндоскопической задачи (например, управление эндоскопом в соответствии с запланированной траекторией). Примеры выполнения эндоскопической задачи содержат, но без ограничения, артроскопию, бронхоскопию, колоноскопию, лапароскопию, эндоскопию головного мозга и эндоскопическую хирургическую операцию на сердце. Примеры эндоскопической хирургической операции на сердце содержат, но без ограничения, эндоскопическое шунтирование коронарных артерий, эндоскопические восстановление и замену митрального и аортального клапанов.
В большинстве случаев, предоперационные действия и интраоперационные действия будут происходить в четко раздельные периоды времени. Тем не менее, настоящее изобретение охватывает случаи, включающие в себя любую степень перекрытия предоперационного и интраоперационного периодов времени.
Кроме того, термин «эндоскопический», в контексте настоящей заявки, применяется в широком смысле, для описания характера изображений, полученных эндоскопом любого типа, обладающим способностью визуализации тела изнутри, и термин «флюороскопический» установлен, в широком смысле, для описания характера изображений, полученных флюороскопом любого типа, обладающим способностью обеспечения изображений реального времени внутренних структур тела. Примеры эндоскопа для настоящего изобретения содержат, но без ограничения, наблюдательное устройство любого типа, гибкое или жесткое (например, эндоскоп, артроскоп, бронхоскоп, холедохоскоп, колоноскоп, цистоскоп, дуоденоскоп, гастроскоп, гистероскоп, лапароскоп, ларингоскоп, нейроскоп, отоскоп, активный энтероскоп, риноларингоскоп, сигмоидоскоп, синускоп, тораскоп или т.п.) и любое устройство, аналогичное наблюдательному устройству, которое оборудовано системой формирования изображений, (например, телескопической канюлей с возможностью визуализации). Визуализация является локальной, и изображения поверхности можно получать оптически с помощью волоконной оптики, линз или миниатюрных систем визуализации (например, на основе ПЗС (приборов с зарядовой связью)). Примеры флюороскопа для достижения целей настоящего изобретения содержат, без ограничения, рентгеновскую систему визуализации.
Вышеописанный вариант осуществления и другие варианты осуществления настоящего изобретения, а также различные признаки и преимущества настоящего изобретения станут более понятными после прочтения и изучения нижеследующего подробного описания вариантов осуществления настоящего изобретения, приведенного в сочетании с прилагаемыми чертежами. Подробное описание и чертежи являются только пояснением к настоящему изобретению, а не ограничивают его, при этом объем настоящего изобретения определяется прилагаемой формулой изобретения и ее эквивалентами.
Фиг. 1 - схематическое представление артроскопической хирургической операции ACL (передней крестообразной связки), известной в данной области техники.
Фиг. 2 - изображение примерной артроскопической хирургической операции связки ACL, без хирургической навигации, известной в данной области техники.
Фиг. 3 - изображение примерной артроскопической хирургической операции связки ACL, с хирургической навигацией, известной в данной области техники.
Фиг. 4 - изображение примерной артроскопической хирургической операции связки ACL, с хирургической навигацией в соответствии с примерным вариантом осуществления хирургической навигационной системы в соответствии с настоящим изобретением.
Фиг. 5 - блок-схема последовательности операций способа, представляющая примерный вариант осуществления способа интеграции изображений в соответствии с настоящим изобретением.
Фиг. 6 - блок-схема последовательности операций способа, представляющая примерный вариант осуществления способа отслеживания инструментов в соответствии с настоящим изобретением.
Фиг. 7 - блок-схема последовательности операций способа, представляющая примерный вариант осуществления способа хирургической навигации в соответствии с настоящим изобретением.
Как показано на фиг. 4, хирургическая навигационная система 60 в соответствии с настоящим изобретением для отслеживания в реальном времени хирургических инструментов относительно предоперационного плана хирургической операции и интраоперационных изображений, при этом упомянутое отслеживание предусматривает совмещение по изображениям и отслеживание инструмента. Для решения упомянутых задач система 60 содержит блок 61 интеграции изображений, блок 62 отслеживания инструментов и устройство отображения для изображения изображений 23, 31, 43. Блок 61 интеграции изображений определяется, в широком смысле, в настоящей заявке, как любое устройство, конструктивно сконфигурированное для исполнения совмещения по изображениям, включающее в себя интеграцию множества изображений анатомической области тела, содержащих предоперационное сканированное изображение (например, 3-мерное КТ/МРТ-изображение), интраоперационное флюороскопическое изображение (например, 2-мерное рентгеновское изображение) и интраоперационное эндоскопическое изображение (например, 2-мерное артроскопическое изображение). Блок 62 отслеживания инструментов определяется, в широком смысле, в настоящей заявке как любое устройство, конструктивно сконфигурированное для исполнения отслеживания инструментов, включающее в себя наложение хирургического инструмента в пределах предоперационного сканированного изображения и/или интраоперационного флюороскопического изображения, в качестве представления отслеживания хирургического инструмента в пределах интраоперационного эндоскопического изображения. Устройство отображения определяется, в широком смысле, в настоящей заявке, как любое устройство, конструктивно сконфигурированное для отображения изображений и отслеживаемых хирургических инструментов любым подходящим методом, например расширенной виртуальной визуализации изображений и отслеживаемых хирургических инструментов.
На фиг. 5 представлена блок-схема 70 последовательности операций способа, представляющая способ интеграции изображений, выполняемый блоком 61 интеграции изображений. Как показано на фиг. 5, блок-схема 70 последовательности операций способа содержит флюороскопический путь и эндоскопический путь, при этом оба пути ведут к этапу S74 интеграции изображений. Флюороскопический путь содержит этап S71 блок-схемы 70 последовательности операций, включающий в себя совмещение флюороскопических изображений интраоперационного флюороскопического изображения (например, изображения 41 на фиг. 4) и предоперационного сканированного изображения (например, изображения 31 на фиг. 4). В одном варианте осуществления этапа S71, совмещение флюороскопических изображений содержит известное в технике строгое пространственное преобразование 2-мерного интраоперационного флюороскопического изображения, в качестве заданного изображения, для совмещения с 3-мерным предоперационным сканированным изображением, в качестве опорного изображения, чтобы тем самым сформировать матрицу TX-CT (TCT-X=T-1 X-CT флюороскопического изображения, где -1 означает известное в технике обращение матрицы). В альтернативном варианте, совмещение флюороскопических изображений может содержать известное в технике строгое пространственное преобразование 3-мерного предоперационного сканированного изображения, в качестве заданного изображения, для совмещения с 2-мерным интраоперационным флюороскопическим изображением, в качестве опорного изображения, чтобы тем самым сформировать матрицу (TCT-X) флюороскопического изображения.
Этап S71 выполняется блоком 60 интеграции изображений, при формировании каждого нового кадра изображения флюороскопом (например, рентгеновской системой 40 на фиг. 4), которая включается при необходимости, определяемой хирургом во время хирургической операции.
Эндоскопический путь содержит этап S72 и этап S73 блок-схемы 70 последовательности операций способа. Этап S72 содержит реконструкцию поверхности объекта в пределах интраоперационного рентгеновского изображения (например, изображения 23 на фиг. 4). В примерном варианте осуществления этапа S72 для стереоскопического эндоскопа (например, артроскопа с двумя камерами, снимающими два изображения одновременно), можно применить любой известный в технике способ стереоскопической 3-мерной реконструкции.
В примерном варианте осуществления этапа S72 для монокулярного эндоскопа (например, однокамерного артроскопа, снимающего изображения), можно применить любой известный в технике метод фотограмметрической реконструкции. Например, если скорость монокулярного эндоскопа задана, то из оптического потока можно выделить карту глубины. В частности, оптический поток является векторным полем, представляющим движение каждой точки или особенности во временной серии изображений, вследствие чего точка на оптическом потоке, которая не движется в последовательных слоях, называется фокусом расширения («FOE»). Оптическая ось эндоскопа ориентирована по его перемещению, так что фокус расширения (FOE) совмещен с линией перемещения эндоскопа. Информацию (Z) о глубине можно выделять в соответствии с уравнением Z=v∗D/V по известному расстоянию (D) каждой точки или особенности от фокуса расширения («FOE»), амплитуде (V) оптического потока в каждой точке и скорости эндоскопа (v). Положение X и Y эндоскопа можно вычислять по характерным параметрам камеры (например, фокальной точки и т.п.).
Как должно быть очевидно специалистам со средним уровнем компетенции в данной области техники, эндоскоп является поворотным с целью реконструкции поверхности без использования оптических поисковых точек, и, в альтернативном варианте, эндоскоп не должен быть поворотным с целью реконструкции поверхности с использованием оптических поисковых точек.
Этап S73 включает в себя совмещение эндоскопических изображений предоперационного сканированного изображения (например, изображения 31 на фиг. 4) и реконструкции поверхности в пределах интраоперационного эндоскопического изображения (например, изображения 23 на фиг. 4). В одном примерном варианте осуществления этапа S73, совмещение эндоскопических изображений содержит известное в технике строгое пространственное преобразование реконструкции поверхности в пределах интраоперационного эндоскопического изображения, в качестве заданного изображения, для совмещения с 3-мерным предоперационным сканированным изображением, в качестве опорного изображения, чтобы тем самым сформировать матрицу TCT-E (TE-CT=T-1 CT-E) эндоскопического изображения. В частности, поверхность кости, показанную в пределах предоперационного сканированного изображения, можно сегментировать с использованием пороговой обработки изображений, при заданном характеристическом значении по шкале Хаунсфильда (например, 175 ед. Хаунсфильда), и для преобразования изображений можно исполнить итерационный алгоритм ближайших точек (ICP). В альтернативном варианте, совмещение эндоскопических изображений содержит известное в технике строгое пространственное преобразование 3-мерного предоперационного сканированного изображения, в качестве заданного изображения, для совмещения с реконструкцией поверхности в пределах интраоперационного эндоскопического изображения, в качестве опорного изображения, чтобы тем самым сформировать матрицу TE-CT эндоскопического изображения.
Этап S73 выполняется блоком 60 интеграции изображений, при формировании каждого нового кадра изображения эндоскопическим(и) устройством(ами) (например, артроскопом 20 на фиг. 4), который включается в повторяющемся режиме во время хирургической операции.
Этап S74 содержит интеграцию изображений матрицы TX-CT флюороскопического изображения, полученной на этапе S71, и матрицы TCT-E эндоскопического изображения, полученной на этапе S73. В одном примерном варианте осуществления этапа S74, интеграция изображений содержит известную в технике мультипликацию матриц матрицы TX-CT флюороскопического изображения и матрицы TCT-E эндоскопического изображения, чтобы тем самым получить интегрированную матрицу TX-E (TE-X=T-1 X-E) изображения.
Блок-схема 70 последовательности операций способа содержит цикл, исполняемый во время хирургической процедуры, с повторяющимся обновлением на этапе S74 через эндоскопический путь S72 и S73, при интегрировании с самым последним совмещением флюороскопического изображения на этапе S71.
На фиг. 6 представлена блок-схема 80 последовательности операций способа, представляющая способ отслеживания инструментов, выполняемый блоком 62 отслеживания инструментов (фиг. 4). Как показано на фиг. 6, этап S81 блок-схемы 80 последовательности операций способа содержит отслеживание хирургического инструмента в пределах интраоперационного эндоскопического изображения (например, изображения 23 на фиг. 4) и формирование матрицы TT-E эндоскопического изображения, представляющей положение хирургического инструмента (T) в пределах интраоперационного эндоскопического изображения (E) (например, матрица TT-E эндоскопического изображения может быть матрицей преобразования, показывающей наконечник инструмента в компоненте поступательного перемещения и ориентацию инструмента в компоненте поворота). В одном примерном варианте осуществления этапа S81, блок 62 отслеживания инструментов выполняет известный в технике метод фотограмметрического отслеживания. В частности, хирургический инструмент, обычно, имеет высокий контраст в пределах эндоскопического изображения, в сравнении с фоном (например, кости). Таким образом, положение хирургического инструмента в пределах эндоскопического изображения можно обнаруживать сегментацией изображения с использованием пороговой обработки в трех (3) цветных каналах. В альтернативном варианте, наконечник хирургического инструмента можно окрашивать выделяющимся цветом, хорошо наблюдаемым внутри тела (например, зеленым), который будет легко сегментировать по каналу зеленого цвета. В любом случае, после того как хирургический инструмент обнаружен сегментацией эндоскопического изображения, можно применить метод оценки глубины, описанный выше в настоящей заявке, чтобы оценить глубину инструмента относительно эндоскопического кадра.
Этап S82 блок-схемы 80 последовательности операций способа содержит отслеживание хирургического инструмента в пределах интраоперационного флюороскопического изображения посредством интеграции матрицы TT-E (TE-T=T-1VT-E) эндоскопического слежения и интегрированной матрицы TX-E изображения. В одном примерном варианте осуществления этапа S82, интеграция содержит известную в технике мультипликацию матриц матрицы TT-E эндоскопического слежения и матрицы, обратной интегрированной матрице TX-E изображения, чтобы тем самым получить матрицу TT-X (TX-T=T-1 T-X) флюороскопического слежения.
Этап S83 блок-схемы 80 последовательности операций способа содержит отслеживание хирургического инструмента в пределах предоперационного сканированного изображения посредством интеграции матрицы TT-E эндоскопического слежения и матрицы TCT-E эндоскопического изображения. В одном примерном варианте осуществления этапа S83, интеграция содержит известную в технике мультипликацию матриц матрицы TT-E эндоскопического слежения и матрицы, обратной матрице TCT-E эндоскопического изображения, чтобы тем самым получить матрицу TT-CT (TCT-T=T-1 T-CT) сканированного слежения.
Результатами этапов S82 и S83 являются отображения отслеживания в реальном времени хирургического инструмента в пределах предоперационного сканированного изображения и интраоперационного флюороскопического изображения, например накладка 32 слежения предоперационного сканированного изображения 31, показанная на фиг. 4, и накладка 43 слежения интраоперационного флюороскопического изображения 42, показанная на фиг. 4. Упомянутая задача решается без потребности во внешней системе визуализации (хотя одну данную систему можно применять в виде дополнения к эндоскопическому устройству) и совмещения пациента.
На фиг. 7 представлена блок-схема 90 последовательности операций способа, представляющая способ хирургической навигации, воплощающий блок-схему 70 последовательности операций способа (фиг. 5) и блок-схему 80 последовательности операций (фиг. 6) в контексте артроскопической хирургической операции связки ACL.
В частности, этап S91 блок-схемы 90 последовательности операций способа содержит получение предоперационного сканированного изображения (например, 3-мерного КТ-изображения, 3-мерного МРТ-изображения, 3-мерного рентгеновского изображения, 3-мерного флюороскопического изображения и т.п.). Этап S92 блок-схемы 90 последовательности операций способа содержит подготовку пациента к артроскопической хирургической операции связки ALC. Например, подготовка пациента может содержать растирание сухожилия колена и фиксацию колена для хирургической операции. Этап S93 блок-схемы 90 последовательности операций способа содержит получение интраоперационного флюороскопического изображения (например, 2-мерного рентгеновского изображения) и выполнение совмещения флюороскопического изображения на этапе S71 (фиг. 5).
Первый проход по блок-схеме 90 последовательности операций способа содержит этап S93, предшествующий этапам S95-S98. Этап S95 содержит размещение артроскопа в колене (например, артроскопа 20, показанного на фиг. 4). Этап S96 содержит размещение дополнительных хирургических инструментов в колене (например, режущего инструмента 21 и ирригационного инструмента 22, показанного на фиг. 4). Этап S97 содержит получение интраоперационного эндоскопического изображения и выполнение реконструкции поверхности по этапу S72 (фиг. 5), совмещение эндоскопических изображений по этапу S73 (фиг. 5) и интеграцию изображений по этапу S74 (фиг. 5). И этап S98 содержит отслеживание хирургического инструмента в соответствии с блок-схемой 80 последовательности операций способа (фиг. 6).
Этапы S99-S101 принятия решений допускают повторяющийся цикл между этапом S102 хирургической операции и этапом S98 отслеживания хирургических инструментов, пока (1) хирургом не перемещается артроскоп, что вызывает возврат на этап S97, (2) хирургом не вводится в колено новый хирургический инструмент, подлежащий отслеживанию, что вызывает возврат на этап S96, или (3) хирург не определяет потребность в новом флюороскопическом изображении, что вызывает возврат на этап S93. Любой возврат на этап S93 будет отправлять дальше на этап S97 через этап S94 принятия решения, если артроскоп и отслеживаемые хирургические инструменты еще размещаются.
На практике, специалистам со средним уровнем компетентности в данной области технике будет понятно, как осуществлять блок-схему 90 последовательности операций способа для других эндоскопических задач.
Выше приведено описание с пояснением к чертежам различных вариантов осуществления настоящего изобретения, однако специалистам будет понятно, что способы и система, описанные в настоящей заявке, являются наглядными, и элементы упомянутых способов и системы допускают внесение различных изменений и модификаций и эквивалентных замен, не выходящих за пределы подлинного объема настоящего изобретения. Кроме того, многие модификации могут быть выполнены с возможностью доработки принципов настоящего изобретения, без выхода за пределы его объема по существу. Поэтому следует считать, что настоящее изобретение не ограничено конкретными вариантами осуществления, описанными как наилучший вариант осуществления настоящего изобретения, что, напротив, настоящее изобретение содержит все варианты осуществления, не выходящие за пределы объема притязаний прилагаемой формулы изобретения.
Claims (15)
1. Хирургическая навигационная система (60) для интеграции множества изображений анатомической области тела, содержащих предоперационное сканированное изображение (31), интраоперационное флюороскопическое изображение (42) и интраоперационное эндоскопическое изображение (23), при этом хирургическая навигационная система (60) содержит:
блок (61) интеграции изображений, выполненный с возможностью формирования интегрированной матрицы (TX-E) изображения, содержащей интеграцию матрицы (TX-CT) флюороскопического изображения и матрицы (TCT-E) эндоскопического изображения,
причем матрица (TX-CT) флюороскопического изображения содержит преобразование между интраоперационным флюороскопическим изображением (42) и предоперационным сканированным изображением (31),
матрица (TCT-E) эндоскопического изображения содержит преобразование между предоперационным сканированным изображением (31) и интраоперационным эндоскопическим изображением (23); и
блок (62) отслеживания инструмента, выполненный с возможностью формирования интегрированной матрицы (TT-X) слежения и матрицы (TT-CT) сканированного слежения,
причем интегрированная матрица (TT-X) слежения содержит интеграцию интегрированной матрицы (TX-E) изображения и матрицы (TT-E) эндоскопического слежения,
матрица (TT-CT) сканированного слежения содержит интеграцию матрицы (TCT-E) эндоскопического изображения и матрицы (TT-E) эндоскопического слежения, и
матрица (TT-E) эндоскопического слежения представляет отслеживание хирургического инструмента (21) в пределах интраоперационного эндоскопического изображения (23).
блок (61) интеграции изображений, выполненный с возможностью формирования интегрированной матрицы (TX-E) изображения, содержащей интеграцию матрицы (TX-CT) флюороскопического изображения и матрицы (TCT-E) эндоскопического изображения,
причем матрица (TX-CT) флюороскопического изображения содержит преобразование между интраоперационным флюороскопическим изображением (42) и предоперационным сканированным изображением (31),
матрица (TCT-E) эндоскопического изображения содержит преобразование между предоперационным сканированным изображением (31) и интраоперационным эндоскопическим изображением (23); и
блок (62) отслеживания инструмента, выполненный с возможностью формирования интегрированной матрицы (TT-X) слежения и матрицы (TT-CT) сканированного слежения,
причем интегрированная матрица (TT-X) слежения содержит интеграцию интегрированной матрицы (TX-E) изображения и матрицы (TT-E) эндоскопического слежения,
матрица (TT-CT) сканированного слежения содержит интеграцию матрицы (TCT-E) эндоскопического изображения и матрицы (TT-E) эндоскопического слежения, и
матрица (TT-E) эндоскопического слежения представляет отслеживание хирургического инструмента (21) в пределах интраоперационного эндоскопического изображения (23).
2. Хирургическая навигационная система (60) по п.1, в которой блок (61) интеграции изображений дополнительно выполнен с возможностью исполнения фотограмметрической реконструкции поверхности объекта в пределах интраоперационного эндоскопического изображения (23) в виде основы для преобразования между предоперационным сканированным изображением (31) и интраоперационным эндоскопическим изображением (23).
3. Хирургическая навигационная система (60) по п.1, в которой интеграция матрицы (TX-CT) флюороскопического изображения и матрицы (TCT-E) эндоскопического изображения содержит выполнение мультипликации матриц, включающей в себя матрицу (TX-CT) флюороскопического изображения и матрицу (TCT-E) эндоскопического изображения.
4. Хирургическая навигационная система (60) по п.1, в которой интеграция интегрированной матрицы (TX-E) изображения и матрицы (TT-E) эндоскопического слежения содержит выполнение мультипликации матриц, включающей в себя интегрированную матрицу (TX-E) изображения и матрицу (TT-E) эндоскопического слежения.
5. Хирургическая навигационная система (60) по п.1, в которой интеграция матрицы (TCT-E) эндоскопического изображения и матрицы (TT-E) эндоскопического слежения содержит выполнение мультипликации матриц, включающей в себя матрицу (TCT-E) эндоскопического изображения и матрицу (TT-E) эндоскопического слежения.
6. Хирургическая навигационная система (60) по п.1, дополнительно содержащая:
устройство отображения для отображения интраоперационного флюороскопического изображения (42), содержащего накладку (43) хирургического инструмента (21) в виде функции от интегрированной матрицы (TT-X) слежения.
устройство отображения для отображения интраоперационного флюороскопического изображения (42), содержащего накладку (43) хирургического инструмента (21) в виде функции от интегрированной матрицы (TT-X) слежения.
7. Хирургическая навигационная система (60) по п.1, дополнительно содержащая:
устройство отображения для отображения предоперационного сканированного изображения (31), содержащего накладку (43) хирургического инструмента (21) в виде функции от матрицы (TT-CT) сканированного слежения.
устройство отображения для отображения предоперационного сканированного изображения (31), содержащего накладку (43) хирургического инструмента (21) в виде функции от матрицы (TT-CT) сканированного слежения.
8. Хирургическая навигационная система (60) по п.1, в которой блок (62) отслеживания инструмента дополнительно выполнен с возможностью исполнения фотограмметрического отслеживания хирургического инструмента (21) в пределах интраоперационного эндоскопического изображения (23).
9. Хирургическая навигационная система (60) по п.1, в которой предоперационное сканированное изображение (31) выбрано из группы, состоящей из компьютерного томографического изображения, магнитно-резонансного изображения, ультразвукового изображения и рентгеновского изображения.
10. Хирургическая навигационная система (60) для интеграции множества изображений анатомической области тела, содержащих предоперационное сканированное изображение (31), интраоперационное флюороскопическое изображение (42) и интраоперационное эндоскопическое изображение (23), при этом хирургическая навигационная система (60) содержит:
блок (61) интеграции изображений, выполненный с возможностью формирования интегрированной матрицы (TX-E) изображения, содержащей интеграцию матрицы (TX-CT) флюороскопического изображения и матрицы (TCT-E) эндоскопического изображения,
причем матрица (TX-CT) флюороскопического изображения содержит преобразование между интраоперационным флюороскопическим изображением (42) и предоперационным сканированным изображением (31), и
матрица (TCT-E) эндоскопического изображения содержит преобразование между предоперационным сканированным изображением (31) и интраоперационным эндоскопическим изображением (23); и
блок (62) отслеживания инструмента, выполненный с возможностью формирования интегрированной матрицы (TT-X) слежения,
причем интегрированная матрица (TT-X) слежения содержит интеграцию интегрированной матрицы (TX-E) изображения и матрицы (TT-E) эндоскопического слежения, и
матрица (TT-E) эндоскопического слежения представляет отслеживание хирургического инструмента (21) в пределах интраоперационного эндоскопического изображения (23).
блок (61) интеграции изображений, выполненный с возможностью формирования интегрированной матрицы (TX-E) изображения, содержащей интеграцию матрицы (TX-CT) флюороскопического изображения и матрицы (TCT-E) эндоскопического изображения,
причем матрица (TX-CT) флюороскопического изображения содержит преобразование между интраоперационным флюороскопическим изображением (42) и предоперационным сканированным изображением (31), и
матрица (TCT-E) эндоскопического изображения содержит преобразование между предоперационным сканированным изображением (31) и интраоперационным эндоскопическим изображением (23); и
блок (62) отслеживания инструмента, выполненный с возможностью формирования интегрированной матрицы (TT-X) слежения,
причем интегрированная матрица (TT-X) слежения содержит интеграцию интегрированной матрицы (TX-E) изображения и матрицы (TT-E) эндоскопического слежения, и
матрица (TT-E) эндоскопического слежения представляет отслеживание хирургического инструмента (21) в пределах интраоперационного эндоскопического изображения (23).
11. Хирургическая навигационная система (60) по п.10, в которой блок (61) интеграции изображений дополнительно выполнен с возможностью реконструкции поверхности объекта в пределах интраоперационного эндоскопического изображения (23) в виде основы для преобразования между предоперационным сканированным изображением (31) и интраоперационным эндоскопическим изображением (23).
12. Хирургическая навигационная система (60) по п.10, в которой интеграция матрицы (TX-CT) флюороскопического изображения и матрицы (TCT-E) эндоскопического изображения содержит выполнение мультипликации матриц, включающей в себя матрицу (TX-CT) флюороскопического изображения и матрицу (TCT-E) эндоскопического изображения.
13. Хирургическая навигационная система (60) по п.10, в которой интеграция интегрированной матрицы (TX-E) изображения и матрицы (TT-E) эндоскопического слежения содержит выполнение мультипликации матриц, включающей в себя интегрированную матрицу (TX-E) изображения и матрицу (TT-E) эндоскопического слежения.
14. Хирургическая навигационная система (60) по п.10, дополнительно содержащая:
устройство отображения для отображения интраоперационного флюороскопического изображения (42), содержащего накладку (43) хирургического инструмента (21) в виде функции от интегрированной матрицы (TT-X) слежения.
устройство отображения для отображения интраоперационного флюороскопического изображения (42), содержащего накладку (43) хирургического инструмента (21) в виде функции от интегрированной матрицы (TT-X) слежения.
15. Хирургическая навигационная система (60) по п.10, в которой блок (62) отслеживания инструмента дополнительно выполняет функцию исполнения фотограмметрического отслеживания хирургического инструмента (21) в пределах интраоперационного эндоскопического изображения (23).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US29450210P | 2010-01-13 | 2010-01-13 | |
US61/294,502 | 2010-01-13 | ||
PCT/IB2010/055606 WO2011086431A1 (en) | 2010-01-13 | 2010-12-06 | Image integration based registration and navigation for endoscopic surgery |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2012134327A RU2012134327A (ru) | 2014-02-20 |
RU2556593C2 true RU2556593C2 (ru) | 2015-07-10 |
Family
ID=43734066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2012134327/14A RU2556593C2 (ru) | 2010-01-13 | 2010-12-06 | Совмещение и навигация для эндоскопической хирургии на основе интеграции изображений |
Country Status (7)
Country | Link |
---|---|
US (1) | US9095252B2 (ru) |
EP (1) | EP2523621B1 (ru) |
JP (1) | JP5795599B2 (ru) |
CN (1) | CN102711650B (ru) |
BR (1) | BR112012016973A2 (ru) |
RU (1) | RU2556593C2 (ru) |
WO (1) | WO2011086431A1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2640789C1 (ru) * | 2016-12-12 | 2018-01-11 | федеральное государственное бюджетное образовательное учреждение высшего образования "Первый Санкт-Петербургский государственный медицинский университет имени академика И.П. Павлова" Министерства здравоохранения Российской Федерации | Способ проведения эндоскопической хирургической операции на гортани |
Families Citing this family (265)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8219178B2 (en) | 2007-02-16 | 2012-07-10 | Catholic Healthcare West | Method and system for performing invasive medical procedures using a surgical robot |
US10357184B2 (en) | 2012-06-21 | 2019-07-23 | Globus Medical, Inc. | Surgical tool systems and method |
US10653497B2 (en) | 2006-02-16 | 2020-05-19 | Globus Medical, Inc. | Surgical tool systems and methods |
US10893912B2 (en) | 2006-02-16 | 2021-01-19 | Globus Medical Inc. | Surgical tool systems and methods |
US9782229B2 (en) | 2007-02-16 | 2017-10-10 | Globus Medical, Inc. | Surgical robot platform |
US9629571B2 (en) | 2007-03-08 | 2017-04-25 | Sync-Rx, Ltd. | Co-use of endoluminal data and extraluminal imaging |
US10716528B2 (en) | 2007-03-08 | 2020-07-21 | Sync-Rx, Ltd. | Automatic display of previously-acquired endoluminal images |
US9375164B2 (en) | 2007-03-08 | 2016-06-28 | Sync-Rx, Ltd. | Co-use of endoluminal data and extraluminal imaging |
US9968256B2 (en) | 2007-03-08 | 2018-05-15 | Sync-Rx Ltd. | Automatic identification of a tool |
US11197651B2 (en) | 2007-03-08 | 2021-12-14 | Sync-Rx, Ltd. | Identification and presentation of device-to-vessel relative motion |
JP5639764B2 (ja) | 2007-03-08 | 2014-12-10 | シンク−アールエックス,リミティド | 運動する器官と共に使用するイメージング及びツール |
US11064964B2 (en) | 2007-03-08 | 2021-07-20 | Sync-Rx, Ltd | Determining a characteristic of a lumen by measuring velocity of a contrast agent |
WO2010058398A2 (en) | 2007-03-08 | 2010-05-27 | Sync-Rx, Ltd. | Image processing and tool actuation for medical procedures |
EP2194836B1 (en) * | 2007-09-25 | 2015-11-04 | Perception Raisonnement Action En Medecine | Apparatus for assisting cartilage diagnostic and therapeutic procedures |
JP5388472B2 (ja) * | 2008-04-14 | 2014-01-15 | キヤノン株式会社 | 制御装置、x線撮影システム、制御方法、及び当該制御方法をコンピュータに実行させるためのプログラム。 |
US10362962B2 (en) | 2008-11-18 | 2019-07-30 | Synx-Rx, Ltd. | Accounting for skipped imaging locations during movement of an endoluminal imaging probe |
US9974509B2 (en) | 2008-11-18 | 2018-05-22 | Sync-Rx Ltd. | Image super enhancement |
US9101286B2 (en) | 2008-11-18 | 2015-08-11 | Sync-Rx, Ltd. | Apparatus and methods for determining a dimension of a portion of a stack of endoluminal data points |
US11064903B2 (en) | 2008-11-18 | 2021-07-20 | Sync-Rx, Ltd | Apparatus and methods for mapping a sequence of images to a roadmap image |
US9144394B2 (en) | 2008-11-18 | 2015-09-29 | Sync-Rx, Ltd. | Apparatus and methods for determining a plurality of local calibration factors for an image |
US9095313B2 (en) | 2008-11-18 | 2015-08-04 | Sync-Rx, Ltd. | Accounting for non-uniform longitudinal motion during movement of an endoluminal imaging probe |
US8855744B2 (en) | 2008-11-18 | 2014-10-07 | Sync-Rx, Ltd. | Displaying a device within an endoluminal image stack |
JP5795599B2 (ja) * | 2010-01-13 | 2015-10-14 | コーニンクレッカ フィリップス エヌ ヴェ | 内視鏡手術のための画像統合ベースレジストレーション及びナビゲーション |
WO2012131660A1 (en) | 2011-04-01 | 2012-10-04 | Ecole Polytechnique Federale De Lausanne (Epfl) | Robotic system for spinal and other surgeries |
US9265468B2 (en) * | 2011-05-11 | 2016-02-23 | Broncus Medical, Inc. | Fluoroscopy-based surgical device tracking method |
EP2723231A4 (en) | 2011-06-23 | 2015-02-25 | Sync Rx Ltd | LUMINAL BACKGROUND CLEANING |
DE102011082444A1 (de) * | 2011-09-09 | 2012-12-20 | Siemens Aktiengesellschaft | Verfahren und Vorrichtung zur bildunterstützten Navigation eines endoskopischen Instruments |
US11298196B2 (en) | 2012-06-21 | 2022-04-12 | Globus Medical Inc. | Surgical robotic automation with tracking markers and controlled tool advancement |
US11793570B2 (en) | 2012-06-21 | 2023-10-24 | Globus Medical Inc. | Surgical robotic automation with tracking markers |
US10624710B2 (en) | 2012-06-21 | 2020-04-21 | Globus Medical, Inc. | System and method for measuring depth of instrumentation |
US11786324B2 (en) | 2012-06-21 | 2023-10-17 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
US11857266B2 (en) | 2012-06-21 | 2024-01-02 | Globus Medical, Inc. | System for a surveillance marker in robotic-assisted surgery |
US11974822B2 (en) | 2012-06-21 | 2024-05-07 | Globus Medical Inc. | Method for a surveillance marker in robotic-assisted surgery |
US11589771B2 (en) | 2012-06-21 | 2023-02-28 | Globus Medical Inc. | Method for recording probe movement and determining an extent of matter removed |
US10799298B2 (en) | 2012-06-21 | 2020-10-13 | Globus Medical Inc. | Robotic fluoroscopic navigation |
US12004905B2 (en) | 2012-06-21 | 2024-06-11 | Globus Medical, Inc. | Medical imaging systems using robotic actuators and related methods |
US11607149B2 (en) | 2012-06-21 | 2023-03-21 | Globus Medical Inc. | Surgical tool systems and method |
US10350013B2 (en) | 2012-06-21 | 2019-07-16 | Globus Medical, Inc. | Surgical tool systems and methods |
US11399900B2 (en) | 2012-06-21 | 2022-08-02 | Globus Medical, Inc. | Robotic systems providing co-registration using natural fiducials and related methods |
US10842461B2 (en) | 2012-06-21 | 2020-11-24 | Globus Medical, Inc. | Systems and methods of checking registrations for surgical systems |
US10646280B2 (en) | 2012-06-21 | 2020-05-12 | Globus Medical, Inc. | System and method for surgical tool insertion using multiaxis force and moment feedback |
US11395706B2 (en) | 2012-06-21 | 2022-07-26 | Globus Medical Inc. | Surgical robot platform |
US11963755B2 (en) | 2012-06-21 | 2024-04-23 | Globus Medical Inc. | Apparatus for recording probe movement |
US10758315B2 (en) | 2012-06-21 | 2020-09-01 | Globus Medical Inc. | Method and system for improving 2D-3D registration convergence |
US10136954B2 (en) | 2012-06-21 | 2018-11-27 | Globus Medical, Inc. | Surgical tool systems and method |
US11864839B2 (en) | 2012-06-21 | 2024-01-09 | Globus Medical Inc. | Methods of adjusting a virtual implant and related surgical navigation systems |
US10874466B2 (en) | 2012-06-21 | 2020-12-29 | Globus Medical, Inc. | System and method for surgical tool insertion using multiaxis force and moment feedback |
US11045267B2 (en) | 2012-06-21 | 2021-06-29 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
US11317971B2 (en) | 2012-06-21 | 2022-05-03 | Globus Medical, Inc. | Systems and methods related to robotic guidance in surgery |
US11864745B2 (en) | 2012-06-21 | 2024-01-09 | Globus Medical, Inc. | Surgical robotic system with retractor |
US12220120B2 (en) | 2012-06-21 | 2025-02-11 | Globus Medical, Inc. | Surgical robotic system with retractor |
US11253327B2 (en) | 2012-06-21 | 2022-02-22 | Globus Medical, Inc. | Systems and methods for automatically changing an end-effector on a surgical robot |
US11116576B2 (en) | 2012-06-21 | 2021-09-14 | Globus Medical Inc. | Dynamic reference arrays and methods of use |
US11896446B2 (en) | 2012-06-21 | 2024-02-13 | Globus Medical, Inc | Surgical robotic automation with tracking markers |
US10231791B2 (en) | 2012-06-21 | 2019-03-19 | Globus Medical, Inc. | Infrared signal based position recognition system for use with a robot-assisted surgery |
US11857149B2 (en) | 2012-06-21 | 2024-01-02 | Globus Medical, Inc. | Surgical robotic systems with target trajectory deviation monitoring and related methods |
JP6134789B2 (ja) | 2012-06-26 | 2017-05-24 | シンク−アールエックス,リミティド | 管腔器官における流れに関連する画像処理 |
EP2866638B1 (en) * | 2012-06-28 | 2019-12-04 | Koninklijke Philips N.V. | Enhanced visualization of blood vessels using a robotically steered endoscope |
BR112014032112A2 (pt) | 2012-06-28 | 2017-06-27 | Koninklijke Philips Nv | sistema de aquisição de imagem; e método para aquisição de imagem multimodal |
CN102727312A (zh) * | 2012-07-03 | 2012-10-17 | 张春霖 | 基于体外标志物的手术机器人骨骼基准确定方法 |
CN104540439B (zh) | 2012-08-14 | 2016-10-26 | 直观外科手术操作公司 | 用于多个视觉系统的配准的系统和方法 |
KR20140083856A (ko) * | 2012-12-26 | 2014-07-04 | 가톨릭대학교 산학협력단 | 복합 실제 3차원 영상 제작방법 및 이를 위한 시스템 |
US9129422B2 (en) * | 2013-02-25 | 2015-09-08 | Siemens Aktiengesellschaft | Combined surface reconstruction and registration for laparoscopic surgery |
CN104000655B (zh) * | 2013-02-25 | 2018-02-16 | 西门子公司 | 用于腹腔镜外科手术的组合的表面重构和配准 |
CN103371870B (zh) * | 2013-07-16 | 2015-07-29 | 深圳先进技术研究院 | 一种基于多模影像的外科手术导航系统 |
US9875544B2 (en) | 2013-08-09 | 2018-01-23 | Broncus Medical Inc. | Registration of fluoroscopic images of the chest and corresponding 3D image data based on the ribs and spine |
US9283048B2 (en) | 2013-10-04 | 2016-03-15 | KB Medical SA | Apparatus and systems for precise guidance of surgical tools |
EP3086734B1 (en) | 2013-12-19 | 2018-02-21 | Koninklijke Philips N.V. | Object tracking device |
EP3094272B1 (en) | 2014-01-15 | 2021-04-21 | KB Medical SA | Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery |
JP6334714B2 (ja) * | 2014-01-24 | 2018-05-30 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | ロボット手術のための連続画像統合を行う制御ユニット又はロボットガイドシステム |
WO2015121311A1 (en) | 2014-02-11 | 2015-08-20 | KB Medical SA | Sterile handle for controlling a robotic surgical system from a sterile field |
EP3122232B1 (en) * | 2014-03-28 | 2020-10-21 | Intuitive Surgical Operations Inc. | Alignment of q3d models with 3d images |
KR102405687B1 (ko) | 2014-03-28 | 2022-06-07 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 수술용 임플란트의 정량적 3차원 영상화 및 프린팅 |
CN106456267B (zh) | 2014-03-28 | 2020-04-03 | 直观外科手术操作公司 | 器械在视野中的定量三维可视化 |
WO2015149046A1 (en) | 2014-03-28 | 2015-10-01 | Dorin Panescu | Quantitative three-dimensional imaging of surgical scenes from multiport perspectives |
WO2015149044A1 (en) | 2014-03-28 | 2015-10-01 | Dorin Panescu | Surgical system with haptic feedback based upon quantitative three-dimensional imaging |
EP3125806B1 (en) | 2014-03-28 | 2023-06-14 | Intuitive Surgical Operations, Inc. | Quantitative three-dimensional imaging of surgical scenes |
US10004562B2 (en) | 2014-04-24 | 2018-06-26 | Globus Medical, Inc. | Surgical instrument holder for use with a robotic surgical system |
WO2015193479A1 (en) | 2014-06-19 | 2015-12-23 | KB Medical SA | Systems and methods for performing minimally invasive surgery |
WO2016008880A1 (en) | 2014-07-14 | 2016-01-21 | KB Medical SA | Anti-skid surgical instrument for use in preparing holes in bone tissue |
US10765438B2 (en) | 2014-07-14 | 2020-09-08 | KB Medical SA | Anti-skid surgical instrument for use in preparing holes in bone tissue |
CN106572887B (zh) | 2014-07-15 | 2020-05-12 | 皇家飞利浦有限公司 | X射线套件中的图像整合和机器人内窥镜控制 |
US9974525B2 (en) | 2014-10-31 | 2018-05-22 | Covidien Lp | Computed tomography enhanced fluoroscopic system, device, and method of utilizing the same |
US11103316B2 (en) | 2014-12-02 | 2021-08-31 | Globus Medical Inc. | Robot assisted volume removal during surgery |
CN104616296A (zh) * | 2015-01-23 | 2015-05-13 | 上海联影医疗科技有限公司 | 提高放射治疗影像质量的方法及装置、放射治疗系统 |
US10013808B2 (en) | 2015-02-03 | 2018-07-03 | Globus Medical, Inc. | Surgeon head-mounted display apparatuses |
US10163204B2 (en) * | 2015-02-13 | 2018-12-25 | St. Jude Medical International Holding S.À R.L. | Tracking-based 3D model enhancement |
US10555782B2 (en) | 2015-02-18 | 2020-02-11 | Globus Medical, Inc. | Systems and methods for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique |
CN106344152B (zh) * | 2015-07-13 | 2020-04-28 | 中国科学院深圳先进技术研究院 | 腹部外科手术导航配准方法及系统 |
US10646298B2 (en) | 2015-07-31 | 2020-05-12 | Globus Medical, Inc. | Robot arm and methods of use |
US10058394B2 (en) | 2015-07-31 | 2018-08-28 | Globus Medical, Inc. | Robot arm and methods of use |
US10702226B2 (en) | 2015-08-06 | 2020-07-07 | Covidien Lp | System and method for local three dimensional volume reconstruction using a standard fluoroscope |
US10716525B2 (en) | 2015-08-06 | 2020-07-21 | Covidien Lp | System and method for navigating to target and performing procedure on target utilizing fluoroscopic-based local three dimensional volume reconstruction |
US10674982B2 (en) | 2015-08-06 | 2020-06-09 | Covidien Lp | System and method for local three dimensional volume reconstruction using a standard fluoroscope |
US10080615B2 (en) | 2015-08-12 | 2018-09-25 | Globus Medical, Inc. | Devices and methods for temporary mounting of parts to bone |
EP3344179B1 (en) | 2015-08-31 | 2021-06-30 | KB Medical SA | Robotic surgical systems |
US10092361B2 (en) * | 2015-09-11 | 2018-10-09 | AOD Holdings, LLC | Intraoperative systems and methods for determining and providing for display a virtual image overlaid onto a visual image of a bone |
US10034716B2 (en) | 2015-09-14 | 2018-07-31 | Globus Medical, Inc. | Surgical robotic systems and methods thereof |
US20170084036A1 (en) * | 2015-09-21 | 2017-03-23 | Siemens Aktiengesellschaft | Registration of video camera with medical imaging |
US9771092B2 (en) | 2015-10-13 | 2017-09-26 | Globus Medical, Inc. | Stabilizer wheel assembly and methods of use |
US11172895B2 (en) | 2015-12-07 | 2021-11-16 | Covidien Lp | Visualization, navigation, and planning with electromagnetic navigation bronchoscopy and cone beam computed tomography integrated |
EP3397184A1 (en) | 2015-12-29 | 2018-11-07 | Koninklijke Philips N.V. | System, control unit and method for control of a surgical robot |
WO2017114834A1 (en) | 2015-12-29 | 2017-07-06 | Koninklijke Philips N.V. | System, controller and method using virtual reality device for robotic surgery |
JP6912481B2 (ja) | 2015-12-30 | 2021-08-04 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 画像ベースのロボット誘導 |
US10842453B2 (en) | 2016-02-03 | 2020-11-24 | Globus Medical, Inc. | Portable medical imaging system |
US11883217B2 (en) | 2016-02-03 | 2024-01-30 | Globus Medical, Inc. | Portable medical imaging system and method |
US10448910B2 (en) | 2016-02-03 | 2019-10-22 | Globus Medical, Inc. | Portable medical imaging system |
US11058378B2 (en) | 2016-02-03 | 2021-07-13 | Globus Medical, Inc. | Portable medical imaging system |
US10117632B2 (en) | 2016-02-03 | 2018-11-06 | Globus Medical, Inc. | Portable medical imaging system with beam scanning collimator |
EP4049612B1 (en) * | 2016-02-12 | 2024-04-10 | Intuitive Surgical Operations, Inc. | System and computer-readable medium storing instructions for registering fluoroscopic images in image-guided surgery |
US10866119B2 (en) | 2016-03-14 | 2020-12-15 | Globus Medical, Inc. | Metal detector for detecting insertion of a surgical device into a hollow tube |
JP7041068B6 (ja) | 2016-03-17 | 2022-05-30 | コーニンクレッカ フィリップス エヌ ヴェ | 剛性近位部及びフレキシブル遠位部を有するハイブリッドロボットを制御するための制御ユニット、システム、及び方法 |
EP3241518B1 (en) | 2016-04-11 | 2024-10-23 | Globus Medical, Inc | Surgical tool systems |
EP3463032B1 (en) | 2016-05-31 | 2020-12-23 | Koninklijke Philips N.V. | Image-based fusion of endoscopic image and ultrasound images |
WO2018027793A1 (zh) * | 2016-08-11 | 2018-02-15 | 中国科学院深圳先进技术研究院 | 一种开颅手术中可视化脑功能结构定位方法及系统 |
US11051886B2 (en) | 2016-09-27 | 2021-07-06 | Covidien Lp | Systems and methods for performing a surgical navigation procedure |
US11039893B2 (en) | 2016-10-21 | 2021-06-22 | Globus Medical, Inc. | Robotic surgical systems |
RU2656562C1 (ru) * | 2016-12-01 | 2018-06-05 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Астраханский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ФГБОУ ВО Астраханский ГМУ Минздрава России) | Способ диагностики внутренних структур коленного сустава при магнитно-резонансной томографии |
JP7583513B2 (ja) | 2017-01-18 | 2024-11-14 | ケービー メディカル エスアー | ロボット外科用システムのための汎用器具ガイド、外科用器具システム |
JP7233841B2 (ja) | 2017-01-18 | 2023-03-07 | ケービー メディカル エスアー | ロボット外科手術システムのロボットナビゲーション |
EP3351202B1 (en) | 2017-01-18 | 2021-09-08 | KB Medical SA | Universal instrument guide for robotic surgical systems |
US11071594B2 (en) | 2017-03-16 | 2021-07-27 | KB Medical SA | Robotic navigation of robotic surgical systems |
US20180289432A1 (en) | 2017-04-05 | 2018-10-11 | Kb Medical, Sa | Robotic surgical systems for preparing holes in bone tissue and methods of their use |
CN107496029B (zh) * | 2017-06-16 | 2020-07-31 | 青岛大学附属医院 | 智能微创手术系统 |
US10699448B2 (en) | 2017-06-29 | 2020-06-30 | Covidien Lp | System and method for identifying, marking and navigating to a target using real time two dimensional fluoroscopic data |
US11135015B2 (en) | 2017-07-21 | 2021-10-05 | Globus Medical, Inc. | Robot surgical platform |
CN107689045B (zh) * | 2017-09-06 | 2021-06-29 | 艾瑞迈迪医疗科技(北京)有限公司 | 内窥镜微创手术导航的图像显示方法、装置及系统 |
CN111163697B (zh) | 2017-10-10 | 2023-10-03 | 柯惠有限合伙公司 | 用于在荧光三维重构中识别和标记目标的系统和方法 |
JP6778242B2 (ja) | 2017-11-09 | 2020-10-28 | グローバス メディカル インコーポレイティッド | 手術用ロッドを曲げるための手術用ロボットシステム、および関連する方法および装置 |
US11794338B2 (en) | 2017-11-09 | 2023-10-24 | Globus Medical Inc. | Robotic rod benders and related mechanical and motor housings |
US11382666B2 (en) | 2017-11-09 | 2022-07-12 | Globus Medical Inc. | Methods providing bend plans for surgical rods and related controllers and computer program products |
US11134862B2 (en) | 2017-11-10 | 2021-10-05 | Globus Medical, Inc. | Methods of selecting surgical implants and related devices |
US20200359994A1 (en) | 2017-11-13 | 2020-11-19 | Koninklijke Philips N.V. | System and method for guiding ultrasound probe |
KR20200104372A (ko) | 2017-12-27 | 2020-09-03 | 에티컨, 엘엘씨 | 광 결핍 환경에서의 초분광 이미징 |
EP3735674A1 (en) | 2018-01-03 | 2020-11-11 | Koninklijke Philips N.V. | System and method for detecting abnormal tissue using vascular features |
US10905498B2 (en) | 2018-02-08 | 2021-02-02 | Covidien Lp | System and method for catheter detection in fluoroscopic images and updating displayed position of catheter |
US11123139B2 (en) * | 2018-02-14 | 2021-09-21 | Epica International, Inc. | Method for determination of surgical procedure access |
US20190254753A1 (en) | 2018-02-19 | 2019-08-22 | Globus Medical, Inc. | Augmented reality navigation systems for use with robotic surgical systems and methods of their use |
US10573023B2 (en) | 2018-04-09 | 2020-02-25 | Globus Medical, Inc. | Predictive visualization of medical imaging scanner component movement |
WO2019199125A1 (ko) * | 2018-04-12 | 2019-10-17 | 주식회사 이지엔도서지컬 | 자율 주행 내시경 시스템 및 그 제어 방법 |
US10984539B2 (en) * | 2018-07-03 | 2021-04-20 | Eys3D Microelectronics, Co. | Image device for generating velocity maps |
JP7297891B2 (ja) | 2018-07-19 | 2023-06-26 | アクティブ サージカル, インコーポレイテッド | 自動化された外科手術ロボットのためのビジョンシステム内の深度のマルチモード感知のためのシステムおよび方法 |
CN109223177A (zh) * | 2018-07-30 | 2019-01-18 | 艾瑞迈迪医疗科技(北京)有限公司 | 图像显示方法、装置、计算机设备和存储介质 |
US11337742B2 (en) | 2018-11-05 | 2022-05-24 | Globus Medical Inc | Compliant orthopedic driver |
US11278360B2 (en) | 2018-11-16 | 2022-03-22 | Globus Medical, Inc. | End-effectors for surgical robotic systems having sealed optical components |
US11744655B2 (en) | 2018-12-04 | 2023-09-05 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
US11602402B2 (en) | 2018-12-04 | 2023-03-14 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
US11877806B2 (en) | 2018-12-06 | 2024-01-23 | Covidien Lp | Deformable registration of computer-generated airway models to airway trees |
US11304623B2 (en) * | 2018-12-25 | 2022-04-19 | Biosense Webster (Israel) Ltd. | Integration of medical imaging and location tracking |
JP7128135B2 (ja) * | 2019-03-08 | 2022-08-30 | 富士フイルム株式会社 | 内視鏡画像学習装置、方法及びプログラム、内視鏡画像認識装置 |
US11918313B2 (en) | 2019-03-15 | 2024-03-05 | Globus Medical Inc. | Active end effectors for surgical robots |
US11806084B2 (en) | 2019-03-22 | 2023-11-07 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
US11419616B2 (en) | 2019-03-22 | 2022-08-23 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US11571265B2 (en) | 2019-03-22 | 2023-02-07 | Globus Medical Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US20200297357A1 (en) | 2019-03-22 | 2020-09-24 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US11317978B2 (en) | 2019-03-22 | 2022-05-03 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
US11382549B2 (en) | 2019-03-22 | 2022-07-12 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
US11045179B2 (en) | 2019-05-20 | 2021-06-29 | Global Medical Inc | Robot-mounted retractor system |
CN110215284B (zh) * | 2019-06-06 | 2021-04-02 | 上海木木聚枞机器人科技有限公司 | 一种可视化系统和方法 |
US10952619B2 (en) | 2019-06-20 | 2021-03-23 | Ethicon Llc | Hyperspectral and fluorescence imaging and topology laser mapping with minimal area monolithic image sensor |
US11877065B2 (en) | 2019-06-20 | 2024-01-16 | Cilag Gmbh International | Image rotation in an endoscopic hyperspectral imaging system |
US11221414B2 (en) | 2019-06-20 | 2022-01-11 | Cilag Gmbh International | Laser mapping imaging with fixed pattern noise cancellation |
US11589819B2 (en) | 2019-06-20 | 2023-02-28 | Cilag Gmbh International | Offset illumination of a scene using multiple emitters in a laser mapping imaging system |
US20200400499A1 (en) | 2019-06-20 | 2020-12-24 | Ethicon Llc | Pulsed illumination in a hyperspectral imaging system |
US11398011B2 (en) | 2019-06-20 | 2022-07-26 | Cilag Gmbh International | Super resolution and color motion artifact correction in a pulsed laser mapping imaging system |
US11233960B2 (en) | 2019-06-20 | 2022-01-25 | Cilag Gmbh International | Fluorescence imaging with fixed pattern noise cancellation |
US11187657B2 (en) | 2019-06-20 | 2021-11-30 | Cilag Gmbh International | Hyperspectral imaging with fixed pattern noise cancellation |
US11172810B2 (en) | 2019-06-20 | 2021-11-16 | Cilag Gmbh International | Speckle removal in a pulsed laser mapping imaging system |
US11280737B2 (en) | 2019-06-20 | 2022-03-22 | Cilag Gmbh International | Super resolution and color motion artifact correction in a pulsed fluorescence imaging system |
US11671691B2 (en) | 2019-06-20 | 2023-06-06 | Cilag Gmbh International | Image rotation in an endoscopic laser mapping imaging system |
US11265491B2 (en) | 2019-06-20 | 2022-03-01 | Cilag Gmbh International | Fluorescence imaging with fixed pattern noise cancellation |
US11716533B2 (en) | 2019-06-20 | 2023-08-01 | Cilag Gmbh International | Image synchronization without input clock and data transmission clock in a pulsed fluorescence imaging system |
US11898909B2 (en) | 2019-06-20 | 2024-02-13 | Cilag Gmbh International | Noise aware edge enhancement in a pulsed fluorescence imaging system |
US11311183B2 (en) | 2019-06-20 | 2022-04-26 | Cilag Gmbh International | Controlling integral energy of a laser pulse in a fluorescence imaging system |
US11266304B2 (en) | 2019-06-20 | 2022-03-08 | Cilag Gmbh International | Minimizing image sensor input/output in a pulsed hyperspectral imaging system |
US11903563B2 (en) | 2019-06-20 | 2024-02-20 | Cilag Gmbh International | Offset illumination of a scene using multiple emitters in a fluorescence imaging system |
US11154188B2 (en) | 2019-06-20 | 2021-10-26 | Cilag Gmbh International | Laser mapping imaging and videostroboscopy of vocal cords |
US11624830B2 (en) | 2019-06-20 | 2023-04-11 | Cilag Gmbh International | Wide dynamic range using a monochrome image sensor for laser mapping imaging |
US11633089B2 (en) | 2019-06-20 | 2023-04-25 | Cilag Gmbh International | Fluorescence imaging with minimal area monolithic image sensor |
US11540696B2 (en) | 2019-06-20 | 2023-01-03 | Cilag Gmbh International | Noise aware edge enhancement in a pulsed fluorescence imaging system |
US11412152B2 (en) | 2019-06-20 | 2022-08-09 | Cilag Gmbh International | Speckle removal in a pulsed hyperspectral imaging system |
US11294062B2 (en) | 2019-06-20 | 2022-04-05 | Cilag Gmbh International | Dynamic range using a monochrome image sensor for hyperspectral and fluorescence imaging and topology laser mapping |
US11931009B2 (en) | 2019-06-20 | 2024-03-19 | Cilag Gmbh International | Offset illumination of a scene using multiple emitters in a hyperspectral imaging system |
US11237270B2 (en) | 2019-06-20 | 2022-02-01 | Cilag Gmbh International | Hyperspectral, fluorescence, and laser mapping imaging with fixed pattern noise cancellation |
US11012599B2 (en) | 2019-06-20 | 2021-05-18 | Ethicon Llc | Hyperspectral imaging in a light deficient environment |
US11925328B2 (en) | 2019-06-20 | 2024-03-12 | Cilag Gmbh International | Noise aware edge enhancement in a pulsed hyperspectral imaging system |
US11758256B2 (en) | 2019-06-20 | 2023-09-12 | Cilag Gmbh International | Fluorescence imaging in a light deficient environment |
US12126887B2 (en) | 2019-06-20 | 2024-10-22 | Cilag Gmbh International | Hyperspectral and fluorescence imaging with topology laser scanning in a light deficient environment |
US11516387B2 (en) | 2019-06-20 | 2022-11-29 | Cilag Gmbh International | Image synchronization without input clock and data transmission clock in a pulsed hyperspectral, fluorescence, and laser mapping imaging system |
US11471055B2 (en) | 2019-06-20 | 2022-10-18 | Cilag Gmbh International | Noise aware edge enhancement in a pulsed fluorescence imaging system |
US11793399B2 (en) | 2019-06-20 | 2023-10-24 | Cilag Gmbh International | Super resolution and color motion artifact correction in a pulsed hyperspectral imaging system |
US11700995B2 (en) | 2019-06-20 | 2023-07-18 | Cilag Gmbh International | Speckle removal in a pulsed fluorescence imaging system |
US11412920B2 (en) | 2019-06-20 | 2022-08-16 | Cilag Gmbh International | Speckle removal in a pulsed fluorescence imaging system |
US11187658B2 (en) | 2019-06-20 | 2021-11-30 | Cilag Gmbh International | Fluorescence imaging with fixed pattern noise cancellation |
US11533417B2 (en) | 2019-06-20 | 2022-12-20 | Cilag Gmbh International | Laser scanning and tool tracking imaging in a light deficient environment |
US11375886B2 (en) | 2019-06-20 | 2022-07-05 | Cilag Gmbh International | Optical fiber waveguide in an endoscopic system for laser mapping imaging |
US11986160B2 (en) | 2019-06-20 | 2024-05-21 | Cllag GmbH International | Image synchronization without input clock and data transmission clock in a pulsed hyperspectral imaging system |
US11716543B2 (en) | 2019-06-20 | 2023-08-01 | Cilag Gmbh International | Wide dynamic range using a monochrome image sensor for fluorescence imaging |
US11432706B2 (en) | 2019-06-20 | 2022-09-06 | Cilag Gmbh International | Hyperspectral imaging with minimal area monolithic image sensor |
US10841504B1 (en) | 2019-06-20 | 2020-11-17 | Ethicon Llc | Fluorescence imaging with minimal area monolithic image sensor |
US11134832B2 (en) | 2019-06-20 | 2021-10-05 | Cilag Gmbh International | Image rotation in an endoscopic hyperspectral, fluorescence, and laser mapping imaging system |
US11218645B2 (en) | 2019-06-20 | 2022-01-04 | Cilag Gmbh International | Wide dynamic range using a monochrome image sensor for fluorescence imaging |
US12007550B2 (en) | 2019-06-20 | 2024-06-11 | Cilag Gmbh International | Driving light emissions according to a jitter specification in a spectral imaging system |
US11617541B2 (en) | 2019-06-20 | 2023-04-04 | Cilag Gmbh International | Optical fiber waveguide in an endoscopic system for fluorescence imaging |
US11937784B2 (en) | 2019-06-20 | 2024-03-26 | Cilag Gmbh International | Fluorescence imaging in a light deficient environment |
US11122968B2 (en) | 2019-06-20 | 2021-09-21 | Cilag Gmbh International | Optical fiber waveguide in an endoscopic system for hyperspectral imaging |
US11550057B2 (en) | 2019-06-20 | 2023-01-10 | Cilag Gmbh International | Offset illumination of a scene using multiple emitters in a fluorescence imaging system |
US11389066B2 (en) | 2019-06-20 | 2022-07-19 | Cilag Gmbh International | Noise aware edge enhancement in a pulsed hyperspectral, fluorescence, and laser mapping imaging system |
US11276148B2 (en) | 2019-06-20 | 2022-03-15 | Cilag Gmbh International | Super resolution and color motion artifact correction in a pulsed fluorescence imaging system |
US11457154B2 (en) | 2019-06-20 | 2022-09-27 | Cilag Gmbh International | Speckle removal in a pulsed hyperspectral, fluorescence, and laser mapping imaging system |
US10979646B2 (en) | 2019-06-20 | 2021-04-13 | Ethicon Llc | Fluorescence imaging with minimal area monolithic image sensor |
US11622094B2 (en) | 2019-06-20 | 2023-04-04 | Cilag Gmbh International | Wide dynamic range using a monochrome image sensor for fluorescence imaging |
US11172811B2 (en) | 2019-06-20 | 2021-11-16 | Cilag Gmbh International | Image rotation in an endoscopic fluorescence imaging system |
US11674848B2 (en) | 2019-06-20 | 2023-06-13 | Cilag Gmbh International | Wide dynamic range using a monochrome image sensor for hyperspectral imaging |
US12013496B2 (en) | 2019-06-20 | 2024-06-18 | Cilag Gmbh International | Noise aware edge enhancement in a pulsed laser mapping imaging system |
US11288772B2 (en) | 2019-06-20 | 2022-03-29 | Cilag Gmbh International | Super resolution and color motion artifact correction in a pulsed fluorescence imaging system |
US11892403B2 (en) | 2019-06-20 | 2024-02-06 | Cilag Gmbh International | Image synchronization without input clock and data transmission clock in a pulsed fluorescence imaging system |
US11628023B2 (en) | 2019-07-10 | 2023-04-18 | Globus Medical, Inc. | Robotic navigational system for interbody implants |
US11571171B2 (en) | 2019-09-24 | 2023-02-07 | Globus Medical, Inc. | Compound curve cable chain |
US11890066B2 (en) | 2019-09-30 | 2024-02-06 | Globus Medical, Inc | Surgical robot with passive end effector |
US11864857B2 (en) | 2019-09-27 | 2024-01-09 | Globus Medical, Inc. | Surgical robot with passive end effector |
US11426178B2 (en) | 2019-09-27 | 2022-08-30 | Globus Medical Inc. | Systems and methods for navigating a pin guide driver |
US11510684B2 (en) | 2019-10-14 | 2022-11-29 | Globus Medical, Inc. | Rotary motion passive end effector for surgical robots in orthopedic surgeries |
CN112750640B (zh) * | 2019-10-30 | 2022-07-15 | 比亚迪股份有限公司 | 电子设备及其外壳 |
WO2021113227A1 (en) * | 2019-12-02 | 2021-06-10 | Think Surgical, Inc. | System and method for aligning a tool with an axis to perform a medical procedure |
US12133772B2 (en) | 2019-12-10 | 2024-11-05 | Globus Medical, Inc. | Augmented reality headset for navigated robotic surgery |
US12220176B2 (en) | 2019-12-10 | 2025-02-11 | Globus Medical, Inc. | Extended reality instrument interaction zone for navigated robotic |
US11992373B2 (en) | 2019-12-10 | 2024-05-28 | Globus Medical, Inc | Augmented reality headset with varied opacity for navigated robotic surgery |
US12064189B2 (en) | 2019-12-13 | 2024-08-20 | Globus Medical, Inc. | Navigated instrument for use in robotic guided surgery |
US11464581B2 (en) | 2020-01-28 | 2022-10-11 | Globus Medical, Inc. | Pose measurement chaining for extended reality surgical navigation in visible and near infrared spectrums |
US11382699B2 (en) | 2020-02-10 | 2022-07-12 | Globus Medical Inc. | Extended reality visualization of optical tool tracking volume for computer assisted navigation in surgery |
US11207150B2 (en) | 2020-02-19 | 2021-12-28 | Globus Medical, Inc. | Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment |
WO2021211986A1 (en) * | 2020-04-17 | 2021-10-21 | Activ Surgical, Inc. | Systems and methods for enhancing medical images |
US11253216B2 (en) | 2020-04-28 | 2022-02-22 | Globus Medical Inc. | Fixtures for fluoroscopic imaging systems and related navigation systems and methods |
US11607277B2 (en) | 2020-04-29 | 2023-03-21 | Globus Medical, Inc. | Registration of surgical tool with reference array tracked by cameras of an extended reality headset for assisted navigation during surgery |
US11510750B2 (en) | 2020-05-08 | 2022-11-29 | Globus Medical, Inc. | Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications |
US11153555B1 (en) | 2020-05-08 | 2021-10-19 | Globus Medical Inc. | Extended reality headset camera system for computer assisted navigation in surgery |
US11382700B2 (en) | 2020-05-08 | 2022-07-12 | Globus Medical Inc. | Extended reality headset tool tracking and control |
US12070276B2 (en) | 2020-06-09 | 2024-08-27 | Globus Medical Inc. | Surgical object tracking in visible light via fiducial seeding and synthetic image registration |
US11317973B2 (en) | 2020-06-09 | 2022-05-03 | Globus Medical, Inc. | Camera tracking bar for computer assisted navigation during surgery |
US11382713B2 (en) | 2020-06-16 | 2022-07-12 | Globus Medical, Inc. | Navigated surgical system with eye to XR headset display calibration |
US11877807B2 (en) | 2020-07-10 | 2024-01-23 | Globus Medical, Inc | Instruments for navigated orthopedic surgeries |
US11793588B2 (en) | 2020-07-23 | 2023-10-24 | Globus Medical, Inc. | Sterile draping of robotic arms |
US20230248456A1 (en) * | 2020-08-19 | 2023-08-10 | Covidien Lp | System and method for depth estimation in surgical robotic system |
US11737831B2 (en) | 2020-09-02 | 2023-08-29 | Globus Medical Inc. | Surgical object tracking template generation for computer assisted navigation during surgical procedure |
US11944395B2 (en) | 2020-09-08 | 2024-04-02 | Verb Surgical Inc. | 3D visualization enhancement for depth perception and collision avoidance |
US11523785B2 (en) | 2020-09-24 | 2022-12-13 | Globus Medical, Inc. | Increased cone beam computed tomography volume length without requiring stitching or longitudinal C-arm movement |
CN112006776A (zh) * | 2020-09-27 | 2020-12-01 | 安徽埃克索医疗机器人有限公司 | 一种手术导航系统及手术导航系统的配准方法 |
US11911112B2 (en) | 2020-10-27 | 2024-02-27 | Globus Medical, Inc. | Robotic navigational system |
US12076091B2 (en) | 2020-10-27 | 2024-09-03 | Globus Medical, Inc. | Robotic navigational system |
US11941814B2 (en) | 2020-11-04 | 2024-03-26 | Globus Medical Inc. | Auto segmentation using 2-D images taken during 3-D imaging spin |
US11717350B2 (en) | 2020-11-24 | 2023-08-08 | Globus Medical Inc. | Methods for robotic assistance and navigation in spinal surgery and related systems |
US12161433B2 (en) | 2021-01-08 | 2024-12-10 | Globus Medical, Inc. | System and method for ligament balancing with robotic assistance |
US12150728B2 (en) | 2021-04-14 | 2024-11-26 | Globus Medical, Inc. | End effector for a surgical robot |
US12178523B2 (en) | 2021-04-19 | 2024-12-31 | Globus Medical, Inc. | Computer assisted surgical navigation system for spine procedures |
US20220354380A1 (en) * | 2021-05-06 | 2022-11-10 | Covidien Lp | Endoscope navigation system with updating anatomy model |
US11857273B2 (en) | 2021-07-06 | 2024-01-02 | Globus Medical, Inc. | Ultrasonic robotic surgical navigation |
US11439444B1 (en) | 2021-07-22 | 2022-09-13 | Globus Medical, Inc. | Screw tower and rod reduction tool |
US12201375B2 (en) | 2021-09-16 | 2025-01-21 | Globus Medical Inc. | Extended reality systems for visualizing and controlling operating room equipment |
US12184636B2 (en) | 2021-10-04 | 2024-12-31 | Globus Medical, Inc. | Validating credential keys based on combinations of credential value strings and input order strings |
US11911115B2 (en) | 2021-12-20 | 2024-02-27 | Globus Medical Inc. | Flat panel registration fixture and method of using same |
JPWO2023162657A1 (ru) * | 2022-02-28 | 2023-08-31 | ||
US12103480B2 (en) | 2022-03-18 | 2024-10-01 | Globus Medical Inc. | Omni-wheel cable pusher |
US12048493B2 (en) | 2022-03-31 | 2024-07-30 | Globus Medical, Inc. | Camera tracking system identifying phantom markers during computer assisted surgery navigation |
US12161427B2 (en) | 2022-06-08 | 2024-12-10 | Globus Medical, Inc. | Surgical navigation system with flat panel registration fixture |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6036637A (en) * | 1994-12-13 | 2000-03-14 | Olympus Optical Co., Ltd. | Treating system utilizing an endoscope |
WO2008103383A1 (en) * | 2007-02-20 | 2008-08-28 | Gildenberg Philip L | Videotactic and audiotactic assisted surgical methods and procedures |
RU2365339C1 (ru) * | 2008-05-12 | 2009-08-27 | Федеральное государственное учреждение "Научно-исследовательский институт онкологии имени Н.Н. Петрова Федерального агентства по высокотехнологичной медицинской помощи" | Способ комбинированного эндоскопического контроля эффективности лечения злокачественных опухолей трахеи и/или бронхов |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05285102A (ja) * | 1992-04-14 | 1993-11-02 | Olympus Optical Co Ltd | 内視鏡システム |
JPH08131403A (ja) * | 1994-11-09 | 1996-05-28 | Toshiba Medical Eng Co Ltd | 医用画像処理装置 |
US7555331B2 (en) | 2004-08-26 | 2009-06-30 | Stereotaxis, Inc. | Method for surgical navigation utilizing scale-invariant registration between a navigation system and a localization system |
US8073528B2 (en) * | 2007-09-30 | 2011-12-06 | Intuitive Surgical Operations, Inc. | Tool tracking systems, methods and computer products for image guided surgery |
DE102006041055B4 (de) * | 2006-09-01 | 2015-10-15 | Siemens Aktiengesellschaft | Verfahren zur Unterstützung der Durchführung einer endoskopischen medizinischen Maßnahme sowie mit diesem Verfahren betreibbare Einrichtung |
US7824328B2 (en) * | 2006-09-18 | 2010-11-02 | Stryker Corporation | Method and apparatus for tracking a surgical instrument during surgery |
US7945310B2 (en) * | 2006-09-18 | 2011-05-17 | Stryker Corporation | Surgical instrument path computation and display for endoluminal surgery |
US8672836B2 (en) | 2007-01-31 | 2014-03-18 | The Penn State Research Foundation | Method and apparatus for continuous guidance of endoscopy |
US20090080737A1 (en) | 2007-09-25 | 2009-03-26 | General Electric Company | System and Method for Use of Fluoroscope and Computed Tomography Registration for Sinuplasty Navigation |
WO2009045827A2 (en) * | 2007-09-30 | 2009-04-09 | Intuitive Surgical, Inc. | Methods and systems for tool locating and tool tracking robotic instruments in robotic surgical systems |
US8571277B2 (en) * | 2007-10-18 | 2013-10-29 | Eigen, Llc | Image interpolation for medical imaging |
US20100172559A1 (en) * | 2008-11-11 | 2010-07-08 | Eigen, Inc | System and method for prostate biopsy |
JP5404277B2 (ja) * | 2009-09-24 | 2014-01-29 | 株式会社Aze | 医用画像データ位置合せ装置、方法およびプログラム |
JP5795599B2 (ja) * | 2010-01-13 | 2015-10-14 | コーニンクレッカ フィリップス エヌ ヴェ | 内視鏡手術のための画像統合ベースレジストレーション及びナビゲーション |
-
2010
- 2010-12-06 JP JP2012548489A patent/JP5795599B2/ja not_active Expired - Fee Related
- 2010-12-06 CN CN201080061265.2A patent/CN102711650B/zh not_active Expired - Fee Related
- 2010-12-06 BR BR112012016973A patent/BR112012016973A2/pt not_active Application Discontinuation
- 2010-12-06 US US13/521,284 patent/US9095252B2/en not_active Expired - Fee Related
- 2010-12-06 EP EP10803145.1A patent/EP2523621B1/en not_active Not-in-force
- 2010-12-06 WO PCT/IB2010/055606 patent/WO2011086431A1/en active Application Filing
- 2010-12-06 RU RU2012134327/14A patent/RU2556593C2/ru not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6036637A (en) * | 1994-12-13 | 2000-03-14 | Olympus Optical Co., Ltd. | Treating system utilizing an endoscope |
WO2008103383A1 (en) * | 2007-02-20 | 2008-08-28 | Gildenberg Philip L | Videotactic and audiotactic assisted surgical methods and procedures |
RU2365339C1 (ru) * | 2008-05-12 | 2009-08-27 | Федеральное государственное учреждение "Научно-исследовательский институт онкологии имени Н.Н. Петрова Федерального агентства по высокотехнологичной медицинской помощи" | Способ комбинированного эндоскопического контроля эффективности лечения злокачественных опухолей трахеи и/или бронхов |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2640789C1 (ru) * | 2016-12-12 | 2018-01-11 | федеральное государственное бюджетное образовательное учреждение высшего образования "Первый Санкт-Петербургский государственный медицинский университет имени академика И.П. Павлова" Министерства здравоохранения Российской Федерации | Способ проведения эндоскопической хирургической операции на гортани |
Also Published As
Publication number | Publication date |
---|---|
EP2523621B1 (en) | 2016-09-28 |
JP2013517031A (ja) | 2013-05-16 |
CN102711650A (zh) | 2012-10-03 |
RU2012134327A (ru) | 2014-02-20 |
EP2523621A1 (en) | 2012-11-21 |
WO2011086431A1 (en) | 2011-07-21 |
US9095252B2 (en) | 2015-08-04 |
CN102711650B (zh) | 2015-04-01 |
US20120294498A1 (en) | 2012-11-22 |
JP5795599B2 (ja) | 2015-10-14 |
BR112012016973A2 (pt) | 2017-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2556593C2 (ru) | Совмещение и навигация для эндоскопической хирургии на основе интеграции изображений | |
JP2013517031A5 (ru) | ||
EP3463032B1 (en) | Image-based fusion of endoscopic image and ultrasound images | |
Kang et al. | Stereoscopic augmented reality for laparoscopic surgery | |
RU2594813C2 (ru) | Роботизированное управление эндоскопом по изображениям сети кровеносных сосудов | |
Teber et al. | Augmented reality: a new tool to improve surgical accuracy during laparoscopic partial nephrectomy? Preliminary in vitro and in vivo results | |
US20190110855A1 (en) | Display of preoperative and intraoperative images | |
US20130281821A1 (en) | Intraoperative camera calibration for endoscopic surgery | |
US20130250081A1 (en) | System and method for determining camera angles by using virtual planes derived from actual images | |
JP2019511931A (ja) | 輪郭シグネチャを用いた手術画像獲得デバイスの位置合わせ | |
KR20130108320A (ko) | 관련 애플리케이션들에 대한 일치화된 피하 해부구조 참조의 시각화 | |
CN111588464A (zh) | 一种手术导航方法及系统 | |
Wen et al. | Projection-based visual guidance for robot-aided RF needle insertion | |
WO2008004222A2 (en) | Computer image-aided method and system for guiding instruments through hollow cavities | |
CN116421313A (zh) | 胸腔镜下肺部肿瘤切除手术导航中的增强现实融合方法 | |
Ma et al. | Knee arthroscopic navigation using virtual-vision rendering and self-positioning technology | |
Docea et al. | A laparoscopic liver navigation pipeline with minimal setup requirements | |
Peters | Overview of mixed and augmented reality in medicine | |
Stoyanov et al. | Intra-operative visualizations: Perceptual fidelity and human factors | |
Geurten et al. | Endoscopic laser surface scanner for minimally invasive abdominal surgeries | |
JP2025501966A (ja) | 3次元モデル再構成 | |
Speidel et al. | Interventional imaging: vision | |
Chen et al. | Video-guided calibration of an augmented reality mobile C-arm | |
Penza et al. | Virtual assistive system for robotic single incision laparoscopic surgery | |
Vogt | Augmented light field visualization and real-time image enhancement for computer assisted endoscopic surgery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20191207 |