[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

RU2555939C2 - Jet turbine engine - Google Patents

Jet turbine engine Download PDF

Info

Publication number
RU2555939C2
RU2555939C2 RU2013149466/06A RU2013149466A RU2555939C2 RU 2555939 C2 RU2555939 C2 RU 2555939C2 RU 2013149466/06 A RU2013149466/06 A RU 2013149466/06A RU 2013149466 A RU2013149466 A RU 2013149466A RU 2555939 C2 RU2555939 C2 RU 2555939C2
Authority
RU
Russia
Prior art keywords
engine
pressure turbine
gas
turbojet engine
shaft
Prior art date
Application number
RU2013149466/06A
Other languages
Russian (ru)
Other versions
RU2013149466A (en
Inventor
Александр Викторович Артюхов
Татьяна Александровна Береснева
Дмитрий Юрьевич Еричев
Игорь Александрович Кондрашов
Виктор Викторович Куприк
Ирик Усманович Манапов
Евгений Ювенальевич Марчуков
Константин Сергеевич Поляков
Сергей Анатольевич Симонов
Николай Павлович Селиванов
Original Assignee
Открытое Акционерное Общество "Уфимское Моторостроительное Производственное Объединение" (Оао "Умпо")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое Акционерное Общество "Уфимское Моторостроительное Производственное Объединение" (Оао "Умпо") filed Critical Открытое Акционерное Общество "Уфимское Моторостроительное Производственное Объединение" (Оао "Умпо")
Priority to RU2013149466/06A priority Critical patent/RU2555939C2/en
Publication of RU2013149466A publication Critical patent/RU2013149466A/en
Application granted granted Critical
Publication of RU2555939C2 publication Critical patent/RU2555939C2/en

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

FIELD: engines and pumps.
SUBSTANCE: invention relates to power engineering. the jet turbine engine (JTE) is double-flow, two-shaft one, it contains minimum eight modules including high and low pressure compressors separated by an intermediate housing, a main combustion chamber, an air-to-air heat exchanger, high and low pressure turbines, a mixer, a front device, an afterburner and a rotary jet nozzle comprising a rotary device and an adjustable jet nozzle, attached to the rotary device with a possibility of performance together with a mobile element of the latter of rotations for change of the thrust vector direction. The engine is tested on the bench which is fitted with an inlet aerodynamic device with a remotely-controlled sliding intertseptor. In case of necessity the tests are repeated with the set of modes corresponding to the modes of real work of turbojets in flight conditions according to regulations.
EFFECT: invention allows to provide increase of extensionality and reliability of statically reliable data on allowable boundaries of frequency modes of rotor rotation with ensuring of gas-dynamic stability of engines with simultaneous simplification of technology and reduction of labour and power consumption of test process.
9 cl, 4 dwg

Description

Изобретение относится к области авиадвигателестроения, а именно, к авиационным турбореактивным двигателям.The invention relates to the field of aircraft engine manufacturing, namely, to aircraft turbojet engines.

Известен двухконтурный, двухвальный турбореактивный двигатель (ТРД), включающий турбокомпрессорные комплексы, один из которых содержит установленные на одном валу компрессор и турбину низкого давления, а другой содержит аналогично объединенные на другом валу, соосном с первым, компрессор и турбину высокого давления, промежуточный разделительный корпус между упомянутыми компрессорами, наружный и внутренние контуры, основную и форсажную камеры сгорания, камеру смешения газовоздушных потоков рабочего тела и регулируемое сопло (Н.Н. Сиротин и др. Основы конструирования производства и эксплуатации авиационных газотурбинных двигателей и энергетических установок в системе CALS технологий. Книга 1. М.: «Наука», 2011 г., стр.41-46, рис.1.24).Known dual-circuit, twin-shaft turbojet engine (turbojet engine), including turbocompressor complexes, one of which contains a compressor and a low pressure turbine mounted on one shaft, and the other contains a compressor and a high pressure turbine, an intermediate separation housing similarly combined on the other shaft, coaxial with the first between the mentioned compressors, external and internal circuits, the main and afterburner combustion chambers, a chamber for mixing gas-air flows of the working fluid and an adjustable nozzle (N.N.Siro tin et al. Fundamentals of designing the production and operation of aircraft gas turbine engines and power plants in the CALS technology system. Book 1. M.: “Science”, 2011, pp. 41-46, Fig. 1.24).

Известен турбореактивный двигатель, который выполнен двухконтурным, содержит корпус, опертые на него компрессоры и турбины, охлаждаемую камеру сгорания, топливно-насосную группу, реактивное сопло, а также систему управления с командными и исполнительными органами (Шульгин В.А., Гайсинский С.Я. Двухконтурные турбореактивные двигатели малошумных самолетов. М.: д. Машиностроение, 1984, стр.17-120).A well-known turbojet engine, which is double-circuit, contains a housing supported by compressors and turbines, a cooled combustion chamber, a fuel and pump group, a jet nozzle, as well as a control system with command and executive bodies (Shulgin V.A., Gaysinsky S.Ya Dual-circuit turbojet engines of low-noise aircraft. M: d. Mashinostroenie, 1984, pp. 17-120).

Известен способ разработки и испытаний авиационных двигателей типа турбореактивных, включающий отработку заданных режимов, контроль параметров и оценку по ним ресурса и надежности работы двигателя. С целью сокращения времени испытаний при доводке двигателей 10-20% испытания проводят с температурой газа перед турбиной, превышающей максимальную рабочую температуру на 45-65°C (SU 1151075 A1, опубл. 10.08.2004).A known method for the development and testing of aircraft engines such as turbojet, including the development of specified modes, parameter monitoring and evaluation of resource and reliability of the engine. In order to reduce the test time during engine refinement of 10-20%, tests are carried out with the gas temperature in front of the turbine exceeding the maximum operating temperature by 45-65 ° C (SU 1151075 A1, publ. 10.08.2004).

Известен способ испытаний турбореактивного двигателя, заключающийся в создании на входе в двигатель неравномерности потока воздуха путем установления сеток во входном канале для определения границы устойчивой работы компрессора. Для введения компрессора двигателя в помпаж требуется набор сеток, которые устанавливаются в входной канал поочередно плавно увеличивая неравномерность, что приводит к увеличению количества запусков и времени для установки сеток во входной канал (Ю.А. Литвинов, В.О. Боровик. Характеристики и эксплуатационные свойства авиационных турбореактивных двигателей. М.: Машиностроение, 1979, 288 с., стр.13-15).A known method of testing a turbojet engine, which consists in creating at the entrance to the engine uneven air flow by setting grids in the inlet channel to determine the boundary of the stable operation of the compressor. To introduce an engine compressor into the surge, a set of grids is required that are installed in the input channel, gradually increasing unevenness, which leads to an increase in the number of starts and time for installing grids in the input channel (Yu.A. Litvinov, VO Borovik. Characteristics and operational Properties of Aircraft Turbojet Engines (Moscow: Mashinostroenie, 1979, 288 pp., pp. 13-15).

Известен стенд для испытания турбокомпрессора двигателя внутреннего сгорания, который дополнительно оборудован регулируемым нагревателем, вторым рекуперативным теплообменником, теплообменником-охладителем и регулируемым интерцептором, выполненным в виде корпуса с центральным каналом для прохода газа и расположенными по образующей корпуса сквозными отверстиями, соединенными с атмосферой через управляемые клапаны. Регулируемый интерцептор установлен на входе в компрессор испытуемого турбокомпрессора (RU 2199727 C1, 27.12.2004).A known bench for testing a turbocharger of an internal combustion engine, which is additionally equipped with an adjustable heater, a second recuperative heat exchanger, a heat exchanger-cooler and an adjustable interceptor, made in the form of a housing with a central channel for gas passage and through holes located along the generatrix of the housing, connected to the atmosphere through controlled valves . An adjustable interceptor is installed at the compressor inlet of the turbocharger under test (RU 2199727 C1, 12/27/2004).

Недостатками указанных известных технических решений являются повышенная трудо- и энергоемкость испытаний, выполняемых известными способами, и, как следствие, недостаточно высокая надежность оценки важнейших параметров двигателя в широком диапазоне режимов и условий эксплуатации. Наиболее существенным из указанных недостатков является необходимость многократного останова двигателя в процессе испытаний и многократной замены интерцепторов с различной аэродинамической прозрачностью, создающих ту или иную степень аэродинамических помех и снижения или увеличения потока воздуха, поступающего в испытуемый двигатель. Известная технология испытаний приводит к необходимости многократных запусков двигателя в процессе испытания и связана с пережогом топлива и непроизводительными затратами времени и труда испытателей.The disadvantages of these known technical solutions are the increased labor and energy intensity of tests performed by known methods, and, as a result, the reliability of the assessment of the most important engine parameters in a wide range of operating conditions and conditions is not high enough. The most significant of these drawbacks is the need for multiple engine shutdown during testing and multiple replacement of interceptors with different aerodynamic transparency, creating one degree or another of aerodynamic interference and reducing or increasing the flow of air entering the test engine. Known test technology leads to the need for multiple engine starts during the test and is associated with burnout of fuel and unproductive time and labor of testers.

Задача, решаемая изобретением, заключается в разработке ТРД, совокупность технических решений которого обеспечивает возможность оптимального регулирования допустимой тяги в полном диапазоне газодинамической устойчивости работы компрессора без вхождения двигателя в помпаж при повышении достоверности определения границ допустимого диапазона варьирования тяги.The problem solved by the invention is to develop a turbojet engine, the combination of technical solutions of which provides the possibility of optimal regulation of permissible thrust in the full range of gas-dynamic stability of the compressor without the engine entering the surge while increasing the reliability of determining the boundaries of the permissible range of thrust variation.

Поставленная задача решается тем, что турбореактивный двигатель, согласно изобретению, выполнен двухконтурным, двухвальным и содержит не менее восьми модулей, включая компрессор низкого давления (КНД) со статором, имеющим входной направляющий аппарат (ВНА), не более трех промежуточных направляющих и выходной спрямляющий аппараты, а также с ротором, имеющим вал и систему наделенных лопатками, предпочтительно, четырех рабочих колес; промежуточный корпус; газогенератор, включающий сборочные единицы - компрессор высокого давления (КВД), имеющий статор, а также ротор с валом и системой оснащенных лопатками рабочих колес, число которых не менее чем в два раза превышает число упомянутых рабочих колес КНД; основную камеру сгорания и турбину высокого давления (ТВД); за газогенератором последовательно соосно установлены турбина низкого давления (ТНД), смеситель, фронтовое устройство, форсажная камера сгорания и поворотное реактивное сопло, включающее поворотное устройство, неподвижно, предпочтительно, разъемно прикрепленное к форсажной камере сгорания, и регулируемое реактивное сопло, прикрепленное к поворотному устройству с возможностью выполнения совместно с подвижным элементом последнего поворотов для изменения направления вектора тяги; причем ось вращения поворотного устройства относительно горизонтальной оси повернута на угол не менее 30°, предпочтительно на (32÷34)° по часовой стрелке (вид по н.п.) для правого двигателя и на угол не менее 30°, предпочтительно на (32÷34)° против часовой стрелки (вид по н.п.) для левого двигателя; кроме того, вокруг корпуса основной камеры сгорания во внешнем контуре установлен воздухо-воздушный теплообменник, собранный не менее чем из шестидесяти трубчатых блок-модулей; двигатель содержит также коробку приводов двигательных агрегатов; причем статоры КНД и КВД выполнены каждый в виде продольно-сегментных блоков в количестве не менее двух, объединенных, преимущественно, на разъемных соединениях с возможностью разборки для ремонта или замены деталей соответствующего модуля или сборочной единицы, кроме того, в виде аналогичных продольно-сегментных блоков выполнены и объединены на разъемных соединениях сопловые аппараты турбин ТНД и ТВД; причем двигатель проверен на газодинамическую устойчивость (ГДУ) работы компрессора, по крайней мере, на стадии серийного промышленного производства, для чего конкретный или идентичные для статистической репрезентативности результатов три-пять экземпляров из партии серийно произведенных двигателей испытаны на стенде, снабженном входным аэродинамическим устройством с регулируемо пересекающим воздушный поток, преимущественно, дистанционно управляемым выдвижным интерцептором с отградуированной шкалой положений интерцептора, имеющей фиксированную критическую точку, отделяющую двигатель на 2-5% от перехода в помпаж, при необходимости, с повтором испытания на определенном по регламенту наборе режимов, соответствующих режимам, характерным для последующей реальной работы ТРД в полетных условиях.The problem is solved in that the turbojet engine, according to the invention, is double-circuit, twin-shaft and contains at least eight modules, including a low-pressure compressor (LPC) with a stator having an input guide apparatus (VNA), no more than three intermediate guides and an output rectifier as well as with a rotor having a shaft and a system endowed with blades, preferably four impellers; intermediate housing; a gas generator including assembly units — a high pressure compressor (HPC) having a stator, as well as a rotor with a shaft and a system of impellers equipped with vanes, the number of which is at least twice the number of the mentioned KND impellers; the main combustion chamber and the high pressure turbine (HPT); behind the gas generator, a low pressure turbine (LP), a mixer, a frontal device, a combustion afterburner and a rotary jet nozzle including a rotary device, fixedly, preferably detachably attached to a combustion afterburner, and an adjustable jet nozzle attached to a rotary device with the possibility of performing, together with the movable element, the last turns to change the direction of the thrust vector; moreover, the axis of rotation of the rotary device relative to the horizontal axis is rotated by an angle of at least 30 °, preferably by (32 ÷ 34) ° clockwise (view in np) for the right engine and by an angle of at least 30 °, preferably by (32 ÷ 34) ° counterclockwise (view in n.p.) for the left engine; in addition, an air-air heat exchanger assembled from at least sixty tubular block modules is installed around the main combustion chamber body in the external circuit; the engine also contains a box of drives of motor units; moreover, the KND and KVD stators are each made in the form of at least two longitudinal-segment blocks, combined mainly on detachable joints with the possibility of disassembly for repair or replacement of parts of the corresponding module or assembly unit, in addition, in the form of similar longitudinal-segment blocks made and combined on detachable connections nozzle apparatuses of turbines TND and TVD; moreover, the engine is tested for gas-dynamic stability (GDU) of the compressor, at least at the stage of serial industrial production, for which three or five copies from a batch of mass-produced engines, specific or identical to the statistical representativeness of the test, were tested on a bench equipped with an aerodynamic inlet device with adjustable crossing the air stream, mainly, remotely controlled retractable interceptor with a graduated scale of the position of the interceptor, having first fixed a critical point that separates the engine for 2-5% of the transition to the surging, if necessary, repeat the test on a specific set of regulations on modes, the appropriate mode, characteristic for the subsequent real work turbojet in flight conditions.

При этом турбореактивный двигатель может содержать электрическую, пневматическую, гидравлическую - топливную и масляную системы, а также датчики, командные блоки, исполнительные механизмы и кабели систем диагностики и автоматического управления двигателем, объединяющие указанные сборочные единицы и модули.In this case, the turbojet engine may contain electrical, pneumatic, hydraulic - fuel and oil systems, as well as sensors, command blocks, actuators and cables of diagnostic and automatic engine control systems that combine these assembly units and modules.

КНД может быть объединен с ТНД по валу с возможностью передачи от указанной турбины крутящего момента, а КВД объединен с ТВД с возможностью получения последним крутящего момента от турбины высокого давления через автономный вал ротора КВД-ТВД, коаксиально с возможностью вращения охватывающий вал ротора КНД-ТНД на части длины и выполненный короче последнего, по меньшей мере, на совокупную осевую длину промежуточного корпуса, основой камеры сгорания и турбины низкого давления.KND can be combined with a high-pressure pump on a shaft with the possibility of transmitting torque from a specified turbine, and a high-pressure pump is combined with a high-pressure pump with the possibility of receiving the latest torque from a high-pressure turbine through an autonomous shaft of the KVD-TVD rotor, coaxially rotatably covering the KND-TND rotor shaft in parts of the length and made shorter than the latter, at least by the total axial length of the intermediate casing, the basis of the combustion chamber and low pressure turbine.

Статор КВД может содержать входной направляющий аппарат, не более восьми промежуточных направляющих и выходной спрямляющий аппараты.The stator of the HPC may contain an input guide vane, no more than eight intermediate guides and an output rectifier.

Входной направляющий аппарат компрессора низкого давления может быть снабжен состоящими из неподвижного и управляемого подвижного элементов радиальными стойками, равномерно разнесенными в плоскости входного сечения с угловой частотой решетки стоек в диапазоне (3,0÷4,0) ед/рад.The inlet guide apparatus of the low-pressure compressor can be equipped with radial racks consisting of fixed and controllable movable elements, uniformly spaced in the plane of the inlet section with the angular frequency of the racks lattice in the range (3.0 ÷ 4.0) units / rad.

Входной направляющий аппарат компрессора низкого давления может содержать, предпочтительно, двадцать три радиальные стойки, длина которых ограничена наружным и внутренним кольцами ВНА, при этом, по меньшей мере, часть радиальных стоек совмещена с каналами масляной системы, размещенными в неподвижных элементах стоек, с возможностью подачи и отвода масла, а также суфлирования масляной и предмасляных полостей передней опоры ротора компрессора низкого давления.The inlet guiding apparatus of the low-pressure compressor may preferably comprise twenty-three radial struts, the length of which is limited by the outer and inner rings of the BHA, with at least a portion of the radial struts aligned with the channels of the oil system located in the stationary elements of the struts, with the possibility of feeding and drainage of oil, as well as venting of oil and pre-oil cavities of the front support of the rotor of the low-pressure compressor.

Площадь фронтальной проекции входного проема Fвx.пр. ВНА КНД, геометрически определяющая поперечное сечение входного устья воздухозаборного канала, ограниченного на большем радиусе внутренним контуром наружного кольца ВНА, а на меньшем радиусе контуром внутреннего кольца ВНА, может быть выполнена превышающей суммарную площадь аэродинамического затенения Fзт, создаваемого фронтальной проекцией кока и радиальных стоек, в (2,54÷2,72) раза и составляет (0,67÷0,77) от полной площади круга Fплн., ограниченного радиусом внутреннего контура наружного кольца ВНА в плоскости входного проема.The area of the frontal projection of the entrance aperture F vx.pr. BHA KND, geometrically determining the cross section of the inlet mouth of the air intake channel, bounded at a larger radius by the inner contour of the outer ring of the BHA, and at a smaller radius by the contour of the inner ring of the BHA, can be performed in excess of the total area of aerodynamic shading F ST created by the frontal projection of the coke and radial struts, in (2.54 ÷ 2.72) times and is (0.67 ÷ 0.77) of the total area of the circle F pln. bounded by the radius of the inner contour of the outer ring of the BHA in the plane of the inlet opening.

Ось поворотного реактивного сопла может быть выполнена отклоненной от оси двигателя вниз на угол, составляющий в нейтральном положении двигателя (2°÷3°30′).The axis of the rotary jet nozzle can be made deviated from the axis of the engine down by an angle that is in the neutral position of the engine (2 ° ÷ 3 ° 30 ′).

При испытаниях экспериментально может быть подтверждена область газодинамической устойчивости работы двигателя, в том числе для режима с наименьшим запасом ГДУ при встречной приемистости, проверенной по регламенту: выдержка на максимальном режиме, сброс частоты вращения путем установки рычага управления двигателем в положение «малый газ» и в фазах частоты вращения, соответствующего значениям промежуточных неравномерностей с проверкой приемистости двигателя на максимальный режим при установке рычага управления двигателем в положение «максимальные обороты» с результирующим определением запасов газодинамической устойчивости компрессора двигателя.During tests, the region of gas-dynamic stability of engine operation can be experimentally confirmed, including for the regime with the smallest supply of hydraulic control gears with on-board throttle response checked according to the regulations: shutter speed at maximum speed, resetting the speed by setting the engine control lever to the "low gas" position and phases of the rotational speed corresponding to the values of intermediate irregularities with checking engine throttle response to maximum mode when the engine control lever is set to ue "maximum speed" with the resultant determination stocks dynamic stability of the engine compressor.

Технический результат, обеспечиваемый приведенной совокупностью признаков, состоит в разработке ТРД с улучшенными эксплуатационными характеристиками и более надежным определением границ возможного варьирования тяги в пределах допустимого диапазона газодинамической устойчивости работы компрессора. Это достигается за счет применения в двигателе разработанной в изобретении совокупности основных модулей и сборочных единиц с параметрами и техническими решениями регулирования подачи воздуха без введения двигатель в помпаж, которые проверены предложенной в изобретении системой испытаний на газодинамическую устойчивость компрессора с упрощенной технологией и сокращением трудо- и энергоемкости испытаний. Предложенная система построена на применении выдвижного интерцептора с регулированием подачи воздуха без останова процесса испытания, а также разработанной градуированной шкалы выдвижения интерцептора в воздушный поток, поступающий в двигатель. Выдвижной интерцептор обеспечивает создание процентно выверенного снижения поступления воздуха и создаваемой неравномерности потока до граничного значения, при котором сохраняется газодинамическая устойчивость. Технология испытания по изобретению обеспечивает возможность надежного определения экспериментально подтверждаемого запаса газодинамической устойчивости. Применение изобретения открывает возможность обеспечить по предложенной системе работу двигателя в допустимом диапазоне ГДУ на новом, более высоком уровне надежности и эксплуатации с лучшим качеством.The technical result provided by the given set of features consists in the development of a turbojet engine with improved operational characteristics and more reliable determination of the boundaries of possible thrust variation within the allowable range of gas-dynamic stability of compressor operation. This is achieved due to the use in the engine of the set of basic modules and assembly units developed in the invention with the parameters and technical solutions for regulating air supply without introducing the engine into the surge, which are tested by the compressor gas dynamic stability test system proposed in the invention with simplified technology and reduced labor and energy consumption tests. The proposed system is based on the use of a retractable interceptor with air supply regulation without stopping the test process, as well as the developed graduated scale for extending the interceptor into the air flow entering the engine. A retractable interceptor provides the creation of a percentage-adjusted reduction in air intake and created uneven flow to a boundary value at which gas-dynamic stability is maintained. The test technology of the invention provides the ability to reliably determine the experimentally confirmed stock of gas-dynamic stability. The application of the invention opens up the possibility of ensuring the engine operation according to the proposed system in the permissible range of the GDU at a new, higher level of reliability and operation with better quality.

Сущность изобретения поясняется чертежами, где:The invention is illustrated by drawings, where:

на фиг.1 изображен турбореактивный двигатель, продольный разрез;figure 1 shows a turbojet engine, a longitudinal section;

на фиг.2 - входное устройство аэродинамической установки для испытаний двигателя, снабженной интерцептором, вид сбоку;figure 2 - input device of an aerodynamic installation for testing an engine equipped with an interceptor, side view;

на фиг.3 - разрез по A-A на фиг.2, где Hи - высота интерцептора, Dкан - диаметр канала входного устройства;Figure 3 - a section along AA in Figure 2, and where H - the height of the spoiler, D kan - the diameter of the channel of the input device;

на фиг.4 - входной направляющий аппарат компрессора низкого давления, вид сверху.figure 4 - input guide apparatus of the low-pressure compressor, top view.

Турбореактивный двигатель выполнен двухконтурным, двухвальным. Турбореактивный двигатель содержит не менее восьми модулей, включая компрессор 1 низкого давления, промежуточный корпус 2 и газогенератор.The turbojet engine is double-circuit, twin-shaft. A turbojet engine contains at least eight modules, including a low pressure compressor 1, an intermediate housing 2, and a gas generator.

КНД 1 выполнен со статором, имеющим входной направляющий аппарат 3, не более трех промежуточных направляющих аппаратов 4 и выходной спрямляющий аппарат 5, а также с ротором, имеющим вал 6 и систему предпочтительно четырех рабочих колес 7, наделенных лопатками 8.KND 1 is made with a stator having an input guide apparatus 3, no more than three intermediate guide apparatuses 4 and an output straightening apparatus 5, as well as with a rotor having a shaft 6 and a system of preferably four impellers 7 endowed with blades 8.

Газогенератор содержит сборочные единицы - компрессор 9 высокого давления со статором, основную камеру 10 сгорания и турбину 11 высокого давления.The gas generator contains assembly units - a high pressure compressor 9 with a stator, a main combustion chamber 10 and a high pressure turbine 11.

КВД 9 включает статор, а также ротор с валом 12 и системой оснащенных лопатками 13 рабочих колес 14. При этом число рабочих колес 14 КВД 9 не менее чем в два раза превышает число рабочих колес 7 КНД 1.KVD 9 includes a stator, as well as a rotor with a shaft 12 and a system of impellers 14 equipped with blades 13. Moreover, the number of impellers 14 of the KVD 9 is at least twice the number of impellers 7 of the KND 1.

За газогенератором последовательно соосно установлены турбина 15 низкого давления, смеситель 16, фронтовое устройство 17, форсажная камера 18 сгорания и поворотное реактивное сопло, включающее поворотное устройство 19, неподвижно, предпочтительно, разъемно прикрепленное к форсажной камере 18 сгорания, и регулируемое реактивное сопло 20, прикрепленное к поворотному устройству 19 с возможностью выполнения совместно с подвижным элементом последнего поворотов для изменения направления вектора тяги. Ось вращения поворотного устройства 19 относительно горизонтальной оси повернута на угол не менее 30°, предпочтительно на (32÷34)° по часовой стрелке (вид по направлению полета) для правого двигателя и на угол не менее 30°, предпочтительно на (32÷34)° против часовой стрелки (вид по направлению полета) для левого двигателя.Behind the gas generator, a low pressure turbine 15, a mixer 16, a frontal device 17, an afterburner 18 of combustion, and a rotary jet nozzle including a rotatable device 19 are fixedly, preferably detachably attached to the afterburner 18 of the combustion engine, and an adjustable jet nozzle 20 is attached to the rotary device 19 with the possibility of performing together with the movable element of the last turns to change the direction of the thrust vector. The axis of rotation of the rotary device 19 relative to the horizontal axis is rotated by an angle of not less than 30 °, preferably by (32 ÷ 34) ° clockwise (view in the direction of flight) for the right engine and by an angle of not less than 30 °, preferably by (32 ÷ 34 ) ° counterclockwise (view in the direction of flight) for the left engine.

Вокруг корпуса основной камеры 10 сгорания во внешнем контуре 21 установлен воздухо-воздушный теплообменник 22, собранный не менее чем из шестидесяти трубчатых блок-модулей.Around the body of the main combustion chamber 10, an air-air heat exchanger 22 is assembled in an external circuit 21, assembled from at least sixty tubular block modules.

Также двигатель содержит коробку приводов двигательных агрегатов (на чертежах не показано).The engine also contains a box of drives of motor units (not shown in the drawings).

Статоры КНД 1 и КВД 9 выполнены каждый в виде продольно-сегментных блоков в количестве не менее двух, объединенных, преимущественно, на разъемных соединениях с возможностью разборки для ремонта или замены деталей соответствующего модуля или сборочной единицы. В виде аналогичных продольно-сегментных блоков выполнены и объединены на разъемных соединениях сопловые аппараты 23 турбин 11 и 15 соответственно высокого и низкого давления.The stators KND 1 and KVD 9 are each made in the form of longitudinally segmented units in an amount of at least two, united mainly on detachable joints with the possibility of disassembly for repair or replacement of parts of the corresponding module or assembly unit. In the form of similar longitudinal-segment blocks, nozzle apparatuses 23 of turbines 11 and 15, respectively, of high and low pressure, are made and combined on detachable joints.

Двигатель проверен на газодинамическую устойчивость (ГДУ) работы компрессора, по крайней мере, на стадии серийного промышленного производства. Для чего конкретный или идентичные для статистической репрезентативности результатов три-пять экземпляров из партии серийно произведенных двигателей испытаны на стенде. Стенд снабжен входным аэродинамическим устройством 24 с регулируемо пересекающим воздушный поток, преимущественно, дистанционно управляемым выдвижным интерцептором 25 с отградуированной шкалой положений интерцептора, имеющей фиксированную критическую точку, отделяющую двигатель на 2-5% от перехода в помпаж, при необходимости, с повтором испытания на определенном по регламенту наборе режимов, соответствующих режимам, характерным для последующей реальной работы ТРД в полетных условиях.The engine is tested for gas-dynamic stability (GDU) of the compressor, at least at the stage of mass production. Why concrete or identical to the statistical representativeness of the results, three to five copies from a batch of mass-produced engines were tested at the stand. The stand is equipped with an aerodynamic inlet device 24 with adjustable crossover of the air flow, mainly remotely controlled by a retractable interceptor 25 with a graduated scale of the position of the interceptor having a fixed critical point separating the engine by 2-5% from the transition to surge, if necessary, with a repeat of the test at a certain according to the regulations, a set of modes corresponding to the modes characteristic of the subsequent real work of the turbojet engine in flight conditions.

Турбореактивный двигатель содержит электрическую, пневматическую, гидравлическую - топливную и масляную системы, а также датчики, командные блоки, исполнительные механизмы и кабели систем диагностики и автоматического управления двигателем, объединяющие указанные сборочные единицы и модули (на чертежах не показано).A turbojet engine contains electric, pneumatic, hydraulic - fuel and oil systems, as well as sensors, command blocks, actuators and cables of diagnostic and automatic engine control systems that combine these assembly units and modules (not shown in the drawings).

Компрессор 1 низкого давления объединен с турбиной 15 низкого давления по валу 6 с возможностью передачи от турбины 15 крутящего момента. Компрессор 9 высокого давления объединен с турбиной 11 высокого давления с возможностью получения последним крутящего момента от турбины 11 через автономный вал 12 ротора КВД-ТВД, коаксиально с возможностью вращения охватывающий вал 6 ротора КНД-ТНД на части длины и выполненный короче последнего, по меньшей мере, на совокупную осевую длину промежуточного корпуса 2, основой камеры 10 сгорания и турбины 15 низкого давления.The low pressure compressor 1 is integrated with the low pressure turbine 15 along the shaft 6 with the possibility of transmitting torque from the turbine 15. The high-pressure compressor 9 is combined with the high-pressure turbine 11 with the possibility of obtaining the latest torque from the turbine 11 through the autonomous shaft 12 of the HPH-HPH rotor, coaxially rotatably covering the shaft 6 of the KND-TND rotor for a length part and made shorter than the last, at least , on the total axial length of the intermediate casing 2, the basis of the combustion chamber 10 and the low pressure turbine 15.

Статор КВД 9 содержит входной направляющий аппарат 26, не более восьми промежуточных направляющих аппаратов 27 и выходной спрямляющий аппарат 28.The stator KVD 9 contains an input guide vane 26, no more than eight intermediate guide vanes 27 and an output rectifier 28.

Входной направляющий аппарат 3 КНД 1 снабжен состоящими из неподвижного и управляемого подвижного элементов радиальными стойками 29, равномерно разнесенными в плоскости входного сечения с угловой частотой в диапазоне (3,0÷4,0) ед/рад.The input guide device 3 KND 1 is equipped with radial racks 29 consisting of a fixed and controlled movable elements, uniformly spaced in the plane of the input section with an angular frequency in the range (3.0 ÷ 4.0) units / rad.

Входной направляющий аппарат 3 КНД 1 содержит, предпочтительно, двадцать три радиальные стойки 29. Длина радиальных стоек 29 ограничена наружным и внутренним кольцами 30 и 31 соответственно ВНА. По меньшей мере, часть радиальных стоек 29 совмещена с каналами масляной системы, размещенными в неподвижных элементах стоек, с возможностью подачи и отвода масла, а также суфлирования масляной и предмасляных полостей передней опоры ротора КНД 1.The input guide device 3 of the KND 1 preferably contains twenty-three radial struts 29. The length of the radial struts 29 is limited by the outer and inner rings 30 and 31, respectively, of the BHA. At least part of the radial struts 29 is combined with the channels of the oil system located in the stationary elements of the racks, with the possibility of supplying and discharging oil, as well as venting the oil and pre-oil cavities of the front support of the KND 1 rotor.

Площадь фронтальной проекции входного проема Fвx.пр. входного направляющего аппарата 3 КНД 1, геометрически определяющая поперечное сечение входного устья воздухозаборного канала 32, ограниченного на большем радиусе внутренним контуром наружного кольца 30 ВНА, а на меньшем радиусе контуром внутреннего кольца 31 ВНА, выполнена превышающей суммарную площадь аэродинамического затенения Fзт, создаваемого фронтальной проекцией кока 33 и радиальных стоек 29, в (2,54÷2,72) раза и составляет (0,67÷0,77) от полной площади круга Fплн., ограниченного радиусом внутреннего контура наружного кольца 30 ВНА в плоскости входного проема.The area of the frontal projection of the entrance aperture F vx.pr. the input guide vane 3 KND 1, which geometrically defines the cross section of the inlet mouth of the air intake channel 32, bounded at a larger radius by the inner contour of the outer ring 30 of the BHA, and at a smaller radius by the contour of the inner ring 31 of the BHA, made larger than the total aerodynamic shading area F ST created by the frontal projection Coca 33 and radial racks 29, (2.54 ÷ 2.72) times and is (0.67 ÷ 0.77) of the total area of the circle F pln. bounded by the radius of the inner contour of the outer ring 30 VNA in the plane of the inlet opening.

Ось поворотного реактивного сопла выполнена отклоненной от оси двигателя вниз на угол, составляющий в нейтральном положении двигателя (2°÷3°30′).The axis of the rotary jet nozzle is made deviated from the axis of the engine down by an angle that is in the neutral position of the engine (2 ° ÷ 3 ° 30 ′).

При испытаниях экспериментально подтверждена область газодинамической устойчивости работы двигателя, в том числе для режима с наименьшим запасом ГДУ при встречной приемистости, проверенной по регламенту: выдержка на максимальном режиме, сброс частоты вращения путем установки рычага управления двигателем в положение «малый газ» и в фазах частоты вращения, соответствующего значениям промежуточных неравномерностей с проверкой приемистости двигателя на максимальный режим при установке рычага управления двигателем в положение «максимальные обороты» с результирующим определением запасов ГДУ компрессора двигателя.During the tests, the region of gas-dynamic stability of the engine’s operation was experimentally confirmed, including for the regime with the smallest GDU margin with counter throttle response checked according to the regulations: shutter speed at maximum speed, resetting the speed by setting the engine control lever to the "low gas" position and in the frequency phases rotation corresponding to the values of intermediate irregularities with checking engine throttle response to maximum mode when the engine control lever is set to “max al revs ”with the resulting determination of the reserves of the GDU of the engine compressor.

Пример реализации способа испытания турбореактивного двигателяAn example implementation of a test method for a turbojet engine

На стадии разработки испытанию подвергают двухконтурный ТРД с минимальной проектной газодинамической устойчивостью на частоте вращения ротора 0,8 Макс, где Макс - максимальные допустимые обороты ротора данного двигателя.At the development stage, a double-circuit turbojet engine is tested with a minimum design gas-dynamic stability at a rotor speed of 0.8 Max, where Max is the maximum allowable rotor speed of a given engine.

Устанавливают двигатель на испытательном стенде и сообщают с входным аэродинамическим устройством 24 через фланец 34. Устройство 24 снабжено регулируемо-управляемым выдвижным интерцептором 25, установленным с возможностью пересечения подаваемого в двигатель воздушного потока. Интерцептор 25 выполнен с возможностью создания неравномерности и регулирования количества поступающего в двигатель воздуха в интервале от 0 до 100% путем нулевого, промежуточного или полного перекрытия площади рабочего сечения входного аэродинамического устройства 24. Для этого интерцептор 25 снабжен электроприводом, содержащим приводной шток 35 с гидроцилиндром 36, и шкалой выдвижения интерцептора 25, отградуированной с шагом в 1% от площади входного сечения воздушного потока, подаваемого в двигатель.Install the engine on a test bench and communicate with the inlet aerodynamic device 24 through the flange 34. The device 24 is equipped with an adjustable-controlled retractable interceptor 25, installed with the possibility of crossing the air flow supplied to the engine. The interceptor 25 is configured to create unevenness and control the amount of air entering the engine in the range from 0 to 100% by zero, intermediate or complete overlap of the working section area of the inlet aerodynamic device 24. For this, the interceptor 25 is equipped with an electric drive containing a drive rod 35 with a hydraulic cylinder 36 , and the extension scale of the interceptor 25, graduated in increments of 1% of the area of the inlet section of the air flow supplied to the engine.

Выводят испытуемый ТРД на режимы вращения ротора от «малого газа» (МГ) до Макс с шагом изменения оборотов от режима к режиму 0,05 Макс и с последовательной итерацией к границе потери газодинамической устойчивости. Для этого на каждом из режимов последовательно выдвигают интерцептор 25 в сечение воздушного потока с шагом (1-5)% от площади указанного сечения, доводя до признаков появления помпажа. В результате данного этапа испытания определяют граничное значение частоты вращения ротора с минимальным запасом газодинамической устойчивости, составляющее 0,8 Макс при выдвижении интерцептора 25 на 73%.The test turbojet engine is brought to the rotor rotation modes from “small gas” (MG) to Max with a step of changing revolutions from mode to mode 0.05 Max and with a sequential iteration to the boundary of loss of gas-dynamic stability. To do this, at each of the modes, the interceptor 25 is sequentially extended into the air flow section with a step of (1-5)% of the area of the specified section, bringing to signs of surge. As a result of this test stage, the boundary value of the rotor speed with a minimum margin of gas-dynamic stability is determined, which is 0.8 Max when the interceptor 25 is extended by 73%.

Затем путем обратного перемещения интерцептора 25 в интервале до 7% от максимального положения, при котором произошел срыв в помпаж с потерей газодинамической устойчивости, устанавливают, что при смещении интерцептора 25 на 5% признаки помпажа отсутствуют, двигатель работает устойчиво.Then, by the reverse movement of the interceptor 25 in the range of up to 7% of the maximum position at which a surge occurred with a loss of gas-dynamic stability, it is established that there is no sign of surge when the interceptor 25 is displaced by 5%, the engine is running stably.

Проводят анализ результатов испытаний, принимая во внимание, что результирующие испытания выполнены без срыва в помпаж при максимальном введении интерцептора 25 на оборотах ротора, создающих минимальный запас устойчивости, устанавливают границу газодинамической устойчивости работы данного типа ТРД в полном диапазоне рабочих оборотов ротора двигателя.An analysis of the test results is carried out, taking into account that the resulting tests were performed without disruption in surging with a maximum introduction of an interceptor 25 at rotor revolutions, creating a minimum margin of stability, the gas-dynamic stability of this type of turbojet operation is established in the full range of engine rotor revolutions.

Изложенную выше последовательность испытания ТРД на газодинамическую устойчивость применяют на всех этапах от разработки и доводки до промышленного производства, эксплуатации и капитального ремонта авиационных двигателей.The above sequence of tests of turbofan engines for gas-dynamic stability is used at all stages from development and development to industrial production, operation and overhaul of aircraft engines.

Claims (9)

1. Турбореактивный двигатель, характеризующийся тем, что выполнен двухконтурным, двухвальным и содержит не менее восьми модулей и сборочных единиц, включая компрессор низкого давления (КНД) со статором, имеющим входной направляющий аппарат (ВНА), не более трех промежуточных направляющих и выходной спрямляющий аппараты, а также с ротором, имеющим вал и систему наделенных лопатками, предпочтительно, четырех рабочих колес; промежуточный корпус; газогенератор, включающий сборочные единицы - компрессор высокого давления (КВД), имеющий статор, а также ротор с валом и системой оснащенных лопатками рабочих колес, число которых не менее чем в два раза превышает число упомянутых рабочих колес КНД; основную камеру сгорания и турбину высокого давления (ТВД); за газогенератором последовательно соосно установлены турбина низкого давления (ТНД), смеситель, фронтовое устройство, форсажная камера сгорания и поворотное реактивное сопло, включающее поворотное устройство, неподвижно, предпочтительно, разъемно прикрепленное к форсажной камере сгорания, и регулируемое реактивное сопло, прикрепленное к поворотному устройству с возможностью выполнения совместно с подвижным элементом последнего поворотов для изменения направления вектора тяги; причем ось вращения поворотного устройства относительно горизонтальной оси повернута на угол не менее 30°, предпочтительно, на (32÷34)° по часовой стрелке (вид по направлению полета) для правого двигателя и на угол не менее 30°, предпочтительно, на (32÷34)° против часовой стрелки (вид по направлению полета) для левого двигателя; кроме того, вокруг корпуса основной камеры сгорания во внешнем контуре установлен воздухо-воздушный теплообменник, собранный не менее чем из шестидесяти трубчатых блок-модулей; двигатель содержит также коробку приводов двигательных агрегатов; причем статоры КНД и КВД выполнены каждый в виде продольно-сегментных блоков в количестве не менее двух, объединенных, преимущественно, на разъемных соединениях с возможностью разборки для ремонта или замены деталей соответствующего модуля или сборочной единицы, кроме того, в виде аналогичных продольно-сегментных блоков выполнены и объединены на разъемных соединениях сопловые аппараты турбин ТНД и ТВД; причем двигатель проверен на газодинамическую устойчивость (ГДУ) работы компрессора, по крайней мере, на стадии серийного промышленного производства, для чего конкретный или идентичные для статистической репрезентативности результатов три-пять экземпляров из партии серийно произведенных двигателей испытаны на стенде, снабженном входным аэродинамическим устройством с регулируемо пересекающим воздушный поток, преимущественно, дистанционно управляемым выдвижным интерцептором с отградуированной шкалой положений интерцептора, имеющей фиксированную критическую точку, отделяющую двигатель на 2-5% от перехода в помпаж, при необходимости, с повтором испытания на определенном по регламенту наборе режимов, соответствующих режимам, характерным для последующей реальной работы ТРД (турбореактивный двигатель) в полетных условиях.1. A turbojet engine, characterized in that it is double-circuit, twin-shaft and contains at least eight modules and assembly units, including a low pressure compressor (LPC) with a stator having an input guide vane (VNA), no more than three intermediate guides and an output rectifier as well as with a rotor having a shaft and a system endowed with blades, preferably four impellers; intermediate housing; a gas generator including assembly units — a high pressure compressor (HPC) having a stator, as well as a rotor with a shaft and a system of impellers equipped with vanes, the number of which is at least twice the number of the mentioned KND impellers; the main combustion chamber and the high pressure turbine (HPT); behind the gas generator, a low pressure turbine (LP), a mixer, a frontal device, a combustion afterburner and a rotary jet nozzle including a rotary device, fixedly, preferably detachably attached to a combustion afterburner, and an adjustable jet nozzle attached to a rotary device with the possibility of performing, together with the movable element, the last turns to change the direction of the thrust vector; moreover, the axis of rotation of the rotary device relative to the horizontal axis is rotated by an angle of not less than 30 °, preferably by (32 ÷ 34) ° clockwise (view in the direction of flight) for the right engine and by an angle of not less than 30 °, preferably by (32 ÷ 34) ° counterclockwise (view in the direction of flight) for the left engine; in addition, an air-air heat exchanger assembled from at least sixty tubular block modules is installed around the main combustion chamber body in the external circuit; the engine also contains a box of drives of motor units; moreover, the KND and KVD stators are each made in the form of at least two longitudinal-segment blocks, combined mainly on detachable joints with the possibility of disassembly for repair or replacement of parts of the corresponding module or assembly unit, in addition, in the form of similar longitudinal-segment blocks made and combined on detachable connections nozzle apparatuses of turbines TND and TVD; moreover, the engine is tested for gas-dynamic stability (GDU) of the compressor, at least at the stage of serial industrial production, for which three or five copies from a batch of mass-produced engines, specific or identical to the statistical representativeness of the test, were tested on a bench equipped with an aerodynamic inlet device with adjustable crossing the air stream, mainly, remotely controlled retractable interceptor with a graduated scale of the position of the interceptor, having fixed critical point d that separates the engine at 2-5% in transition from surging, if necessary, repeat the test on a certain set of regulation modes, the appropriate mode characteristic for the subsequent actual operation turbojet engine (turbofan engine) in flight conditions. 2. Турбореактивный двигатель по п.1, отличающийся тем, что содержит электрическую, пневматическую, гидравлическую - топливную и масляную системы, а также датчики, командные блоки, исполнительные механизмы и кабели систем диагностики и автоматического управления двигателем, объединяющие указанные сборочные единицы и модули.2. The turbojet engine according to claim 1, characterized in that it contains electric, pneumatic, hydraulic - fuel and oil systems, as well as sensors, command blocks, actuators and cables of diagnostic and automatic engine control systems that combine these assembly units and modules. 3. Турбореактивный двигатель по п.1, отличающийся тем, что КНД объединен с ТНД по валу с возможностью передачи от указанной турбины крутящего момента, а КВД объединен с ТВД с возможностью получения последним крутящего момента от турбины высокого давления через автономный вал ротора КВД-ТВД, коаксиально с возможностью вращения охватывающий вал ротора КНД-ТНД на части длины и выполненный короче последнего, по меньшей мере, на совокупную осевую длину промежуточного корпуса, основой камеры сгорания и турбины низкого давления.3. The turbojet engine according to claim 1, characterized in that the low-pressure turbine is integrated with the high-pressure turbine on a shaft with the possibility of transmitting torque from the specified turbine, and the high-pressure turbine is combined with a high-pressure turbine with the possibility of receiving the latest torque from the high-pressure turbine through the autonomous shaft of the high-pressure turbine , coaxially rotatably enclosing the rotor shaft of the KND-TND in part length and made shorter than the latter, at least by the total axial length of the intermediate casing, the base of the combustion chamber and low pressure turbine. 4. Турбореактивный двигатель по п.1, отличающийся тем, что статор КВД содержит входной направляющий аппарат, не более восьми промежуточных направляющих и выходной спрямляющий аппараты.4. The turbojet engine according to claim 1, characterized in that the stator of the HPC contains an input guide vane, no more than eight intermediate guides and an output rectifier. 5. Турбореактивный двигатель по п.1, отличающийся тем, что входной направляющий аппарат компрессора низкого давления снабжен состоящими из неподвижного и управляемого подвижного элементов радиальными стойками, равномерно разнесенными в плоскости входного сечения с угловой частотой в диапазоне (3,0÷4,0) ед/рад.5. The turbojet engine according to claim 1, characterized in that the inlet guide apparatus of the low-pressure compressor is equipped with radial struts consisting of fixed and controllable movable elements, uniformly spaced in the plane of the inlet section with an angular frequency in the range (3.0 ÷ 4.0) u / glad 6. Турбореактивный двигатель по п.5, отличающийся тем, что входной направляющий аппарат компрессора низкого давления содержит, предпочтительно, двадцать три радиальные стойки, длина которых ограничена наружным и внутренним кольцами ВНА, при этом, по меньшей мере, часть радиальных стоек совмещена с каналами масляной системы, размещенными в неподвижных элементах стоек, с возможностью подачи и отвода масла, а также суфлирования масляной и предмасляных полостей передней опоры ротора компрессора низкого давления.6. The turbojet engine according to claim 5, characterized in that the inlet guide apparatus of the low-pressure compressor contains preferably twenty-three radial struts, the length of which is limited by the outer and inner rings of the BHA, while at least part of the radial struts are aligned with the channels oil system, located in the stationary elements of the racks, with the possibility of supplying and discharging oil, as well as venting the oil and pre-oil cavities of the front support of the low-pressure compressor rotor. 7. Турбореактивный двигатель по п.5, отличающийся тем, что площадь фронтальной проекции входного проема Fвх.пр. ВНА КНД, геометрически определяющая поперечное сечение входного устья воздухозаборного канала, ограниченного на большем радиусе внутренним контуром наружного кольца ВНА, а на меньшем радиусе контуром внутреннего кольца ВНА, выполнена превышающей суммарную площадь аэродинамического затенения Fзт, создаваемого фронтальной проекцией кока и радиальных стоек, в (2,54÷2,72) раза и составляет (0,67÷0,77) от полной площади круга Fплн., ограниченного радиусом внутреннего контура наружного кольца ВНА в плоскости входного проема.7. The turbojet engine according to claim 5, characterized in that the frontal projection area of the input aperture F int. VNA KND, geometrically determining the cross section of the inlet mouth of the air intake channel, bounded at a larger radius by the inner contour of the outer ring of the VHA, and at a smaller radius by the contour of the inner ring of the VNA, which is larger than the total area of aerodynamic shading F c created by the frontal projection of the coke and radial struts, in ( 2.54 ÷ 2.72) times and is (0.67 ÷ 0.77) of the total area of the circle F pln. bounded by the radius of the inner contour of the outer ring of the BHA in the plane of the inlet opening. 8. Турбореактивный двигатель по п.1, отличающийся тем, что ось поворотного реактивного сопла выполнена отклоненной от оси двигателя вниз на угол, составляющий в нейтральном положении двигателя (2°÷3°30′).8. The turbojet engine according to claim 1, characterized in that the axis of the rotary jet nozzle is made deviated from the axis of the engine down by an angle that is in the neutral position of the engine (2 ° ÷ 3 ° 30 ′). 9. Турбореактивный двигатель по п.1, отличающийся тем, что при испытаниях экспериментально подтверждена область газодинамической устойчивости работы двигателя, в том числе для режима с наименьшим запасом ГДУ при встречной приемистости, проверенной по регламенту: выдержка на максимальном режиме, сброс частоты вращения путем установки рычага управления двигателем в положение «малый газ» и в фазах частоты вращения, соответствующего значениям промежуточных неравномерностей с проверкой приемистости двигателя на максимальный режим при установке рычага управления двигателем в положение «максимальные обороты» с результирующим определением запасов газодинамической устойчивости компрессора двигателя. 9. The turbojet engine according to claim 1, characterized in that during the tests, the region of gas-dynamic stability of the engine’s operation was experimentally confirmed, including for the regime with the smallest GDU reserve with on-board throttle response, checked according to the regulations: shutter speed at maximum speed, speed reset by setting the engine control lever to the “low gas” position and in the phases of the rotational speed corresponding to the values of intermediate irregularities with checking the engine throttle response for maximum operation setting the engine control lever to the "maximum speed" position with the resulting determination of the gas-dynamic stability reserves of the engine compressor.
RU2013149466/06A 2013-11-07 2013-11-07 Jet turbine engine RU2555939C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013149466/06A RU2555939C2 (en) 2013-11-07 2013-11-07 Jet turbine engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013149466/06A RU2555939C2 (en) 2013-11-07 2013-11-07 Jet turbine engine

Publications (2)

Publication Number Publication Date
RU2013149466A RU2013149466A (en) 2015-05-20
RU2555939C2 true RU2555939C2 (en) 2015-07-10

Family

ID=53283603

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013149466/06A RU2555939C2 (en) 2013-11-07 2013-11-07 Jet turbine engine

Country Status (1)

Country Link
RU (1) RU2555939C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2692189C1 (en) * 2018-10-19 2019-06-21 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Control method of turbojet two-circuit engine
RU2736403C1 (en) * 2020-05-19 2020-11-16 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Turbojet engine control method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3946554A (en) * 1974-09-06 1976-03-30 General Electric Company Variable pitch turbofan engine and a method for operating same
FR2599086B1 (en) * 1986-05-23 1990-04-20 Snecma DEVICE FOR CONTROLLING VARIABLE SETTING AIR INTAKE DIRECTIVE BLADES FOR TURBOJET
RU2199727C2 (en) * 2001-04-25 2003-02-27 Самарский институт инженеров железнодорожного транспорта Internal combustion engine turbocompressor test bed
RU2296887C2 (en) * 2001-10-31 2007-04-10 Снекма Мотер Two-loop turbojet engine
RU2350787C2 (en) * 2007-04-13 2009-03-27 Открытое акционерное общество "Научно-производственное объединение "Сатурн" High-efficiency low-noise low-pressure compressor of high bypass ratio gas turbine engine
RU2447308C2 (en) * 2010-07-09 2012-04-10 Федеральное государственное унитарное предприятие "Летно-исследовательский институт имени М.М. Громова" Bypass turbojet engine with airflow redistribution at inlet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3946554A (en) * 1974-09-06 1976-03-30 General Electric Company Variable pitch turbofan engine and a method for operating same
FR2599086B1 (en) * 1986-05-23 1990-04-20 Snecma DEVICE FOR CONTROLLING VARIABLE SETTING AIR INTAKE DIRECTIVE BLADES FOR TURBOJET
RU2199727C2 (en) * 2001-04-25 2003-02-27 Самарский институт инженеров железнодорожного транспорта Internal combustion engine turbocompressor test bed
RU2296887C2 (en) * 2001-10-31 2007-04-10 Снекма Мотер Two-loop turbojet engine
RU2350787C2 (en) * 2007-04-13 2009-03-27 Открытое акционерное общество "Научно-производственное объединение "Сатурн" High-efficiency low-noise low-pressure compressor of high bypass ratio gas turbine engine
RU2447308C2 (en) * 2010-07-09 2012-04-10 Федеральное государственное унитарное предприятие "Летно-исследовательский институт имени М.М. Громова" Bypass turbojet engine with airflow redistribution at inlet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ю.А. ЛИТВИНОВ, В.О. БОРОВИК. ХАРАКТЕРИСТИКИ И ЭКСПЛУАТАЦИОННЫЕ СВОЙСТВА АВИАЦИОННЫХ ТУРБОРЕАКТИВНЫХ ДВИГАТЕЛЕЙ. Москва: Машиностроение, 1979, с.13-15. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2692189C1 (en) * 2018-10-19 2019-06-21 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Control method of turbojet two-circuit engine
RU2736403C1 (en) * 2020-05-19 2020-11-16 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Turbojet engine control method

Also Published As

Publication number Publication date
RU2013149466A (en) 2015-05-20

Similar Documents

Publication Publication Date Title
RU2487334C1 (en) Turbojet, method of turbojet testing (versions) and method of turbojet production, method of turbojet industrial production, method of turbojet overhaul, and method of turbojet operation
RU2555928C2 (en) Jet turbine engine
RU2555939C2 (en) Jet turbine engine
RU2544410C1 (en) Method of turbojet batch manufacturing and turbojet manufactured according to this method
RU2551249C1 (en) Method of operational development of experimental jet turbine engine
RU2544686C1 (en) Adjustment method of test gas-turbine engine
RU142807U1 (en) TURBOJET
RU144419U1 (en) TURBOJET
RU2545110C1 (en) Gas-turbine engine
RU142812U1 (en) Turbojet engine test bench for turbojet AT dynamic stability, aerodynamic devices INPUT stands for testing of turbojet AT dynamic stability and aerodynamic devices spoilers INPUT stands for testing of turbojet AT dynamic stability
RU2555933C2 (en) Gas-turbine engine
RU2544412C1 (en) Method of operational development of experimental turbojet engine
RU2544634C1 (en) Adjustment method of test gas-turbine engine
RU2545111C1 (en) Method of batch production of gas-turbine engine, and gas-turbine engine made by means of this method
RU2551013C1 (en) Method of batch production of gas-turbine engine, and gas-turbine engine made by means of this method
RU2544636C1 (en) Method of batch production of gas-turbine engine, and gas-turbine engine made by means of this method
RU2551142C1 (en) Method of gas turbine engine batch manufacturing and gas turbine engine manufactured according to this method
RU144433U1 (en) GAS TURBINE ENGINE
RU144425U1 (en) TURBOJET
RU2555935C2 (en) Method of mass production of gas turbine engine and gas turbine engine made using this method
RU142810U1 (en) GAS TURBINE ENGINE
RU2544407C1 (en) Method of turbojet batch manufacturing and turbojet manufactured according to this method
RU142811U1 (en) GAS TURBINE ENGINE
RU2544632C1 (en) Operating method of gas-turbine engine and gas-turbine engine operated by means of this method
RU2555940C2 (en) Method of mass production of gas turbine engine and gas turbine engine made using this method

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner