RU2544970C2 - Способ изготовления изделий из легкой аустенитной конструкционной стали и изделие из легкой аустенитной конструкционной стали (варианты) - Google Patents
Способ изготовления изделий из легкой аустенитной конструкционной стали и изделие из легкой аустенитной конструкционной стали (варианты) Download PDFInfo
- Publication number
- RU2544970C2 RU2544970C2 RU2012143967/02A RU2012143967A RU2544970C2 RU 2544970 C2 RU2544970 C2 RU 2544970C2 RU 2012143967/02 A RU2012143967/02 A RU 2012143967/02A RU 2012143967 A RU2012143967 A RU 2012143967A RU 2544970 C2 RU2544970 C2 RU 2544970C2
- Authority
- RU
- Russia
- Prior art keywords
- product
- annealing
- decarburization
- molding
- austenitic
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0257—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/42—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for armour plate
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
- C21D1/76—Adjusting the composition of the atmosphere
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Articles (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Изобретение относится к методу изготовления изделий из аустенитной легкой конструкционной стали с изменяемыми в направлении толщины стенки изделия свойствами материала с составом в вес.%: С от 0,2 до≤1,0, Аl от 0,05 до<15,0, Si от 0,05 до ≤6,0, Мn от 9,0 до<30,0, остальное - железо и неизбежные примеси с добавлением по необходимости Cr≤6,5, Cu≤4,0, Ti+Zr≤0,7, Nb+V≤0,5, В≤0,1. Изделие подвергается обезуглероживающему отжигу в окислительной атмосфере, который обеспечивает формирование ферритной или метастабильной аустенитной структуры в приповерхностных областях заданной толщины слоя и свойств. 3 н. и 15 з.п. ф-лы, 1 ил., 1 табл.
Description
Область техники, к которой относится изобретение
Изобретение относится к способу изготовления изделий из легкой конструкционной стали с изменяемыми в направлении толщины стенки свойствами материала согласно признакам пункта 1 формулы изобретения, а также к изделию из легкой аустенитной конструкционной стали.
Уровень техники
Далее под изделиями понимаются конструктивные элементы или полуфабрикаты для конструктивных элементов, как, например, полосы, листы или трубы, которые находят применение, например, в областях машиностроения, производства промышленного оборудования, возведения стальных конструкций и кораблестроения, а также, в частности, автомобилестроения.
Именно характеризующийся сильной конкуренцией автомобильный рынок заставляет производителей постоянно искать пути снижения расхода топлива при сохранении максимально возможного комфорта и безопасности пассажиров. При этом решающее значение имеет, с одной стороны, снижение веса всех компонентов автомобиля, а с другой стороны, также способствующее пассивной безопасности пассажиров поведение отдельных конструктивных элементов при высоких статических и динамических нагрузках в процессе работы и при аварии.
В последние годы достигнут значительный прогресс в области разработки так называемых легких конструкционных сталей, которые отличаются малым удельным весом при одновременно высоких показателях твердости и вязкости (например, ЕР 0489727 В1, ЕР 0573641 Bl, DE 19900199 А1), а также имеют высокую пластичность и поэтому представляют большой интерес для автомобилестроения.
Благодаря этим в исходном состоянии аустенитным сталям за счет высокого содержания легирующих компонентов (Mn, Si, А1) с удельным весом, значительно меньшим удельного веса железа, достигается выгодное для автомобильной промышленности уменьшение веса при сохранении существующей технологии производства. Из DE 10 2004 061 284 А1, например, известна легкая конструкционная сталь с содержанием (вес.%) компонентов сплава: С - от 0,04 до<1,0; Аl - от 0,05 до<4,0; Si - от 0,05 до<6,0; Mn - от 9,0 до<18,0. Остальное приходится на железо и сопутствующие стали элементы. Опционно по необходимости могут быть добавлены Cr, Cu, Ti, Zr, V и Nb. Эта известная легкая конструкционная сталь имеет частично стабилизированную смешанную γ-кристаллическую структуру с выраженной энергией дефекта упаковки с частично множественным TRIP-эффектом, который трансформирует индицированное напряжением или растяжением изменение гранецентрированного смешанного γ-кристалла (аустенит) в ε-мартенсит (гексагональная самая плотная шаровая упаковка), а затем при дальнейшем деформировании в объемноцентрированный α-мартенсит и остаточный аустенит.
Высокая степень преобразования достигается в результате TRIP-свойства (Transformation Induced Plasticity - индуцированная трансформированием пластичность) и TWIP-свойства (Twinning Induced Plasticity - индуцированная двойникованием пластичность) стали.
Многочисленные опыты позволили сделать вывод, что для сложного взаимодействия между Al, Si, Mn наибольшее значение имеет содержание углерода. Во-первых, он повышает энергию дефекта упаковки, а во-вторых, расширяет метастабильную область аустенита. Это может оказать влияние на индуцированное деформацией образование мартенсита и обусловленное этим отверждение, а также на вязкость.
Эти легкие конструкционные стали могут уже отвечать очень разным требованиям потребителей, но по-прежнему есть еще потребность в оптимизированных с учетом нагрузок изделиях из легких конструкционных сталей, которые соответственно ожидаемым нагрузкам в процессе работы проявляют в направлении толщины стенки или листа различные материальные свойства в отношении твердости, вязкости, износостойкости и т.д. В качестве примера в связи с этим можно назвать устойчивые к обстрелу части автомобилей, конструктивные элементы которых должны иметь твердый поверхностный слой для защиты от поражающих элементов оружия и находящийся под ним слой с высокой вязкостью и высокой способностью к поглощению энергии в случае обстрела.
Способ изготовления комбинированной стальной полосы известен, например, из DE 10124594 А1. Согласно ему произведенная двухвалковым способом прямого литья ферритная сердцевинная полоса плакируется аустенитной или высоколегированной ферритной полосой холодной прокатки.
Трубы с различными в направлении толщины стенки свойствами материала известны, в частности, из ЕР 0944443 В1. В данном случае одна труба вдвигается в другую трубу и таким образом соединяется с ней, причем для внешней и внутренней трубы используются различные материалы.
Недостатками этих известных способов являются обусловленный плакированием резкий перепад свойств комбинированного материала, который затрудняет оптимальное согласование свойств материала в направлении толщины стенки или полосы с соответствующими требованиями, а также высокие затраты на плакирование. Кроме того, из-за плакирования обычными сталями в значительной степени теряется весовое преимущество легких конструкционных сталей.
Еще один способ изготовления комбинированного материала известен из DE 3904776 С2. Согласно ему с использованием диффузионной сварки соединяют друг с другом несколько слоев стали и эти слои легируются металлоидами в газовой атмосфере в такой форме, что формируется изменяющийся по поперечному сечению плоского проката профиль концентрации металлоидов.
В результате этого по поперечному сечению комбинированной полосы материал приобретает различные свойства в отношении твердости и вязкости.
Этот способ также затратный и также имеет весовые недостатки в сравнении с изделиями только лишь из легкой конструкционной стали.
Задачей изобретения является создание способа изготовления изделий из аустенитной легкой конструкционной стали, позволяющий простым и недорогим способом при сохранении весовых преимуществ легкой конструкционной стали формировать различные изменяющиеся в направлении толщины полосы или стенки свойства материала, а также к созданию изделия из легкой аустенитной конструкционной стали.
Раскрытие изобретения
Эта задача решается признаками пункта 1 формулы изобретения. Предпочтительные варианты изобретения изделия для производства горячепрокатанных полос являются объектом других пунктов.
Согласно изобретению конструктивный элемент или полуфабрикат подвергается обезуглероживающему отжигу в окисляющей атмосфере таким способом, что в приповерхностных областях образуется ферритная или метастабильная аустенитная структура, толщину слоя которой можно регулировать изменением параметров отжига (температура, время выдержки) и атмосферы (газовый состав, парциальное давление), в которой он проводится, а для обеспечения градиента свойства он подвергается последующему ускоренному охлаждению и/или холодному формованию.
Сущность изобретения состоит в том, чтобы в стальных материалах, которые согласно концепции их легирования являются сплошными аустенитными и при этом имеют достаточно высокое содержание углерода, путем целенаправленного обезуглероживания создать локально начиная с поверхности изделия ферритный или ферритно-аустенитный материал, которому путем обеспечения соответствующих условий нагревания и охлаждения можно придать все структурные состояния ферритных сталей. К ним относятся компоненты структуры феррит, бейнит и, в частности, мартенсит, а также карбид в различных морфологических формах.
Кроме того, стали, трансформация которых на основе химического состава (энергия дефекта упаковки) происходит преимущественно путем образования двойников (TWIP), после целенаправленного поверхностного обезуглероживания локально на поверхности под воздействием деформирования превращаются из аустенита в мартенсит (TRIP).
В данном случае затем, например, при холодном формовании листа в обезуглероженных областях может формироваться индуцированный деформацией мартенсит соответственно с высокой твердостью. При этом в целенаправленно обезуглероженном поверхностном слое содержится главным образом нестабильный аустенит, который после трансформации проявляет TRIP-эффект.
Как было установлено в результате измерений методом GDOES (англ. Glow Discharge Optical Emission Spectrometry - оптическая электронная спектроскопия с тлеющим разрядом), во всех пробах под действием обезуглероживающего отжига произошло поверхностное обезуглероживание. Металлографические оценки подтвердили произошедшее образование мартенсита в результате целенаправленного охлаждения и/или холодного формования во всех пробах в области поверхности изделия с одновременным увеличением твердости в его приповерхностной области.
Таким образом, в результате целенаправленного поверхностного обезуглероживания с использованием отжига в окисляющей атмосфере был изготовлен градиентный материал.
В приповерхностной области подвергнувшаяся такой термической обработке сталь из-за меньшего содержания углерода содержит метастабильный аустенит, который при последующем холодном формовании и/или уже в результате резкого охлаждения превращается в мартенсит и соответственно проявляет высокую твердость. В сердцевине находится стабильный аустенит с исходным содержанием углерода, который после формования содержит двойники и проявляет высокую пластичность при уменьшенной твердости.
Следующее за термической обработкой холодное формование приводило в результате проявления TRIP-эффекта к образованию мартенсита в сочетании со значительным увеличением твердости.
Известно, что углеродсодержащие ферритные сорта стали используются для отверждения и улучшения, чтобы придать различные материальные свойства поверхности и сердцевине изделия. Аустенитные сорта стали, напротив, из-за свойств материала не отверждаются.
Об углеродсодержащих ферритных сортах стали известно также, что при отверждении или улучшении может произойти так называемое поверхностное окисление, которое ответственно за образование окалины на поверхности, а также за обезуглероживание в приповерхностных областях.
Обычно обезуглероживание нежелательно, так как обезуглероженные области материала являются менее твердыми. Обычно максимальная глубина обезуглероживания ограничена нормами и спецификациями потребителей (например, улучшенные стали и шарикоподшипники).
Настоящее изобретение отходит от описанного уровня техники и следует в противоположном направлении, в котором обезуглероживание аустенитной конструкционной стали комбинируют с ускоренным охлаждением и/или холодным формованием специально для увеличения твердости, в результате чего в направлении толщины листа материалу могут задаваться разные свойства.
В отличие от известных комбинированных материалов из ферритных сортов стали изменение в направлении толщины листа свойств материала может быть реализовано простым и недорогим способом при сохранении весовых преимуществ и прочих выгодных свойств легкой конструкционной стали. С помощью соответствующего изобретению метода теперь можно использовать высоколегированные аустенитные легкие стали для получения так называемых градиентных материалов. Обезуглероживание, т.е. формирование градиентного материала, проводится с использованием как горячепрокатной, так и холоднопрокатной полосы, причем на обработанные таким способом полосы могут быть нанесены металлические покрытия. В качестве металлических покрытий могут быть покрытия на основе Zn, а также Mg или А1 с возможностью различных степеней легирования.
За счет такого изготовленного согласно изобретению градиентного материала значительно расширяется область применения известных легких конструкционных сталей именно в автомобильной области, причем используются соответственно оптимизированные применительно к нагрузкам изделия, имеющие одновременно преимущества легких конструкционных сталей.
Кроме того, достигаемый за счет различий в структуре градиент твердости имеет значение для разнообразия конструкций, например, в строительстве.
Путем целенаправленного поддержания параметров отжига (температура, время выдержки), а также окисляющей атмосферы (газовый состав, парциальное давление) при термической обработке можно регулировать степень обезуглероживания и его глубину относительно поверхности изделия.
Например, при большем времени отжига и более высокой температуре отжига обезуглероживание становится интенсивнее и глубже проникает в изделие. Окисляющей атмосферой при отжиге может быть, например, воздух, или же может специально добавляться кислород или кислородсодержащие газы, причем регулировать степень обезуглероживания можно также изменяя парциальное давление газа.
Влияние на обезуглероживание можно также оказывать путем целенаправленного поддержания режима (температура, время выдержки) повторного нагрева перед горячей прокаткой и/или между проходами горячей прокатки в окисляющей атмосфере отжига. В комбинации с восстанавливающей или инертной термической обработкой степень обезуглероживания и его глубину относительно поверхности можно в последующем отрегулировать точно, например, при более длительном времени прокатки или времени пребывания в печи и более высокой температуре обезуглероживание происходит интенсивнее и проникает в изделие на более значительную глубину.
Путем последующей восстанавливающей или инертной обработки можно изменять степень обезуглероживания, в результате чего обезуглероженный поверхностный слой в корректирующем процессе может быть уменьшен. Таким способом в направлении толщины изделия целенаправленно формируется градиент обезуглероживания с соответствующими свойствами после последующего целенаправленного охлаждения и/или холодного формования.
Образование мартенсита, а вместе с тем и степень отверждения зависят при этом от скорости охлаждения и степени деформирования.
Такой материал особенно пригоден для тех случаев, когда желательным является сочетание высокой твердости поверхности с высокой вязкостью, как, например, для устойчивых к обстрелу конструктивных элементов, так как данный материал имеет высокую поверхностную твердость (мартенсит) в сочетании с очень высокой абсорбцией энергии в случае обстрела.
В производственных опытах применялись сплавы следующих составов (вес.%):
Фигура 1а | Фигура 1b | Фигура 1с | Фигура 1d | |
С | 0,7 | 0,7 | 0,7 | 0,7 |
Аl | 2,5 | 2,5 | 2,5 | 2,5 |
Si | 2,5 | 0,2 | 0,3 | 0,3 |
Мn | 15 | 15 | 15 | 15 |
Остальное - железо и обычно сопутствующие стали элементы |
Снимки структуры обработанных согласно изобретению изделий для формирования мартенсита и соответствующих измерений твердости показаны на двух изображениях структуры (фигура 1a, 1b). Материалы здесь отличаются по содержанию Si. На снимках в приповерхностных областях виден слой мартенсита различной толщины и отражено связанное с ним явное увеличение твердости по сравнению с аустенитной структурой в сердцевине. Здесь у стали согласно фигуре 1а увеличение твердости существенно больше, чем у стали согласно фигуре 1b.
Необходимая для обезуглероживания окислительная обработка отжигом изображенных на фигурах 1а и 1b проб проводилась в естественной атмосфере (воздух) при температуре отжига 1150° и продолжительности отжига 1 ч. В данном случае пробы после отжига быстро не охлаждались, а только лишь подвергались холодному формованию для подтверждения TRIP-эффекта (образования индуцируемого деформацией мартенсита).
Краткое описание чертежей
Фигуры 1с и 1d показывают, что в зависимости от степени обезуглероживания могут создаваться также приповерхностные области с локальным образованием двойников. В зависимости от степени обезуглероживания также может создаваться неравномерность карбидообразования по толщине листа.
Осуществление изобретения
Необходимая для обезуглероживания окислительная обработка отжигом изображенных на фигурах 1с и 1d проб происходила во время горячей прокатки. В дополнение к последующей холодной прокатке была проведена восстановительная обработка отжигом при разных температурах (фигура 1с: 750°С - поверхностный слой 30 мкм с двойниками, фигура 1d: 700°С - поверхностный слой 60 мкм с двойниками).
Изделия из легкой конструкционной стали должны к тому же отвечать относительно высоким требованиям к обрабатываемости, например к холодному формованию, сварке и/или антикоррозионной обработке (например, к нанесению цинксодержащих покрытий).
При сварке оцинкованных аустенитных легких конструкционных сталей могут, правда, быть проблемы, связанные с так называемым жидкометаллическим охрупчиванием. При этом в результате нагрева при сварке в основном материале происходит инфильтрация границ зерен ожиженным цинковым материалом покрытия. В результате этого основной материал вблизи зоны сварки теряет свою твердость и вязкость, поэтому сварное соединение и соответственно граничащий со сварным соединением основной материал становится уже не отвечающим требованиям к механическим свойствам, в результате чего увеличивается опасность отказа сварного соединения.
В опытах установлено, что при сварке сталей с высоким содержанием марганца воздействие расплавленного цинка на границы зерен эффективно предотвращается образованием мартенситной или мартенситно-аустенитной смешанной структуры в обезуглероженных приповерхностных областях. Твердый с поверхности обезуглероженный поверхностный слой очень подходит для выполнения роли промежуточного слоя, эффективно предотвращающего жидкометаллическое охрупчивание в оцинкованных легких конструкционных сталях.
Лежащая в основе изобретения идея применима не только для плоских изделий, таких как горячепрокатная полоса и холоднопрокатная полоса, но и для профилей и труб, а также изготовляемых из них конструктивных элементов. Формование может быть проведено всеми известными способами холодного, горячего и полугорячего формования, такими как гибка, глубокая вытяжка, обжатие, раскатывание и т.д., но, например, и известными формованием высоким внутренним давлением или отверждением с использованием пресс-форм. В соответствии с этим изготовление соответствующих изобретению градиентных материалов может происходить, например, по следующим технологическим схемам:
- холодное или горячее формование изделия, как, например, листовой заготовки в конструктивный элемент с последующим окислительным отжигом конструктивного элемента и последующим целенаправленным охлаждением для отверждения поверхности в результате преобразования обезуглероженной области в мартенсит;
- формование трубы высоким внутренним давлением при повышенной температуре, при которой происходит обезуглероживание поверхности, с последующим быстрым охлаждением (отверждение);
- формование трубы высоким внутренним давлением при температуре окружающего воздуха с последующим окислительным отжигом уже сформованного конструктивного элемента и последующим быстрым охлаждением (отверждение);
- отверждение изделия в пресс-форме с окислительным отжигом перед формованием; формование при повышенной температуре в аустенитном структурном состоянии и последующее быстрое охлаждение для мартенситного преобразования приповерхностных обезуглероженных областей;
- окислительный отжиг для формирования обезуглероженного слоя, например, листа с последующим целенаправленным охлаждением (без отверждения) с последующим холодным формованием;
- окислительный отжиг для формирования обезуглероженного слоя, например, листа с последующим целенаправленным охлаждением (без отверждения) с последующей холодной прокаткой для целенаправленного формирования отвержденного слоя над областью деформационного мартенсита;
- окислительный отжиг, например, листа с последующим целенаправленным охлаждением (отверждение) и непосредственным применением без дополнительного формующего воздействия;
- окислительный отжиг в рамках процесса горячей прокатки для формирования обезуглероженного слоя с последующей холодной прокаткой;
- окислительный отжиг в рамках процесса горячей прокатки для формирования обезуглероженного слоя с последующей холодной прокаткой и отжигом в окислительной атмосфере для дополнительного обезуглероживания;
- окислительный отжиг в рамках процесса горячей прокатки для формирования обезуглероженного слоя с последующей холодной прокаткой и отжигом в восстановительной или инертной атмосфере для уменьшения или наращивания обезуглероживания в корректирующем процессе.
Соответствующий изобретению метод в принципе подходит для всех аустенитных при температуре окружающего воздуха сплавов, но особенно для высоколегированных легких конструкционных сталей.
Соответствующий изобретению метод в первую очередь предоставляет выгодную возможность учитывать специальные требования к свойствам материалов готовых конструктивных элементов, поскольку позволяет целенаправленно формировать эти свойства в направлении толщины полосы.
Суммируя вышесказанное, из изобретения вытекают следующие преимущества:
- Формирование необходимых свойств материала в направлении толщины стенки простым обезуглероживающим отжигом с последующим отверждением или механическим формованием.
- Возможность целенаправленно оказывать влияние на:
- изнашивание/истирание/трибологию
- окалиностойкость
- устойчивость к коррозии
- пригодность к покрытию
- оклеиваемость
- электрические свойства
- свариваемость (например, точечной сваркой сопротивлением)
- термические свойства (биметалл)
- оптические свойства (внешний вид)
- демпфирование.
- Реализация комбинаций различных свойств поверхности и сердцевины материала.
Claims (18)
1. Способ изготовления изделий из аустенитной легкой конструкционной стали, имеющей состав в вес.%: С от 0,2 до ≤1,0, Аl от 0,05 до <15,0, Si от 0,05 до ≤6,0, Мn от 9,0 до <30,0, остальное - железо и неизбежные примеси с добавлением по необходимости Cr, Cu, В, Ti, Zr, V и Nb при Cr≤6,5, Cu≤4,0, Ti+Zr≤0,7, Nb+V≤0,5, В≤0,1, включающий формирование свойств материала в направлении толщины стенки изделия из упомянутой стали, при этом изделие подвергают обезуглероживающему отжигу в окислительной атмосфере с формированием в приповерхностных областях изделия ферритной или метастабильной аустенитной структуры, толщину слоя и свойства которой формируют путем регулирования температуры и времени выдержки при отжиге, а также газового состава и парциального давления атмосферы, в которой проводят отжиг, а для обеспечения градиентов свойств изделие подвергают последующему ускоренному охлаждению и/или холодному формованию.
2. Способ по п.1, отличающийся тем, что формование изделия производят до, во время или после отжига.
3. Способ по п.2, отличающийся тем, что производят горячее или холодное формование изделия.
4. Способ по п.3, отличающийся тем, что формование изделия производят горячей или холодной прокаткой.
5. Способ по п.4, отличающийся тем, что достигаемую в процессе нагрева перед горячей прокаткой и/или между пропусками горячей прокатки в окисляющей атмосфере отжига глубину обезуглероживания и степень обезуглероживания в изделии регулируют путем проведения последующего отжига в восстановительной или инертной атмосфере.
6. Способ по п.4, отличающийся тем, что глубину обезуглероживания и степень обезуглероживания регулируют путем повторного нагрева изделия между отдельными пропусками горячей прокатки.
7. Способ по п.3, отличающийся тем, что формование изделия в виде трубы производят внутренним высоким давлением.
8. Способ по п.3, отличающийся тем, что формование изделия производят глубокой вытяжкой.
9. Способ по п.3, отличающийся тем, что формование изделия производят прессованием.
10. Способ по п.3, отличающийся тем, что формование изделия производят прессованием с последующим ускоренным отверждением.
11. Способ по любому из пп 2-10, отличающийся тем, что при формовании изделия после отжига проводят ускоренное охлаждение во время формования.
12. Способ по п.1, отличающийся тем, что окислительной атмосферой при отжиге является окружающий воздух.
13. Способ по п.1, отличающийся тем, что окислительной атмосферой при отжиге является окружающий воздух, кислород или кислородосодержащие газы.
14. Изделие из аустенитной легкой конструкционной стали с изменяемыми в направлении толщины его стенки свойствами материала, отличающееся тем, что оно изготовлено способом по любому из пп.1-13.
15. Изделие по п.14, отличающееся тем, что оно имеет металлическое покрытие.
16. Изделие из аустенитной легкой конструкционной стали с изменяемыми в направлении толщины его стенки свойствами материала, содержащее в вес.%: С от 0,2 до ≤1,0, Аl от 0,05 до <15,0, Si от 0,05 до ≤6,0, Мn от 9,0 до <30,0, остальное - железо и неизбежные примеси с добавлением по необходимости Cr, Cu, В, Ti, Zr, V и Nb с Cr ≤ 6,5, Cu ≤ 4,0, Ti+Zr ≤ 0,7, Nb+V ≤ 0,5, В ≤ 0,1, отличающееся тем, что в поперечном сечении в направлении толщины стенки изделие имеет обезуглероженные слои.
17. Изделие по п.16, отличающееся тем, что оно имеет металлическое покрытие.
18. Изделие по п.16 или 17, отличающееся тем, что оно в обезуглероженном поверхностном слое имеет отвержденную структуру.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010011991.1 | 2010-03-16 | ||
DE102010011991 | 2010-03-16 | ||
DE102010034161.4 | 2010-08-10 | ||
DE102010034161.4A DE102010034161B4 (de) | 2010-03-16 | 2010-08-10 | Verfahren zur Herstellung von Werkstücken aus Leichtbaustahl mit über die Wanddicke einstellbaren Werkstoffeigenschaften |
PCT/DE2011/000128 WO2011113404A1 (de) | 2010-03-16 | 2011-02-10 | Verfahren zur herstellung von werkstücken aus leichtbaustahl mit über die wanddicke einstellbaren werkstoffeigenschaften |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2012143967A RU2012143967A (ru) | 2014-04-27 |
RU2544970C2 true RU2544970C2 (ru) | 2015-03-20 |
Family
ID=44585472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2012143967/02A RU2544970C2 (ru) | 2010-03-16 | 2011-02-10 | Способ изготовления изделий из легкой аустенитной конструкционной стали и изделие из легкой аустенитной конструкционной стали (варианты) |
Country Status (6)
Country | Link |
---|---|
US (1) | US9593392B2 (ru) |
EP (1) | EP2547800B1 (ru) |
KR (1) | KR101707019B1 (ru) |
DE (1) | DE102010034161B4 (ru) |
RU (1) | RU2544970C2 (ru) |
WO (1) | WO2011113404A1 (ru) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2631069C1 (ru) * | 2016-10-27 | 2017-09-18 | Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") | Способ получения листов из высокомарганцевой стали |
RU2643119C2 (ru) * | 2016-05-04 | 2018-01-30 | Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") | Способ деформационно-термической обработки высокомарганцевой стали |
RU2692151C1 (ru) * | 2017-12-28 | 2019-06-21 | Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") | Способ получения листов высокопрочных аустенитных марганцовистых сталей |
RU2696789C1 (ru) * | 2018-12-17 | 2019-08-06 | Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") | Способ получения листов высокомарганцевой стали с улучшенными механическими свойствами |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011121705A1 (de) | 2011-12-12 | 2013-06-13 | Salzgitter Flachstahl Gmbh | Schweißzusatz zum Lichtbogen- und Laserstrahlschweißen von Mischverbindungen aus austenitischem und ferritischem Stahl |
DE112013001144A5 (de) | 2012-02-25 | 2014-10-30 | Technische Universität Bergakademie Freiberg | Verfahren zur Herstellung hochfester Formteile aus hochkohlenstoff- und hochmanganhaltigem austenitischem Stahlguss mit TRIP/TWIP-Eigenschaften |
DE102013004905A1 (de) * | 2012-03-23 | 2013-09-26 | Salzgitter Flachstahl Gmbh | Zunderarmer Vergütungsstahl und Verfahren zur Herstellung eines zunderarmen Bauteils aus diesem Stahl |
DE102012006941B4 (de) | 2012-03-30 | 2013-10-17 | Salzgitter Flachstahl Gmbh | Verfahren zur Herstellung eines Bauteils aus Stahl durch Warmumformen |
DE102012106950A1 (de) | 2012-07-30 | 2014-01-30 | Benteler Defense Gmbh & Co. Kg | Panzerung für Fahrzeuge und Verwendung einer Panzerung |
RU2513507C1 (ru) * | 2013-03-05 | 2014-04-20 | Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт черной Металлургии им. И.П. Бардина | Способ производства высокопрочного градиентного материала |
US20140261918A1 (en) * | 2013-03-15 | 2014-09-18 | Exxonmobil Research And Engineering Company | Enhanced wear resistant steel and methods of making the same |
RU2631219C2 (ru) * | 2013-05-06 | 2017-09-19 | Зальцгиттер Флахшталь Гмбх | Способ изготовления деталей из легкой конструкционной стали и детали из легкой конструкционной стали |
DE102013108163B4 (de) | 2013-07-30 | 2017-02-23 | Benteler Defense Gmbh & Co. Kg | Verfahren zur Herstellung eines Panzerungsbauteils für ein Kraftfahrzeug |
KR101560940B1 (ko) * | 2013-12-24 | 2015-10-15 | 주식회사 포스코 | 강도와 연성이 우수한 경량강판 및 그 제조방법 |
EP3095889A1 (en) | 2015-05-22 | 2016-11-23 | Outokumpu Oyj | Method for manufacturing a component made of austenitic steel |
TR201808389T4 (tr) | 2015-07-16 | 2018-07-23 | Outokumpu Oy | Ostenitli twip veya trip/twip çeliği bileşeni üretimi için metod. |
DE102015117956A1 (de) * | 2015-10-21 | 2017-04-27 | Salzgitter Flachstahl Gmbh | Verbundrohr bestehend aus einem Trägerrohr und mindestens einem Schutzrohr und Verfahren zur Herstellung hierfür |
EP3173504A1 (en) | 2015-11-09 | 2017-05-31 | Outokumpu Oyj | Method for manufacturing an austenitic steel component and use of the component |
DE102016104800A1 (de) * | 2016-03-15 | 2017-09-21 | Salzgitter Flachstahl Gmbh | Verfahren zur Herstellung eines warmumgeformten Stahlbauteils und ein warmumgeformtes Stahlbauteil |
US10619223B2 (en) | 2016-04-28 | 2020-04-14 | GM Global Technology Operations LLC | Zinc-coated hot formed steel component with tailored property |
US10385415B2 (en) | 2016-04-28 | 2019-08-20 | GM Global Technology Operations LLC | Zinc-coated hot formed high strength steel part with through-thickness gradient microstructure |
US10288159B2 (en) | 2016-05-13 | 2019-05-14 | GM Global Technology Operations LLC | Integrated clutch systems for torque converters of vehicle powertrains |
US10240224B2 (en) | 2016-08-12 | 2019-03-26 | GM Global Technology Operations LLC | Steel alloy with tailored hardenability |
US10260121B2 (en) | 2017-02-07 | 2019-04-16 | GM Global Technology Operations LLC | Increasing steel impact toughness |
US10329639B2 (en) * | 2017-08-04 | 2019-06-25 | Gm Global Technology Operations Llc. | Multilayer steel and method of reducing liquid metal embrittlement |
CN107502818B (zh) * | 2017-08-08 | 2019-03-19 | 武钢集团昆明钢铁股份有限公司 | 一种高强低密度耐蚀特种锻件钢及其制备方法 |
DE102018102974A1 (de) * | 2018-02-09 | 2019-08-14 | Salzgitter Flachstahl Gmbh | Verfahren zur Herstellung eines Bauteils durch Warmumformen eines Vorproduktes aus manganhaltigem Stahl und ein warmumgeformtes Stahlbauteil |
CN112513310A (zh) | 2018-05-24 | 2021-03-16 | 通用汽车环球科技运作有限责任公司 | 改善压制硬化钢的强度和延性的方法 |
CN112534078A (zh) | 2018-06-19 | 2021-03-19 | 通用汽车环球科技运作有限责任公司 | 具有增强的机械性质的低密度压制硬化钢 |
CN111197145B (zh) | 2018-11-16 | 2021-12-28 | 通用汽车环球科技运作有限责任公司 | 钢合金工件和用于制造压制硬化钢合金部件的方法 |
US11530469B2 (en) | 2019-07-02 | 2022-12-20 | GM Global Technology Operations LLC | Press hardened steel with surface layered homogenous oxide after hot forming |
CN111349865A (zh) * | 2020-03-13 | 2020-06-30 | 燕山大学 | 一种含铝高强低密度钢及其制备方法和应用 |
CN115725905A (zh) * | 2021-08-27 | 2023-03-03 | 华为技术有限公司 | 轻质钢及其制备方法、钢结构件和电子设备 |
CN116791006A (zh) * | 2023-07-04 | 2023-09-22 | 江苏顺发电热材料有限公司 | 超高电阻率铁铬铝合金及制备方法 |
CN117845030B (zh) * | 2024-01-25 | 2024-09-17 | 燕山大学 | 一种Fe-Mn-Al-C系轻质钢变厚度轧制性能梯度分布方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1788758A1 (ru) * | 1988-06-17 | 1996-08-20 | И.В. Горынин | Способ получения листового проката из аустенитных марганцовистых сталей |
DE102004061284A1 (de) * | 2003-12-23 | 2005-07-28 | Salzgitter Flachstahl Gmbh | Verfahren zum Erzeugen von Warmbändern aus Leichtbaustahl |
RU2301838C2 (ru) * | 2002-11-19 | 2007-06-27 | ММФИкс ТЕКНОЛОДЖИЗ КОРПОРЕЙШН | Стали с пакетно-сетчатой мартенсит-аустенитной микроструктурой, подвергаемые холодной обработке |
RU2335358C2 (ru) * | 2005-03-05 | 2008-10-10 | Смс Демаг Аг | Способ получения стали для легких конструкций с высоким содержанием марганца |
RU2361931C2 (ru) * | 2005-01-21 | 2009-07-20 | АРСЕЛОР Франс | Способ изготовления листа из аустенитной железо-углерод-марганцевой стали с высоким сопротивлением замедленному трещинообразованию и лист, полученный таким способом |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3201230A (en) * | 1964-03-16 | 1965-08-17 | United States Steel Corp | Austenitic stainless steel |
DE2105218B2 (de) * | 1970-02-04 | 1974-09-26 | Nippon Kokan K.K., Tokio | Herstellung von feuerverzinktem Tiefziehstahl |
US4865662A (en) * | 1987-04-02 | 1989-09-12 | Ipsco Inc. | Aluminum-manganese-iron stainless steel alloy |
DE3904776A1 (de) | 1989-02-17 | 1990-08-23 | Ver Schmiedewerke Gmbh | Verfahren zur herstellung eines hochfesten und zaehen metallischen schichtverbundwerkstoffes |
JP2807566B2 (ja) * | 1991-12-30 | 1998-10-08 | ポハン アイアン アンド スチール カンパニー リミテッド | 優れた成形性、強度および溶接性を有するオーステナイト高マンガン鋼、並びにその製造方法 |
KR970043162A (ko) * | 1995-12-30 | 1997-07-26 | 김종진 | 고망간강 냉연강판의 소둔열처리 방법 및 산세방법 |
AU5651398A (en) | 1996-12-13 | 1998-07-03 | Mannesmann Aktiengesellschaft | Process for producing internally plated pipes |
DE19651836A1 (de) | 1996-12-13 | 1998-06-18 | Buehler Ag | Speisemodul für einen Walzenstuhl |
DE19900199A1 (de) | 1999-01-06 | 2000-07-13 | Ralf Uebachs | Leichtbaustahllegierung |
DE10124594B4 (de) | 2001-05-21 | 2006-10-12 | Thyssenkrupp Steel Ag | Verfahren zum Herstellen eines Verbundbandes aus Stahl durch Walzplattieren eines direkt gegossenen Stahlbandes sowie Verwendung eines solchen Verbundbandes |
DE10128544C2 (de) * | 2001-06-13 | 2003-06-05 | Thyssenkrupp Stahl Ag | Höherfestes, kaltumformbares Stahlblech, Verfahren zu seiner Herstellung und Verwendung eines solchen Blechs |
JP4324072B2 (ja) * | 2004-10-21 | 2009-09-02 | 新日本製鐵株式会社 | 延性に優れた軽量高強度鋼とその製造方法 |
CN101065503A (zh) * | 2004-11-03 | 2007-10-31 | 蒂森克虏伯钢铁股份公司 | 具有twip性能的高强度钢带或薄钢板以及通过钢带连铸制备它的方法 |
DE202005021771U1 (de) | 2005-12-20 | 2010-02-18 | Salzgitter Flachstahl Gmbh | Umformbarer Leichtbaustahl |
KR100742823B1 (ko) * | 2005-12-26 | 2007-07-25 | 주식회사 포스코 | 표면품질 및 도금성이 우수한 고망간 강판 및 이를 이용한도금강판 및 그 제조방법 |
EP1878811A1 (en) * | 2006-07-11 | 2008-01-16 | ARCELOR France | Process for manufacturing iron-carbon-manganese austenitic steel sheet with excellent resistance to delayed cracking, and sheet thus produced |
DE102006054300A1 (de) | 2006-11-14 | 2008-05-15 | Salzgitter Flachstahl Gmbh | Höherfester Dualphasenstahl mit ausgezeichneten Umformeigenschaften |
KR100851158B1 (ko) * | 2006-12-27 | 2008-08-08 | 주식회사 포스코 | 충돌특성이 우수한 고망간형 고강도 강판 및 그 제조방법 |
DE102007039013B3 (de) | 2007-08-17 | 2008-08-14 | Thyssenkrupp Steel Ag | Verfahren zum Herstellen eines oberflächenentkohlten Warmbands |
-
2010
- 2010-08-10 DE DE102010034161.4A patent/DE102010034161B4/de not_active Expired - Fee Related
-
2011
- 2011-02-10 WO PCT/DE2011/000128 patent/WO2011113404A1/de active Application Filing
- 2011-02-10 US US13/634,980 patent/US9593392B2/en not_active Expired - Fee Related
- 2011-02-10 RU RU2012143967/02A patent/RU2544970C2/ru active
- 2011-02-10 KR KR1020127025420A patent/KR101707019B1/ko active Active
- 2011-02-10 EP EP11715650.5A patent/EP2547800B1/de active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1788758A1 (ru) * | 1988-06-17 | 1996-08-20 | И.В. Горынин | Способ получения листового проката из аустенитных марганцовистых сталей |
RU2301838C2 (ru) * | 2002-11-19 | 2007-06-27 | ММФИкс ТЕКНОЛОДЖИЗ КОРПОРЕЙШН | Стали с пакетно-сетчатой мартенсит-аустенитной микроструктурой, подвергаемые холодной обработке |
DE102004061284A1 (de) * | 2003-12-23 | 2005-07-28 | Salzgitter Flachstahl Gmbh | Verfahren zum Erzeugen von Warmbändern aus Leichtbaustahl |
RU2361931C2 (ru) * | 2005-01-21 | 2009-07-20 | АРСЕЛОР Франс | Способ изготовления листа из аустенитной железо-углерод-марганцевой стали с высоким сопротивлением замедленному трещинообразованию и лист, полученный таким способом |
RU2335358C2 (ru) * | 2005-03-05 | 2008-10-10 | Смс Демаг Аг | Способ получения стали для легких конструкций с высоким содержанием марганца |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2643119C2 (ru) * | 2016-05-04 | 2018-01-30 | Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") | Способ деформационно-термической обработки высокомарганцевой стали |
RU2631069C1 (ru) * | 2016-10-27 | 2017-09-18 | Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") | Способ получения листов из высокомарганцевой стали |
RU2692151C1 (ru) * | 2017-12-28 | 2019-06-21 | Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") | Способ получения листов высокопрочных аустенитных марганцовистых сталей |
RU2696789C1 (ru) * | 2018-12-17 | 2019-08-06 | Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") | Способ получения листов высокомарганцевой стали с улучшенными механическими свойствами |
Also Published As
Publication number | Publication date |
---|---|
KR101707019B1 (ko) | 2017-02-15 |
EP2547800B1 (de) | 2018-01-03 |
EP2547800A1 (de) | 2013-01-23 |
WO2011113404A1 (de) | 2011-09-22 |
DE102010034161B4 (de) | 2014-01-02 |
US20130048150A1 (en) | 2013-02-28 |
US9593392B2 (en) | 2017-03-14 |
RU2012143967A (ru) | 2014-04-27 |
KR20130006461A (ko) | 2013-01-16 |
DE102010034161A1 (de) | 2011-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2544970C2 (ru) | Способ изготовления изделий из легкой аустенитной конструкционной стали и изделие из легкой аустенитной конструкционной стали (варианты) | |
US20210214816A1 (en) | Method for fabricating steel sheet for press hardening, and parts obtained by this method | |
JP6359155B2 (ja) | プレス硬化した被覆鋼製部品を製造するための方法および該部品の製造を可能にするプレコート鋼板 | |
CN110218845B (zh) | 用于制造高强度钢产品的方法和由此获得的钢产品 | |
CA2762935C (en) | High-strength galvannealed steel sheet having excellent formability and fatigue resistance and method for manufacturing the same | |
KR101464844B1 (ko) | 가공성 및 내충격 특성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법 | |
CA2832894C (en) | Steel sheet for hot stamping member and method of producing same | |
JP5586008B2 (ja) | 強度が非常に高い最終製品の熱機械的成形方法およびその方法により製造された製品 | |
JP4589880B2 (ja) | 成形性と穴拡げ性に優れた高強度溶融亜鉛めっき鋼板と高強度合金化溶融亜鉛めっき鋼板及び高強度溶融亜鉛めっき鋼板の製造方法並びに高強度合金化溶融亜鉛めっき鋼板の製造方法 | |
KR102196079B1 (ko) | 실리콘을 함유하는 750 MPa의 최소 인장 강도 및 개선된 특성을 갖는 마이크로-합금된 고강도 다상 강 및 상기 강으로부터 스트립을 제조하기 위한 방법 | |
KR102728874B1 (ko) | 고강도 강판 및 그 제조 방법 | |
JP4559969B2 (ja) | 加工用熱延鋼板およびその製造方法 | |
CN114026261B (zh) | 钢板 | |
EP2835440A1 (en) | Galvannealed hot-rolled steel sheet and method for manufacturing same | |
JP2009503267A (ja) | 優れた延性を有する高強度鋼板を製造する方法およびこれにより製造された鋼板 | |
JP2005082841A (ja) | Bh性と伸びフランジ性を兼ね備えた熱延鋼板およびその製造方法 | |
WO2022172540A1 (ja) | 高強度鋼板およびその製造方法 | |
KR20240170848A (ko) | 구멍 확장비가 높은 열간 압연된 강 시트 및 이의 제조 방법 | |
KR101406444B1 (ko) | 연신율 및 굽힘가공성이 우수한 초고강도 냉연강판 및 이의 제조방법 | |
EP2740813A1 (en) | Hot-dip galvanized steel sheet and production method therefor | |
JP4670135B2 (ja) | 歪時効硬化特性に優れた熱延鋼板の製造方法 | |
JP5392223B2 (ja) | 歪時効硬化特性に優れた熱延鋼板およびその製造方法 | |
KR20240098911A (ko) | 냉연강판 및 그 제조방법 | |
KR20220149776A (ko) | 강 물품 및 그 제조 방법 |