RU2543009C1 - Способ разработки газонефтяной залежи - Google Patents
Способ разработки газонефтяной залежи Download PDFInfo
- Publication number
- RU2543009C1 RU2543009C1 RU2014116393/03A RU2014116393A RU2543009C1 RU 2543009 C1 RU2543009 C1 RU 2543009C1 RU 2014116393/03 A RU2014116393/03 A RU 2014116393/03A RU 2014116393 A RU2014116393 A RU 2014116393A RU 2543009 C1 RU2543009 C1 RU 2543009C1
- Authority
- RU
- Russia
- Prior art keywords
- oil
- gas
- water
- wells
- zone
- Prior art date
Links
Images
Landscapes
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Изобретение относится к разработке газонефтяной залежи с осложненными условиями и может быть использовано при добыче нефти и газа на залежи, включающей газовые пласты с нефтяной оторочкой, содержащей высоковязкую нефть большой плотности. Технический результат - повышение эффективности добычи нефти за счет самостоятельного параллельного отбора продукции продуктивного пласта, т.е. недопущения прорыва газа в скважины, добывающие нефть, и наоборот - нефти в скважины, добывающие газ. На газонефтяной залежи, содержащей газовые пласты с нефтяной оторочкой, содержащей высоковязкую нефть, бурят строго друг под другом горизонтальные скважины. Часть скважин расположена над зоной газонефтяного контакта, часть - под зоной газонефтяного контакта. В верхние горизонтальные скважины нагнетают воду, которая под действием сил гравитации опускается в пласте вниз - до зоны нефтяной оторочки. После этого выдерживают паузу, в течение которой обеспечивается контакт закачанной воды с нефтью с образованием слоя водонефтяной эмульсии, имеющей повышенную вязкость, и увеличение вязкости на газонефтяном контакте уменьшает проводимость системы по вертикали. Этим достигается надежная изоляция нефтяной оторочки от газовой шапки в окрестности рассматриваемых скважин. Затем в те же, верхние, скважины закачивают гидрофобную жидкость - она также опускается вниз и, распределяясь в объеме пласта, создает над водонефтяной эмульсией еще один слой, который препятствует продвижению этой эмульсии вверх - в газовую часть пласта. Таким образом, закачка гидрофобной жидкости позволяет создать зону, непроницаемую для водонефтяной эмульсии, а последняя, в свою очередь, предотвращает попадание нефти в газовую шапку. После этого приступают к эксплуатации газовой шапки через верхние скважины, а нефтяной оторочки - через нижние. 2 з.п. ф-лы, 4 ил.
Description
Изобретение относится к скважинной разработке газонефтяной залежи с осложненными условиями и может быть использовано при добыче нефти и газа на залежи, включающей газовые пласты с нефтяной оторочкой, содержащей высоковязкую нефть большой плотности.
Известен способ разработки газонефтяной залежи, включающий бурение нагнетательных и добывающих скважин, нагнетание воды и создание барьерного заводнения, т.е. изоляции частей пласта, содержащих газ и нефть, после чего осуществляют раздельную эксплуатацию части пласта, содержащей газ, и части пласта, содержащей нефть, через соответствующие скважины. Недостатком данного способа является низкий дебит скважин, продуцирующих высоковязкую нефть, и возможность образования водяных «языков» с последующим прорывом воды в нефтяные скважины, приводящим к нерентабельности их эксплуатации [1].
Известен также способ разработки газонефтяной залежи с использованием горизонтальных скважин, причем одна из них расположена выше газонефтяного контакта, а другая - ниже водонефтяного контакта (т.е. ниже газонефтяного контакта) и нагнетанием воды для образования барьера над газонефтяным контактом [2]. Недостатком данного способа является возможность разрушения водяного барьера, разделяющего пласт на две области, содержащие газ и нефть.
Техническим результатом настоящего изобретения является повышение эффективности добычи нефти за счет исключения образования в призабойной зоне газонефтяной эмульсии, в обеспечении самостоятельного параллельного отбора продукции продуктивного пласта, т.е. недопущении прорыва газа в скважины, добывающие нефть, и наоборот - нефти в скважины, добывающие газ. Способ поясняется следующими чертежами:
Фиг. 1 - распределение газонасыщенности вдоль оси скважины перед началом закачки водонефтяной эмульсии.
Фиг. 2 - распределение газонасыщенности вдоль оси скважины через 10 лет закачки водонефтяной эмульсии.
Фиг. 3 - поперечный разрез трехмерного куба распределения газонасыщенности перед началом закачки водонефтяной эмульсии.
Фиг. 4 - поперечный разрез трехмерного куба распределения газонасыщенности через 10 лет закачки водонефтяной эмульсии.
На всех фигурах: 1 - нефтяная (нефтедобывающая) скважина, 2 - газовая (газодобывающая) скважина, 3 - газонасыщенная часть пласта, 4 - нефтенасыщенная часть пласта, 5 - водонасыщенная часть пласта.
Сущность изобретения заключается в следующем.
На газонефтяной залежи, содержащей газовые пласты с нефтяной оторочкой, содержащей нефть вязкостью более 180 сП и плотностью более 900 кг/м3, предусматривают бурение горизонтальных протяженных скважин. При этом горизонтальные скважины располагаются строго друг под другом: параллельными (при этом, если скважины были перфорированы, зоны перфорации верхней и нижней горизонтальных скважин могут располагаться в шахматном порядке) или скрещенными. Часть скважин будет расположена над зоной газонефтяного контакта, нижняя - под зоной газонефтяного контакта. В верхние горизонтальные скважины нагнетают воду, которая под действием сил гравитации опускается в пласте вниз - до зоны нефтяной оторочки. После этого выдерживают паузу, в течение которой обеспечивается контакт закачанной воды с нефтью с образованием слоя водонефтяной эмульсии, имеющей повышенную вязкость - через такой слой сложно проникнуть газу и, кроме того, увеличение вязкости на газонефтяном контакте уменьшает проводимость системы по вертикали. Этим достигается довольно надежная изоляция нефтяной оторочки от газовой шапки в окрестности рассматриваемых скважин. Затем в те же, верхние, скважины закачивают гидрофобную жидкость - она также опускается вниз и, распределяясь в объеме пласта, создает над водонефтяной эмульсией еще один слой, который препятствует продвижению этой эмульсии вверх - в газовую часть пласта.
Таким образом, закачка гидрофобной жидкости позволяет создать зону, непроницаемую для водонефтяной эмульсии, а последняя, в свою очередь, предотвращает попадание нефти в газовую шапку. Этим обеспечивается достижение технического результата изобретения.
После этого приступают к эксплуатации газовой шапки через верхние скважины, а нефтяной оторочки - через нижние (позиции на чертежах 1 и 2).
Объемы воды и гидрофобной жидкости определяются по формуле
Q=A*h*ε*k1*k2,
где Q - объем воды или гидрофобной жидкости для закачки, м3;
A - площадь газонефтяного контакта, м2;
h - предполагаемая толщина слоя водонефтяной эмульсии или слоя гидрофобной жидкости, м;
ε - пористость продуктивного пласта в зоне водогазового контакта, безразмерная величина;
k1 - безразмерный эмпирический коэффициент, учитывающий неоднородность пласта в зоне водогазового контакта; изменяется от 1,2 до 4,5;
k2 - безразмерный эмпирический коэффициент, учитывающий неравномерность распределения гидрофобной жидкости по площади газонефтяного контакта; изменяется от 2 до 5. В качестве гидрофобной жидкости могут использоваться гидрофобные эмульсии (патенты на изобретение №№: 2241830, №: 2281385, №2257469), а также водный раствор Al2(SO4)3 и др.
Для контроля над процессом перемещения вниз нагнетаемой воды за счет уменьшения гравитационных сил в нее можно добавлять любой газ (предпочтительно, азот или, например, углекислый газ). При этом удельный вес уменьшается, и скорость фильтрации воды вниз будет снижаться.
Для увеличения прочности слоя водонефтяной эмульсии в закачиваемую воду может добавляться поверхностно-активное вещество (ПАВ), в качестве которого могут использоваться альфа-олефин сульфонат натрия (AOS), лауриламидопропил бетаин (LAB-35), лауретсульфат натрия (SLES), кокамидопропиламин оксид (CAO-30), линейная алкилбензоловая сульфокислота (LABSA), биоПАВ (США №440908), биоПАВ УНИ-РЕМ-Э-7. Использование ПАВ повышает стабильность водонефтяной эмульсии и способствует более полному вытеснению газовых пузырьков из малых пор с замещением их водонефтяной эмульсией, что повышает охват залежи эффектом от применения технологии.
Расположение зон перфорации (если она была произведена) в шахматном порядке при параллельном размещении скважин обеспечивает исключение или уменьшение размеров нефтяных «линз» с высокой вязкостью, поскольку траектория движения границы раздела воды и нефти приобретает горизонтальную составляющую, способствующую вытеснению нефти.
Способ реализуют следующим образом.
В верхнюю горизонтальную скважину нагнетают порцию воды, которая под действием сил гравитации начинает опускаться в пласте вниз до зоны нефтяной оторочки, после чего выдерживают паузу, в течение которой происходит контакт закачанной воды с нефтью с образованием слоя водонефтяной эмульсии повышенной вязкости, который изолирует друг от друга части пласта, заполненные газом и нефтью, с последующей закачкой гидрофобной жидкости в объеме, исключающем проникновение водонефтяной эмульсии и нефти в газовую зону пласта, после чего начинают раздельную эксплуатацию части пласта, содержащей газ, и части пласта, содержащей нефть, через верхнюю и нижнюю горизонтальные скважины соответственно.
Предлагаемый способ разработки нефтяных месторождений опробован на цифровых моделях с условиями, идентичными Русскому нефтегазовому месторождению.
Разрабатываемая газовая залежь с нефтяной оторочкой имеет следующие характеристики: залежь имеет сложное геологическое строение, расположена на глубине 660-920 м, пластовое давление 7.9-9.4 МПа, пластовая температура 13.5-22°C, оторочка высоковязкой нефти ~80 м, обширная метановая газовая шапка, проницаемость 3-2500 мД, нефтенасыщенность 60-85%, плотность пластовой нефти 0,941 г/см3, вязкость нефти ~180 сП, пористость - 32%. ГНК условно принят - 792 м.
Смоделированы три сценария реализации технологии - с различными составами гидрофобной жидкости и разным объемом воды на первой стадии:
1) закачка воды в верхнюю горизонтальную скважину в объеме 982800 м3 с последующей выдержкой в течение 72 часов, после чего была закачана гидрофобная жидкость в объеме 196560 м3 с последующей выдержкой 14 часов. Данный объем жидкостей согласно расчету достаточен для формирования слоев водонефтяной эмульсии и гидрофобной жидкости, препятствующих проникновению газа в нефтяную часть пласта и нефти - в газовую. В качестве гидрофобной жидкости использовался следующий состав эмульсионной композиции: эмульгатор ЯЛАН-Э2 - 3931 м3; дизельное топливо - 78624 м3; минерализованная вода, плотностью 1200 кг/м3 - 114005 м3;
2) закачка воды в верхнюю горизонтальную скважину в объеме 1097460 м3 с последующей выдержкой в течение 72 часов, после чего была закачана гидрофобная жидкость в объеме 219492 м3 с последующей выдержкой 5 часов. Данный объем жидкостей согласно расчету достаточен для формирования слоев водонефтяной эмульсии и гидрофобной жидкости, препятствующих проникновению газа в нефтяную часть пласта и нефти - в газовую. В качестве гидрофобной жидкости в скважину закачали жидкость, состоящую из 43898 м3 легкой нефти, 166814 м3 минерализованной воды и 8780 м3 НЕФТЕНОЛа (углеводородный раствор сложных эфиров олеиновой, линоленовой, а также смоляных кислот и триэтаноламина);
3) закачка воды в верхнюю горизонтальную скважину в объеме 1228500 м3 с последующей выдержкой в течение 72 часов, после чего была закачана гидрофобная жидкость в объеме 250000 м3 с последующей выдержкой 48 часов. Данный объем жидкостей согласно расчету достаточен для формирования слоев водонефтяной эмульсии и гидрофобной жидкости, препятствующих проникновению газа в нефтяную часть пласта и нефти - в газовую. В качестве гидрофобной жидкости моделировался 20%-ный водный раствор Al2(SO4)3.
Объем гидрофобной жидкости для закачки в пласт определялся по ранее приведенной формуле
Q=A*h*ε*k1*k2,
где Q - объем воды или гидрофобной жидкости для закачки, м3;
A - площадь газонефтяного контакта: в рассматриваемом примере определялась с использованием геологических карт месторождения графическим методом, равна 1300000 м2;
h - предполагаемая толщина слоя водонефтяной эмульсии или слоя гидрофобной жидкости: в рассматриваемом примере принята равной 0,5 м;
ε - пористость продуктивного пласта в зоне водогазового контакта: для Русского месторождения определена по результатам анализа керна и равна 0,3;
k1 - безразмерный эмпирический коэффициент, учитывающий неоднородность пласта в зоне водогазового контакта; изменяется от 1,2 до 4,5. В рассматриваемом примере на основе сопоставления результатов анализа керна по разным частям Русского месторождения принят равным 2,1.
k2 - безразмерный эмпирический коэффициент, учитывающий неравномерность распределения гидрофобной жидкости по площади газонефтяного контакта; изменяется от 2 до 5. В данном примере для разных сценариев величина переменная, зависящая от конкретных свойств гидрофобной смеси (жидкости), принят равным 2,4 в сценарии 1; 2,68 - в сценарии 2; 3,0 - в сценарии 3.
После этого начали эксплуатацию газовой шапки и нефтяной оторочки. При этом перемещения водонефтяного контакта и образования газовых «языков» на протяжении нескольких лет обнаружено не было (в пределах погрешности измерения). Газовый фактор в нефтяных скважинах соответствовал исходному газосодержанию нефти, а в продукции газовых скважин нефть отсутствовала, что свидетельствовало о достаточном количестве закачанной воды и гидрофобной жидкости.
Положение водонефтяного контакта в модели контролировалось через куб нефтенасыщенности; на практике это осуществимо через вертикальные контрольные пьезометрические скважины, добыча или закачка через которые не ведется.
Таким образом, заявленный технический результат, заключающийся в:
а) повышении коэффициента извлечения нефти за счет предотвращения прорыва газа в нефтяные скважины и образования в призабойной зоне газонефтяной эмульсии,
б) обеспечении параллельной независимой эксплуатации нефтяной оторочки и газовой шапки при недопущении прорыва газа в нефтяную часть пласта и нефти в газовую,
реализуется в полной мере.
Claims (3)
1. Способ разработки газонефтяной залежи, включающей газовые пласты с нефтяной оторочкой, содержащей высоковязкую нефть большой плотности, предусматривающий бурение добывающих и нагнетательных скважин и отбор жидкости, отличающийся тем, что дополнительно бурят пары расположенных друг под другом горизонтальных скважин, первая скважина в паре располагается над зоной нефтегазового контакта, а вторая - ниже него, при этом зоны перфорации (если перфорация проводилась) верхней и нижней горизонтальных скважин при параллельном расположении располагаются в шахматном порядке; затем в первую скважину нагнетают порцию воды, которая под действием сил гравитации опускается в пласте вниз до зоны нефтяной оторочки, для чего выдерживают паузу, в течение которой обеспечивается контакт закачанной воды с нефтью с образованием слоя водонефтяной эмульсии повышенной вязкости, - этот слой изолирует части пласта, заполненные газом и нефтью, друг от друга, после чего в верхнюю скважину закачивают гидрофобную жидкость в объеме, исключающем проникновение нефти в газовую зону пласта, при этом объем воды или гидрофобной жидкости определяют по формуле
Q=A*h*ε*k1*k2,
где Q - объем воды или гидрофобной жидкости для закачки, м3;
A - площадь газонефтяного контакта, м2;
h - предполагаемая толщина слоя водонефтяной эмульсии или слоя гидрофобной жидкости, м;
ε - пористость продуктивного пласта в зоне водогазового контакта, безразмерная величина;
k1 - безразмерный эмпирический коэффициент, учитывающий неоднородность пласта в зоне водогазового контакта; изменяется от 1,2 до 4,5;
k2 - безразмерный эмпирический коэффициент, учитывающий неравномерность распределения гидрофобной жидкости по площади газонефтяного контакта; изменяется от 2 до 5.
Q=A*h*ε*k1*k2,
где Q - объем воды или гидрофобной жидкости для закачки, м3;
A - площадь газонефтяного контакта, м2;
h - предполагаемая толщина слоя водонефтяной эмульсии или слоя гидрофобной жидкости, м;
ε - пористость продуктивного пласта в зоне водогазового контакта, безразмерная величина;
k1 - безразмерный эмпирический коэффициент, учитывающий неоднородность пласта в зоне водогазового контакта; изменяется от 1,2 до 4,5;
k2 - безразмерный эмпирический коэффициент, учитывающий неравномерность распределения гидрофобной жидкости по площади газонефтяного контакта; изменяется от 2 до 5.
2. Способ по п. 1, отличающийся тем, что в закачиваемую воду добавляют любой газ (предпочтительно, азот или, например, углекислый газ).
3. Способ по п. 1, отличающийся тем, что в воду добавляется поверхностно-активное вещество (ПАВ).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014116393/03A RU2543009C1 (ru) | 2014-04-23 | 2014-04-23 | Способ разработки газонефтяной залежи |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014116393/03A RU2543009C1 (ru) | 2014-04-23 | 2014-04-23 | Способ разработки газонефтяной залежи |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2543009C1 true RU2543009C1 (ru) | 2015-02-27 |
Family
ID=53290029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014116393/03A RU2543009C1 (ru) | 2014-04-23 | 2014-04-23 | Способ разработки газонефтяной залежи |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2543009C1 (ru) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2626500C1 (ru) * | 2016-05-31 | 2017-07-28 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки залежи битуминозной нефти из горизонтальной скважины |
RU2626497C1 (ru) * | 2016-05-31 | 2017-07-28 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки залежи битуминозной нефти из горизонтальной скважины |
RU2627795C1 (ru) * | 2016-06-22 | 2017-08-11 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки залежи битуминозной нефти |
RU2630330C1 (ru) * | 2016-07-26 | 2017-09-07 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки залежи битуминозной нефти |
RU2669967C1 (ru) * | 2017-12-05 | 2018-10-17 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки залежи битуминозной нефти из горизонтальной скважины |
RU2669968C1 (ru) * | 2017-12-05 | 2018-10-17 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки залежи битуминозной нефти из горизонтальной скважины |
RU2731302C1 (ru) * | 2019-07-02 | 2020-09-01 | Общество с ограниченной ответственностью Многопрофильная Компания "ХимСервисИнжиниринг" ООО МПК "ХимСервисИнжиниринг" | Состав для обработки призабойной зоны карбонатного коллектора |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3837399A (en) * | 1973-05-04 | 1974-09-24 | Texaco Inc | Combined multiple solvent miscible flooding water injection technique for use in petroleum formations |
FR2631380A1 (fr) * | 1988-05-11 | 1989-11-17 | Marathon Oil Co | Procede de recuperation de petrole en utilisant une modification cyclique de la mouillabilite |
US5123488A (en) * | 1991-06-24 | 1992-06-23 | Mobil Oil Corporation | Method for improved displacement efficiency in horizontal wells during enhanced oil recovery |
RU2439308C1 (ru) * | 2010-06-11 | 2012-01-10 | Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - Газпром ВНИИГАЗ" | Способ разработки нефтегазоконденсатного месторождения |
-
2014
- 2014-04-23 RU RU2014116393/03A patent/RU2543009C1/ru not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3837399A (en) * | 1973-05-04 | 1974-09-24 | Texaco Inc | Combined multiple solvent miscible flooding water injection technique for use in petroleum formations |
FR2631380A1 (fr) * | 1988-05-11 | 1989-11-17 | Marathon Oil Co | Procede de recuperation de petrole en utilisant une modification cyclique de la mouillabilite |
US5123488A (en) * | 1991-06-24 | 1992-06-23 | Mobil Oil Corporation | Method for improved displacement efficiency in horizontal wells during enhanced oil recovery |
RU2439308C1 (ru) * | 2010-06-11 | 2012-01-10 | Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - Газпром ВНИИГАЗ" | Способ разработки нефтегазоконденсатного месторождения |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2626500C1 (ru) * | 2016-05-31 | 2017-07-28 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки залежи битуминозной нефти из горизонтальной скважины |
RU2626497C1 (ru) * | 2016-05-31 | 2017-07-28 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки залежи битуминозной нефти из горизонтальной скважины |
RU2627795C1 (ru) * | 2016-06-22 | 2017-08-11 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки залежи битуминозной нефти |
RU2630330C1 (ru) * | 2016-07-26 | 2017-09-07 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки залежи битуминозной нефти |
RU2669967C1 (ru) * | 2017-12-05 | 2018-10-17 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки залежи битуминозной нефти из горизонтальной скважины |
RU2669968C1 (ru) * | 2017-12-05 | 2018-10-17 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки залежи битуминозной нефти из горизонтальной скважины |
RU2731302C1 (ru) * | 2019-07-02 | 2020-09-01 | Общество с ограниченной ответственностью Многопрофильная Компания "ХимСервисИнжиниринг" ООО МПК "ХимСервисИнжиниринг" | Состав для обработки призабойной зоны карбонатного коллектора |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2543009C1 (ru) | Способ разработки газонефтяной залежи | |
Pei et al. | Experimental study of nanoparticle and surfactant stabilized emulsion flooding to enhance heavy oil recovery | |
Riazi et al. | Experimental study of pore-scale mechanisms of carbonated water injection | |
Pei et al. | Potential of alkaline flooding to enhance heavy oil recovery through water-in-oil emulsification | |
Sharma et al. | The design and execution of an alkaline/surfactant/polymer pilot test | |
Jing et al. | Experiments on water flooding in fractured-vuggy cells in fractured-vuggy reservoirs | |
CN105940080A (zh) | 用于提高原油产量的增产方法和系统 | |
Jamaloei | Chemical flooding in naturally fractured reservoirs: fundamental aspects and field-scale practices | |
Shabib-Asl et al. | Comprehensive review of foam application during foam assisted water alternating gas (FAWAG) method | |
RU2326234C1 (ru) | Способ разработки нефтяного месторождения | |
EP2431567A2 (en) | Methods for producing oil and/or gas | |
Hawez et al. | Enhanced oil recovery by CO 2 injection in carbonate reservoirs | |
RU2550642C1 (ru) | Способ разработки нефтяной залежи горизонтальными скважинами | |
RU2597305C1 (ru) | Способ разработки нефтяной залежи в карбонатных коллекторах | |
RU2695906C1 (ru) | Способ разработки слабопроницаемой нефтяной залежи с применением горизонтальных скважин и водогазового воздействия | |
RU2513962C1 (ru) | Способ разработки нефтяной залежи | |
Wei et al. | A Systematical Review of the Largest Alkali-Surfactant-Polymer Flood Project in the World: From Laboratory to Pilots and Field Application | |
RU2731243C2 (ru) | Способ разработки слабопроницаемой нефтяной залежи с применением раздельной закачки воды и газа | |
Enge | The effect of brine composition and rock type on oil recovery by the use of combined low-salinity waterflooding and surfactant flooding: a literature review and experimental study | |
Schramm et al. | Foams in enhancing petroleum recovery | |
RU2600255C1 (ru) | Способ доразработки нефтяной залежи | |
RU2326235C1 (ru) | Способ разработки нефтяной залежи | |
RU2242594C1 (ru) | Способ разработки литологически экранированной нефтенасыщенной линзы одной скважиной | |
Kwelle | Experimental studies on resistance to fluid displacement in single pores | |
RU2732746C1 (ru) | Способ разработки мощной слабопроницаемой нефтяной залежи с применением закачки воды и газа |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PD4A | Correction of name of patent owner | ||
PC41 | Official registration of the transfer of exclusive right |
Effective date: 20180425 |
|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20180424 |