RU2435049C1 - Nuclear turboprop gas turbine engine - Google Patents
Nuclear turboprop gas turbine engine Download PDFInfo
- Publication number
- RU2435049C1 RU2435049C1 RU2010111080/06A RU2010111080A RU2435049C1 RU 2435049 C1 RU2435049 C1 RU 2435049C1 RU 2010111080/06 A RU2010111080/06 A RU 2010111080/06A RU 2010111080 A RU2010111080 A RU 2010111080A RU 2435049 C1 RU2435049 C1 RU 2435049C1
- Authority
- RU
- Russia
- Prior art keywords
- turbine
- rotor
- engine
- compressor
- pressure turbine
- Prior art date
Links
Images
Landscapes
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
Изобретение относится к двигателестроению, в том числе к авиационным и стационарным двигателям, конкретно к турбовинтовым двигателям - ТВД, в которых применен ядерный реактор.The invention relates to engine building, including aircraft and stationary engines, in particular to turboprop engines - HPTs in which a nuclear reactor is used.
Известен авиационный комбинированный двигатель по заявке РФ на изобретение №2002115896, содержащий ГТД и ракетный двигатель.Known aircraft combined engine according to the application of the Russian Federation for invention No. 2002115896, containing a gas turbine engine and a rocket engine.
Недостаток - очень большой расход топлива, потребляемый ракетным двигателем.The disadvantage is the very high fuel consumption consumed by the rocket engine.
Известен авиационный ГТД по патенту РФ №2211935, содержащий компрессор, камеру сгорания, турбину и реактивное сопло.Known aviation gas turbine engine according to the patent of the Russian Federation No. 2211935, containing a compressor, a combustion chamber, a turbine and a jet nozzle.
Недостаток - низкий кпд и как следствие большой удельный расход топлива, свойственный турбореактивным двигателям по сравнению с поршневыми.The disadvantage is the low efficiency and, as a consequence, the high specific fuel consumption inherent in turbojet engines compared to piston engines.
Недостатки этого двигателя: очень маленькая мощность электрических машин, связанная с тем, что они размещены на малом диаметре и имеют по одной ступени. Кроме того, возникают проблемы с охлаждение обмоток статора, размещенных внутри двигателя. Эта конструкция применима для использования электрической машины в качестве стартера или в качестве вспомогательного электрогенератора для питания агрегатов газотурбинного двигателя и самолета.The disadvantages of this engine: the very small power of electric machines, due to the fact that they are placed on a small diameter and have one step. In addition, there are problems with cooling the stator windings located inside the motor. This design is applicable for using an electric machine as a starter or as an auxiliary electric generator to power the units of a gas turbine engine and aircraft.
Известен турбовинтовой газотурбинный двигатель по патенту РФ №2334892, прототип, который содержит турбовинтовой газотурбинный двигатель с ядерной силовой установкой, содержащий винт, воздухозаборник, компрессор, камеру сгорания, турбину высокого давления, установленный за турбиной высокого давления двигатель Стерлинга и реактивное сопло.Known turboprop gas turbine engine according to the patent of the Russian Federation No. 2334892, a prototype that contains a turboprop gas turbine engine with a nuclear power plant, containing a screw, an air intake, a compressor, a combustion chamber, a high pressure turbine, a Sterling engine and a jet nozzle installed behind the high pressure turbine.
Недостатками этого двигателя являются его плохая приемистость на переходных режимах из-за инерционности ядерного реактора и низкая надежность: при отказе ядерного ректора двигатель полностью утрачивает свою работоспособность.The disadvantages of this engine are its poor pickup during transient conditions due to the inertia of the nuclear reactor and low reliability: in the event of a nuclear reactor failure, the engine completely loses its functionality.
Задачи создания изобретения: улучшение приемистости двигателя на переходных режимах и повышение надежности двигателя.Objectives of the invention: improving engine throttle response in transient conditions and increasing engine reliability.
Решение указанных задач достигнуто в атомном турбовинтовом газотурбинном двигателе, содержащем ядерный реактор, винт, воздухозаборник, компрессор, камеру сгорания, турбину, теплообменник-подогреватель и реактивное сопло, тем, что двигатель выполнен по трехвальной схеме с внешним, промежуточным и внутренним валами, компрессор выполнен из каскадов низкого и высокого давления, турбина содержит каскады высокого, среднего и низкого давления, ротор турбины низкого давления соединен внутренним валом с винтом, ротор турбины среднего давления соединен промежуточным валом с ротором компрессора низкого давления, а ротор турбины высокого давления соединен внешним валом с ротором компрессора высокого давления, между турбинами высокого и среднего давления и между турбинами среднего и низкого давления установлены соответственно первый и второй дополнительные теплообменники, соединенные трубопроводами рециркуляции с ядерным реактором. Воздушный винт может быть соединен с внутренним валом через редуктор. Воздушный винт содержит два ряда лопастей. Второй ряд лопастей может быть соединен с промежуточным валом.The solution of these problems was achieved in an atomic turboprop gas turbine engine containing a nuclear reactor, a screw, an air intake, a compressor, a combustion chamber, a turbine, a heat exchanger-heater and a jet nozzle, in that the engine is designed according to a three-shaft scheme with external, intermediate and internal shafts, the compressor is made from cascades of low and high pressure, the turbine contains cascades of high, medium and low pressure, the rotor of the low pressure turbine is connected by an internal shaft to the screw, the rotor of the medium pressure turbine connected by an intermediate shaft to the rotor of the low pressure compressor, and the rotor of the high pressure turbine is connected by an external shaft to the rotor of the high pressure compressor, between the high and medium pressure turbines and between the medium and low pressure turbines, respectively, the first and second additional heat exchangers are connected, connected by recirculation pipes to the nuclear reactor . The propeller can be connected to the internal shaft via a gearbox. The propeller contains two rows of blades. The second row of blades can be connected to the countershaft.
Сущность изобретения поясняется на фиг.1…5, где:The invention is illustrated in figure 1 ... 5, where:
на фиг.1 приведена схема двигателя,figure 1 shows a diagram of the engine,
на фиг.2 приведена схема двигателя с регуляторами,figure 2 shows a diagram of the engine with regulators,
на фиг.3 приведена схема двигателя с редуктором,figure 3 shows a diagram of an engine with a gearbox,
на фиг.4 приведена схема двигателя с воздушным винтом, имеющим два ряда лопастей,figure 4 shows a diagram of an engine with a propeller having two rows of blades,
на фиг.5 приведена схема двигателя, в которой второй ряд лопастей соединен с промежуточным валом,figure 5 shows a diagram of the engine, in which the second row of blades is connected to the intermediate shaft,
Предложенное техническое решение (фиг.1…5) содержит винт 1, вал винта 2, корпус 3. Двигатель выполнен трехвальным и содержит внешний вал 4, промежуточный вал 5 и внутренний вал 6. Двигатель содержит, в свою очередь воздухозаборник 7, компрессор 8, который выполнен двухкаскадным, и содержит компрессор низкого давления 9, имеющий статор 10 и ротор 11, и компрессор высокого давления 12, содержащий статор 13 и ротор 14. Кроме того, двигатель содержит турбину 15. Турбина 15 выполнена трехкаскадной и содержит турбину высокого давления 16 с сопловым аппаратом 17 и ротором 18, турбину среднего давления 19 с сопловым аппаратом 20 и ротором 21 и турбину низкого давления 22, соответственно с сопловым аппаратом 23 и ротором 24. Турбины высокого давления 16, турбина среднего давления 19 и турбина низкого давления 22 могут содержать одну или несколько ступеней. В дальнейшем приводится описание с применением всех турбин с одной ступенью. За турбиной низкого давления 22 установлено реактивное сопло 25.The proposed solution (figure 1 ... 5) contains a
Внешний вал 4 соединяет ротор 14 компрессора высокого давления 12 и ротор 18 турбины высокого давления 16, промежуточный вал 5 соединяет ротор 11 компрессора низкого давления 9 и ротор 21 турбины среднего давления 19, а внутренний вал 6 соединят воздушный винт 1 и ротор 24 турбины низкого давления 22. Двигатель имеет три теплообменника: теплообменник-подогреватель 26, первый дополнительный теплообменник 27 и второй дополнительный теплообменник 28, установленные вне корпуса 3 двигателя.The
Двигатель содержит ядерный реактор 29, соединенный подводящим (по отношению к теплообменникам) трубопроводом рециркуляции 30, насосом 31 с приводом 32 с теплообменником-подогревателем 26 и дополнительными теплообменниками 27 и 28. Подводящие трубопроводы рециркуляции 30 содержат отсечные клапаны 33, 34 и 35. К ядерному реактору и теплообменникам 26, 27 и 28 присоединены отводящие (по отношению к теплообменникам) трубопроводы рециркуляции 36 с отсечными клапанами 37, 38 и 39. Кроме того, к теплообменникам 26, 27 и 28 присоединены подводящие воздушные трубопроводы 40 и отводящие воздушные трубопроводы 41. Другие концы воздушных трубопроводов 40 и 41 соединены с полостями двигателя 42, 43, 44, 45, 46 и 47. Внутри двигателя выполнены радиальные перегородки 48 - между полостями 45 и 42, 49 - между полостями 46 и 43 и 50 - между полостями 47 и 44 (фиг.1 и 2). Двигатель содержит блок управления 40, соединенный электрическими связями 41 с ядерным реактором 29 (фиг.1).The engine contains a nuclear reactor 29 connected by a recirculation pipe 30 (with respect to the heat exchangers), a pump 31 with a drive 32 with a heat exchanger-
Возможен вариант исполнения схемы двигателя с регуляторами 51, установленными в отводящих воздушных трубопроводах 41 (фиг.2). Эти регуляторы предназначены для плавного регулирования каждого из трех каскадов двигателя с целью оптимизации их работы и для улучшения приемистости его работы, т.е. снижения инерционных процессов, связанных с инерционностью работы ядерного реактора 29.A possible embodiment of the engine circuit with
Возможен вариант исполнения с редуктором 52 (фиг.3), установленным между внутренним валом 6 и валом 2 воздушного винта 1. Также возможен вариант исполнения винта 1 с двумя рядами лопастей первым 53 и вторым 54 (фиг.4). Также возможен вариант (фиг.4), когда второй ряд лопастей 54 соединен с промежуточным валом 5. При этом первый ряд лопастей 53 может быть соединен с внутренним валом 6 напрямую (фиг.5) или через редуктор 52 (на фиг.1…5 последний вариант не показан).An embodiment is possible with a gearbox 52 (FIG. 3) installed between the
Возможны три варианта работы двигателя.Three engine operation options are possible.
1. Работает только теплообменник-подогреватель.1. Only the heat exchanger-heater works.
2. Работают теплообменник-подогреватель и первый дополнительный теплообменник.2. The heat exchanger-heater and the first additional heat exchanger work.
3. Работают все три теплообменника.3. All three heat exchangers work.
Запуск и работа двигателя.Starting and running the engine.
Предварительно по команде с блока управления 40 (фиг.1) запускают ядерный реактор 29 и включают привод 32 насоса 31. Потом открывают отсечные клапаны 33, 34, 35, 37, 38 и 39. Теплоноситель по подводящему трубопроводу рециркуляции 30 подается в теплообменники 26, 27 и 28, отдает тепло и по отводящим трубопроводам 36 возвращается в ядерный реактор 29. Осуществляют запуск двигателя стартером (стартер на фиг.1…5 не показан) путем раскрутки одного из валов 4, или 5, или 6. В результате воздух, сжатый в компрессорах 10 и 12, проходит теплообменники 26, 27 и 28 и турбину высокого давления 16, турбину среднего давления 19 и турбину низкого давления 22. Сжатый воздух проходит через турбины 16, 19 и 22 и раскручивает все ротора и винт 1. В результате двигатель запущен и готов к работе. Управление двигателем по режимам и его выключение выполняется блоком управления 40 воздействием на ядерный реактор 29 и привод 32 насоса 30, перекачивающего теплоноситель (жидкий натрий). При регулировке возможно отключение одного из теплообменников 26, 27 и 28.Preliminarily, on command from the control unit 40 (Fig. 1), a nuclear reactor 29 is started and the drive 32 of the pump 31 is turned on. Then, shut-off valves 33, 34, 35, 37, 38 and 39 are opened. The coolant is supplied to the
Применение изобретения позволило:The application of the invention allowed:
1. Улучшить приемистость работы двигателя.1. Improve engine throttle response.
2. Повысить надежность работы двигателя, так как при отказе одного теплообменника может продолжить работу с незначительной потерей мощности.2. To increase the reliability of the engine, since in case of failure of one heat exchanger it can continue to work with a slight loss of power.
3. Повысить кпд газотурбинного двигателя за счет более рациональной компоновки двигателя, наличия винта, дающего дополнительную тягу, отсутствия жесткой кинематической связи между компрессором и турбиной. Это позволило спроектировать оптимальные компрессор и турбину, например, на разные рабочие обороты и оптимально согласовать их совместную работу.3. Increase the efficiency of the gas turbine engine due to a more rational engine layout, the presence of a screw that provides additional traction, the absence of a rigid kinematic connection between the compressor and the turbine. This made it possible to design optimal compressor and turbine, for example, at different operating speeds and optimally coordinate their joint work.
4. Обеспечить оптимальную работу двигателя на переходных режимах, вследствие того, что турбовинтовые двигатели создают часть тяги винтом, а часть за счет реактивного сопла.4. To ensure optimal engine operation in transient conditions, due to the fact that turboprop engines create part of the propeller thrust, and part due to the jet nozzle.
5. Значительно уменьшится расход топлива при эксплуатации самолета и вообще отказаться от химического топлива на всех режимах, используя только атомную энергию, это имеет важное значение в связи с исчерпанием ресурсов углеводородного топлива, его удорожанием и отсутствием альтернативы этому виду топлива. Применение водорода, имеющего стоимость в сотни раз большую, чем керосин, в ближайшие 100 лет бесперспективно, а использование сжиженного природного газа из-за его плохих энергетических характеристик и сложности в эксплуатации криогенной техники весьма ограничено.5. Significantly reduce fuel consumption during operation of the aircraft and generally abandon chemical fuel in all modes, using only atomic energy, this is important in connection with the exhaustion of hydrocarbon fuel resources, its cost and lack of an alternative to this type of fuel. The use of hydrogen, which has a cost hundreds of times greater than kerosene, is unpromising in the next 100 years, and the use of liquefied natural gas due to its poor energy characteristics and the difficulty in operating cryogenic equipment is very limited.
6. Облегчить условия работы винта за счет его нежесткой связи с каскадами компрессора и возможности их взаимного проскальзывания и рассогласования оборотов роторов компрессора и винта.6. To facilitate the working conditions of the screw due to its non-rigid connection with the compressor stages and the possibility of their mutual slippage and mismatch of the rotors of the compressor and screw rotors.
7. Облегчить запуск и останов двигателя за счет применения трехвальной схемы, при использовании которой для запуска двигателя достаточно стартером раскрутить один из роторов.7. Facilitate starting and stopping the engine through the use of a three-shaft scheme, when using which it is enough to untwist one of the rotors with a starter to start the engine.
8. Уменьшить вес и габариты двигателя за счет достижения больших степеней сжатия в трехвальном двигателе по сравнению с двухвальным.8. To reduce the weight and dimensions of the engine by achieving greater compression ratios in a three-shaft engine compared to a two-shaft.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2010111080/06A RU2435049C1 (en) | 2010-03-23 | 2010-03-23 | Nuclear turboprop gas turbine engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2010111080/06A RU2435049C1 (en) | 2010-03-23 | 2010-03-23 | Nuclear turboprop gas turbine engine |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2010111080A RU2010111080A (en) | 2011-09-27 |
RU2435049C1 true RU2435049C1 (en) | 2011-11-27 |
Family
ID=44803669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2010111080/06A RU2435049C1 (en) | 2010-03-23 | 2010-03-23 | Nuclear turboprop gas turbine engine |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2435049C1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111779576A (en) * | 2020-07-13 | 2020-10-16 | 中国航空发动机研究院 | Combined type propelling device, system and control method |
-
2010
- 2010-03-23 RU RU2010111080/06A patent/RU2435049C1/en active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111779576A (en) * | 2020-07-13 | 2020-10-16 | 中国航空发动机研究院 | Combined type propelling device, system and control method |
CN111779576B (en) * | 2020-07-13 | 2022-07-05 | 中国航空发动机研究院 | Combined type propelling device, system and control method |
Also Published As
Publication number | Publication date |
---|---|
RU2010111080A (en) | 2011-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3623602B1 (en) | Hybrid expander cycle with intercooling and turbo-generator | |
EP3623603B1 (en) | Hybrid expander cycle with turbo-generator and cooled power electronics | |
EP3623604A1 (en) | Hybrid expander cycle with pre-compression cooling and turbo-generator | |
US11749818B2 (en) | Multi-stage turbocharging compressor for fuel cell systems | |
US11542869B2 (en) | Dual cycle intercooled hydrogen engine architecture | |
CN104520541A (en) | Combination of two gas turbines to drive a load | |
EP4303416A1 (en) | Turbo expanders for turbine engines having hydrogen fuel systems | |
RU2424441C1 (en) | Nuclear turboprop gas turbine engine | |
RU2425243C1 (en) | Nuclear turboprop gas turbine engine | |
RU2435049C1 (en) | Nuclear turboprop gas turbine engine | |
CA2486928A1 (en) | High efficiency gas turbine power generator systems | |
RU2424438C1 (en) | Turboprop gas turbine engine with nuclear power plant | |
US10003239B1 (en) | Doubly-fed induction generator system for a gas turbine | |
RU2379532C1 (en) | Nuclear gas turbine aircraft engine | |
RU2376483C1 (en) | Nuclear gas turbine engine with afterburning | |
CN115680881A (en) | Dual cycle intercooled engine architecture | |
RU2349775C1 (en) | Nuclear gas-turbine aviation engine | |
RU2374468C1 (en) | Gas turbine for gas-compressor plant | |
RU2375219C1 (en) | Nuclear gas turbine locomotive and its power plant | |
RU2334892C1 (en) | Turboprop gas turbine engine | |
US20240229717A9 (en) | Gas turbine engine fuel system | |
RU2379533C1 (en) | Gas turbine unit | |
RU2336429C1 (en) | Nuclear gas turbine engine | |
RU2334115C1 (en) | Double-stage gas turbine engine | |
RU2593573C1 (en) | Engine of hypersonic aircraft |