RU2419948C1 - Improved design of screened electric pump (versions) - Google Patents
Improved design of screened electric pump (versions) Download PDFInfo
- Publication number
- RU2419948C1 RU2419948C1 RU2010115191/07A RU2010115191A RU2419948C1 RU 2419948 C1 RU2419948 C1 RU 2419948C1 RU 2010115191/07 A RU2010115191/07 A RU 2010115191/07A RU 2010115191 A RU2010115191 A RU 2010115191A RU 2419948 C1 RU2419948 C1 RU 2419948C1
- Authority
- RU
- Russia
- Prior art keywords
- rotor
- motor
- shaft
- housing
- bearing
- Prior art date
Links
Images
Landscapes
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
Область техникиTechnical field
Настоящее изобретение относится к бесшовному экранированному электронасосу и более конкретно к усовершенствованию экранированного электронасоса, который используется особенно в пластиковом насосе или насосе с пластиковой оболочкой для перекачки, нагнетания и циркуляции высокоагрессивных химических жидкостей. Технологические химические жидкости - очень агрессивные, помимо того, что температура некоторых жидкостей может достигать 85°С в производственных процессах при атмосферном давлении, жесткость пластиковых деталей будет значительно снижаться и будет образовываться деформация. В традиционном пластиковом бесшовном экранированном электронасосе или бесшовном экранированном электронасосе с пластиковой оболочкой и с неподвижным валом, который может иметь опоры на обоих концах или быть консольным, вал с опорами на обоих концах имеет передний держатель вала и держатель - защитная оболочка, и консольный вал имеет только упрочненный держатель защитной оболочки. Из-за всего вышеупомянутого конструкции имеют пониженную жесткость, а следовательно, их надежность и эксплуатационные характеристики значительно снижаются. Усовершенствование конструкции, раскрытое в настоящем изобретении, способно улучшить надежность и срок службы.The present invention relates to a seamless shielded electric pump, and more particularly to an improvement on a shielded electric pump, which is used especially in a plastic pump or a plastic sheath pump for pumping, pumping and circulating highly aggressive chemical liquids. Technological chemical liquids are very aggressive, in addition to the fact that the temperature of some liquids can reach 85 ° C in production processes at atmospheric pressure, the stiffness of plastic parts will significantly decrease and deformation will form. In a traditional plastic seamless shielded electric pump or seamless shielded electric pump with a plastic sheath and with a fixed shaft, which can have supports at both ends or be cantilevered, the shaft with supports at both ends has a front shaft holder and a holder - a protective shell, and the console shaft has only hardened containment holder. Due to all of the aforementioned designs, they have reduced stiffness, and hence their reliability and performance are significantly reduced. The design improvement disclosed in the present invention is able to improve reliability and service life.
Описание уровня техникиDescription of the prior art
Сегодня металлический бесшовный экранированный электронасос с асинхронным двигателем или двигателем на постоянных магнитах применяется во многих отраслях промышленности. Насос этого типа особенно подходит для применения там, где необходимы стойкость к коррозии и герметичность, причем в большинстве конструкций используется вращающийся вал, опирающийся на подшипники в фланцах на обоих концах двигателя. Но некоторые из бесшовных экранированных электронасосов изготовлены из пластика или имеют пластиковую оболочку (далее они будут называться "пластиковый бесшовный экранированный электронасос" для применения там, где необходимы высокая стойкость к коррозии и герметичность, например, в высокоточном процессе травления при изготовлении печатных плат металлический бесшовный экранированный электронасос использовать нельзя, и некоторые особенности пластикового бесшовного экранированного электронасоса взяты у пластикового бесшовного с магнитной муфтой. Некоторые из таких насосов имеют неподвижный вал и защитную оболочку, и пластиковый бесшовный экранированный электронасос объединен с двигателем на постоянных магнитах для замены традиционного асинхронного двигателя и магнитной муфты. Задачи бесшовного экранированного электронасоса заключаются в том, чтобы получить насос меньшего размера для экономии места под его установку, двигатель более высокой производительности, чтобы увеличить диапазон применения насоса, и меньшее количество деталей, чтобы повысить надежность; более того, при нем легче регулировать расход и напор путем регулирования частоты вращения, посредством чего его легче приспособить к разным требованиям производственных процессов.Today, a metal, seamless, shielded electric pump with an induction motor or a permanent magnet motor is used in many industries. This type of pump is particularly suitable for applications where corrosion resistance and tightness are required, with most designs using a rotating shaft supported by bearings in flanges at both ends of the engine. But some of the seamless shielded electric pumps are made of plastic or have a plastic sheath (hereinafter they will be called the "plastic seamless shielded electric pump" for applications where high corrosion resistance and tightness are required, for example, in the high-precision etching process in the manufacture of printed circuit boards, metal seamless shielded the electric pump cannot be used, and some features of the plastic seamless shielded electric pump are taken from the plastic seamless with Some of these pumps have a fixed shaft and a protective sheath, and a plastic seamless shielded electric pump is combined with a permanent magnet motor to replace a traditional asynchronous motor and magnetic coupling. The tasks of a seamless shielded electric pump are to get a smaller pump to save space under its installation, a higher-performance motor to increase the range of application of the pump, and fewer parts to increase reliability t; moreover, it is easier to control the flow rate and pressure by adjusting the rotational speed, whereby it is easier to adapt to different requirements of production processes.
Со ссылкой на фиг.1 традиционный экранированный электронасос на постоянных магнитах включает неподвижный вал с опорами на обоих концах. Насос имеет корпус 4, рабочее колесо 5, защитную оболочку 41, неподвижный вал 3, передний держатель 31 вала и экранированный двигатель 8; корпус 4 насоса имеет входное отверстие 44, выходное отверстие 45 и проточный канал 47, который используется для установки рабочего колеса 5. Входное упорное кольцо 46 расположено на внутренней стороне корпуса 4 на входном отверстии 44 и соединено с изнашиваемым кольцом 53 рабочего колеса на входной стороне рабочего колеса 5, образуя осевой упорный подшипник.With reference to FIG. 1, a conventional permanent magnet shielded electric pump includes a fixed shaft with supports at both ends. The pump has a housing 4, an
Передний держатель 31 вала зафиксирован на входе корпуса 4 и проходит по оси через отверстие 54 на ступице 52 рабочего колеса, поддерживая передний конец неподвижного вала 3.The
Рабочее колесо 5 установлено в корпусе 4 насоса, ступица 52 рабочего колеса представляет собой раструбную конструкцию, которая вытянута по оси назад и используется для соединения с вытянутой по оси детали 76 ротора 7 двигателя 7, объединяя рабочее колесо 5 и ротор 7 двигателя в единый вращающийся узел; во многих случаях ротор 7 двигателя и ступица 52 рабочего колеса изготовлены как один узел инжекционным формованием пластика.The
Защитная оболочка 41 экранированного двигателя 8 имеет чашевидную форму, и передний фланец 411 объединен с корпусом 4 и фланцем 811 двигателя 8, чтобы предотвращать утечки агрессивной жидкости и повышать герметичность. Колонная часть 412 защитной оболочки 41 введена во внутреннюю окружность статора 83 двигателя для изоляции агрессивной жидкости, защищая обмотку 831 двигателя от коррозии. Центральная часть дна защитной оболочки 41 снабжена держателем 413 защитной оболочки, углубленной конструкцией с глухим отверстием, для поддержки другого конца неподвижного вала 3 и фиксации упорного подшипника 414 на защитной оболочке 41. Внутреннее пространство 415 защитной оболочки 41 используется для установки неподвижного вала 3 и ротора 7 двигателя.The
Неподвижный вал 3 имеет опоры на обоих концах и изготовлен из керамического материала, стойкого к коррозии и истиранию, оба конца вала поддерживаются и фиксируются соответственно передним держателем 31 вала и держателем 413 защитной оболочки, и центральная часть вала соединена с подшипниками 77, 78 для поддержки вращения ротора 7 двигателя.The
Экранированный двигатель 8 имеет статор 83, корпус 81, задний корпус 82, защитную оболочку 41, ротор 7 и неподвижный вал 3, причем статор 83 двигателя установлен в корпусе 81 двигателя, задний корпус 82 двигателя зафиксирован на корпусе 81 двигателя. Центральная часть заднего корпуса 82 двигателя имеет углубленное седло 821 для поддержки вала, чтобы зафиксировать держатель 413 на защитной оболочке 41, чтобы усилить силу опоры неподвижного вала; и фланец 811 на стороне насоса в корпусе 81 двигателя используется для плотной блокировки фланца 411 и корпуса 4 насоса, чтобы предотвратить утечку агрессивной жидкости. Статор 83 двигателя и обмотка 831 статора полностью герметизированы защитной оболочкой 41 для предотвращения утечки и контакта с агрессивной жидкостью. Нижняя сторона заднего корпуса 82 двигателя снабжена выходным каналом 822 для электрического силового кабеля, и такой силовой кабель привода двигателя может быть соединен с обмоткой 831 статора для приведения в действие двигателя 8.The shielded
Ротор 7 двигателя выполнен из набора постоянных магнитов 71, и ярмо 72 ротора выполнено из листовой кремнистой стали. После сборки он закрывается пластиковым материалом, стойким к коррозии, чтобы получить бесшовный ротор 74 раструбного типа в оболочке. Пустотелая часть ротора 7 снабжена двумя подшипниками 77 и 78 для соединения с неподвижным валом 3, образуя гидравлическую опорную систему для поддержки вращения и передачи мощности ротора 7, вытянутая по оси деталь 76 является частью ротора 7, имеющей свойства жесткости и силы в цилиндрической конструкции и связана со ступицей 52 рабочего колеса, чтобы эффективно передавать мощность от ротора 7, причем в многих случаях ротор 7 двигателя и ступица 52 рабочего колеса выполнены как один узел путем инжекционного формования из пластика.The
Со ссылкой на фиг.2 еще один вариант осуществления традиционного экранированного электронасоса на постоянных магнитах с консольным валом; насос имеет корпус 4, рабочее колесо 5, защитную оболочку 41, неподвижный вал 3 и экранированный двигатель 8, причем корпус 4 насоса имеет входное отверстие 44, выходное отверстие 45 и проходной канал 47, который предназначен для установки рабочего колеса 5. Входное упорное кольцо 46 расположено на внутренней стороне корпуса 4 насоса на входном отверстии 44, соединено с изнашивающимся кольцом 53 рабочего колеса на входной стороне рабочего колеса 5, образуя осевой упорный подшипник.With reference to FIG. 2, another embodiment of a conventional permanent magnet shielded electric pump with a cantilever shaft; the pump has a housing 4, an
Рабочее колесо 5 установлено в корпусе 4 насоса, и пластина 55 ступицы рабочего колеса 55 имеет некоторое количество отверстий 54, которые служат в качестве отверстий для циркуляции внутренней смазки и в качестве балансирующих отверстий для снятия осевой упорной силы. Ступица 52 рабочего колеса имеет раструбную конструкцию, которая вытянута по оси назад и соединена с вытянутой по оси частью 76 ротора 7 двигателя, этим объединяя рабочее колесо 5 и ротор 7 двигателя в один узел; во многих случаях ротор 7 двигателя и ступица 52 рабочего колеса выполнены инжекционным формованием как один неразъемный узел.The
Защитная оболочка 41 экранированного двигателя 8 имеет чашевидную форму; передний фланец 411 объединен с корпусом 4 насоса и фланцем 811 двигателя 8 для предотвращения утечки агрессивной жидкости и повышения герметичности. Колонная часть 412 защитной оболочки 41 введена во внутреннюю окружность статора 83 двигателя, чтобы изолировать агрессивную жидкость, этим предотвращая коррозию обмотки 831 двигателя; в нижней части защитная оболочка 41 усилена полностью закрытым жестким элементом 416, а центральное отверстие жесткого элемента 416 используется для удержания и поддержки одного конца неподвижного вала 3; внутреннее пространство 415 защитной оболочки 41 используется для установки неподвижного вала 3 и ротора 7 двигателя.The
Неподвижный вал 3 является консольным валом, поддерживаемым на одном конце держателем 416 в защитной оболочке 41 и изготовленным из керамического материала, стойкого к коррозии и истиранию, держатель 416 вала является жестким элементом, закрытым в нижней части защитной оболочки 41; и центральная часть неподвижного вала 3 соединена с подшипниками 77, 78 для поддержки вращения ротора 7 двигателя. Экранированный двигатель 8 имеет статор 83, корпус 81, задний корпус 82, защитную оболочку 41, ротор 7 и неподвижный вал 3. Статор 83 двигателя установлен в корпусе 81, задний корпус 82 двигателя зафиксирован на корпусе 81. Фланец 411 защитной оболочки 41 прижат корпусом 4 насоса и фланцем 811 на стороне насоса в корпусе 81 двигателя, чтобы плотно блокировать фланец 411 и корпус 4 насоса и предотвращать утечки агрессивной жидкости. Неподвижный вал 3 является консольным валом, который опирается на одном конце на держатель 416 в защитной оболочке 41, и держатель 416 вала является жестким элементом, который закрыт в нижней части защитной оболочки 41.The
Статор 83 двигателя и обмотка 831 статора полностью герметизированы защитной оболочкой 41, чтобы предотвратить утечку и контакт с агрессивной жидкостью. Нижняя сторона заднего корпуса 82 двигателя снабжена выходным каналом 822 для электрического силового кабеля; причем силовой кабель привода двигателя может быть соединен с обмоткой 831 статора для приведения в действие двигателя 8.The
Ротор 7 двигателя выполнен из набора постоянных магнитов 71, и ярмо ротора 72 изготовлено из листовой кремнистой стали, после сборки он закрыт пластиковым материалом, стойким к коррозии, для формирования бесшовного ротора 74 раструбной формы в оболочке. Пустотелая часть ротора 7 снабжена двумя подшипниками 77 и 78 для соединения с неподвижным валом 3, образуя гидравлическую опорную систему для поддержки вращения и передачи мощности ротора 7. Вытянутая по оси деталь 76 является частью ротора 7, имеющей свойства жесткости и силы в цилиндрической конструкции и связана со ступицей 52 рабочего колеса, чтобы эффективно передавать мощность от ротора 7, причем во многих случаях ротор 7 двигателя и ступица 52 рабочего колеса выполнены как один узел путем инжекционного формования из пластика.The
Со ссылками на фиг.1 и 2, когда экранированный двигатель 8 работает, жидкость протекает в направлении 6 по проточному каналу рабочего колеса 5, давление жидкости повышается, и в направлении 61, затем выходя из выходного отверстия 45. Одновременно часть жидкости протекает в направлении 62, входит во внутреннее пространство 415 защитной оболочки 41 через заднюю сторону рабочего колеса 5 и в направлении торцевой пластины защитной оболочки 41 через зазор между наружной стороной ротора 7 и внутренним диаметром защитной оболочки 41 в направлении 63, затем поворачивает в нижней части защитной оболочки 41. Далее жидкость протекает через зазор между неподвижным валом 3 и подшипниками 77 и 78 в направлении 64 и затем через отверстия 54 на ступице 52 рабочего колеса, чтобы вернуться на вход рабочего колеса в направлении 65. Эта циркуляция жидкости используется для обеспечения смазки керамического подшипника и удаления теплоты, выделяемой ротором 7 и подшипниками 77 и 78.With reference to FIGS. 1 and 2, when the shielded
В экранированном электронасосе на постоянных магнитах используется обмотка 831 статора 83 двигателя для создания вращательного магнитного поля и для взаимодействия с постоянным магнитным полем ротора 7 двигателя, чтобы создать крутящий момент и вращение приводным методом, что отличается от бесшовного насоса с магнитным приводом, непосредственно соединяющим внутренний ротор с наружным ротором постоянного магнита для приведения в движение. Поскольку интенсивность магнитного поля, созданного обмоткой 831, зависит от электрического тока и количества катушек в индукционной обмотке, которая должна иметь размер больше размера постоянного магнита, чтобы обеспечивать достаточный магнитный поток от статора, и требует больших расходов на увеличения размера ротора 7 двигателя на постоянных магнитах из-за конструкции, ротор 7 двигателя должен соответствовать обмотке 831 статора 83 двигателя, чтобы получить улучшенный эффект, размер и масса ротора двигателя становятся больше. Тем не менее, это также означает, что неподвижный вал 3 двигателя 8 должен будет нести повышенную нагрузку из-за центробежной силы, являющейся результатом увеличенной массы ротора 7 двигателя. Эти нагрузки из-за центробежной силы появляются из-за остаточной несбалансированности самого ротора 7 двигателя и эксцентрического отклонения, вызываемого зазором подшипников 77 и 78, когда насос работает.In a shielded permanent magnet electric pump, the
Известный из уровня техники неподвижный вал 3, поддерживаемый пластиковыми деталями с низкой конструкционной жесткостью, часто вызывает вопрос недостаточной конструкционной жесткости, особенно если температура перекачиваемой жидкости поднимается до 85°С. Кроме того, из-за разницы в тепловой деформации между пластиковым элементом и керамическим элементом снижается опорная сила на неподвижном вале 3 и происходит существенное отклонение неподвижного вала 3 от фиксированного положения. Например, как явный пример можно привести передний держатель 31 вала для обеих концевых опор неподвижного вала 3, конструкционная жесткость переднего держателя 31 вала будет снижаться при высокой температуре, приводя к увеличению эксцентриситета, и то же самое относится к держателю 413 защитной оболочки 41. Независимо от поддержки неподвижного вала 3 на обеих сторонах или использования консоли для поддержки неподвижного вала 3, если защитная оболочка 41 тоньше в колонной части 412, деформация легко появится под действием температуры или давления жидкости. Хотя колонная часть 412 опирается на внутреннюю окружность статора 83 двигателя, на фиксированное положение неподвижного вала 3 в нижней части защитной оболочки 41 будет оказываться воздействие, приводящее к его смещению. При увеличении температуры или давления до такого, когда защитная оболочка 41 может быть деформирована, неподвижный вал 3 не будет плотно соединен с передним держателем 31 вала и держателем 413 защитной оболочки и ослабнет. Другой причиной ослабление вала являются различия в тепловых свойствах пластикового материала и керамического материала, которые приводят к ослаблению неподвижного вала 3.The
Экранированный электронасос на постоянных магнитах приводится в действие контроллером, который может поддерживать двигатель в синхронизации. Частота вращения насоса может быть номинальной или меньше номинальной в большинстве случаев, но в условиях пониженной подачи номинальная частота вращения может быть превышена, этими условиями являются выходная мощность или выходной момент постоянного экранированного двигателя 8, находящиеся в приемлемом диапазоне и не превышающие пределы. Когда насос эксплуатируют на низкой частоте вращения, не требуется уделять внимание вопросам деформации и центробежной силы, но они возникают, если частота вращения превысила номинальную. Однако действие центробежной силы на неподвижный вал 3 будет увеличиваться в квадрате частоты вращения, и повышенная центробежная сила приведет к большей деформации.A permanent magnet shielded electric pump is driven by a controller that can keep the motor in sync. The pump speed can be rated or less than the rated speed in most cases, but under conditions of reduced supply, the rated speed can be exceeded, these conditions are the output power or the output torque of the permanent shielded
На основании эксплуатационных требований к вышеописанному насосу главными вопросами, которые необходимо решить для применения в производственном процессе с высокоагрессивной жидкостью, являются следующие:Based on the operational requirements for the pump described above, the main issues that need to be solved for use in a production process with a highly aggressive liquid are the following:
(1) недостаточная объединенная жесткость из-за различий в тепловых свойствах между пластиковым материалом и керамическим материалом;(1) insufficient combined stiffness due to differences in thermal properties between the plastic material and the ceramic material;
(2) пониженная стойкость пластикового материала при высокой температуре;(2) reduced resistance of plastic material at high temperature;
(3) повышенная центробежная сила при превышении номинальной частоты вращения.(3) increased centrifugal force when exceeding the nominal speed.
Для решения вышеуказанных вопросов необходимо проанализировать причины каждого из них, чтобы решить их полностью. Анализ этих вопросов приведен ниже.To solve the above issues, it is necessary to analyze the causes of each of them in order to solve them completely. An analysis of these issues is provided below.
(1) Вопрос недостаточной объединенной жесткости пластикового материала и керамического материала: многие коррозионностойкие пластиковые материалы не имеют хороших физических свойств, чтобы сопротивляться тепловой деформации и поэтому не могут выдерживать плотного сочетания с керамическим материалом. В таком случае требуется дополнительная усиливающая конструкция.(1) The issue of the insufficient combined stiffness of the plastic material and ceramic material: many corrosion-resistant plastic materials do not have good physical properties to resist thermal deformation and therefore cannot withstand tight combination with ceramic material. In this case, an additional reinforcing structure is required.
(2) Вопрос конструкционной жесткости пластикового материала: некоторые пластики все еще будут иметь большую прочность при повышении температуры, но их стойкость к коррозии недостаточная. Прочность многих коррозионностойких материалов нельзя сравнить с прочностью керамического материала, особенно если прочность материала значительно снижается при повышении температуры. Поэтому потребуется совершенно новая концепция структуры вала.(2) The issue of structural rigidity of plastic material: some plastics will still have greater strength with increasing temperature, but their corrosion resistance is insufficient. The strength of many corrosion-resistant materials cannot be compared with the strength of a ceramic material, especially if the strength of the material decreases significantly with increasing temperature. Therefore, a completely new concept of shaft structure will be required.
(3) Вопрос центробежной силы ротора двигателя при высокой частоте вращения: когда ротор двигателя имеет большую массу при остаточной несбалансированности или радиуса эксцентриситета, необходимый зазор в радиусе для смазки между гидравлическими опорами и неподвижным валом будет увеличивать центробежную нагрузку неподвижного вала, эту нагрузку центробежной силы на неподвижный вал можно вычислить как массу ротора двигателя, умноженную на центробежное ускорение вращения, и центробежное ускорение вращения можно вычислить как полный радиус эксцентриситета ротора, умноженный на угловую скорость в квадрате, где полный радиус эксцентриситета является радиусом эксцентриситета дисбаланса ротора плюс радиус эксцентриситета гидравлических подшипников. Однако потребуются повышенная жесткость неподвижного вала и снижение массы ротора двигателя. Уже есть некоторые решения, относящиеся к вышеуказанным вопросам.(3) The issue of centrifugal force of the rotor of the engine at high speed: when the rotor of the engine has a large mass with residual imbalance or radius of eccentricity, the necessary clearance in the radius for lubrication between the hydraulic bearings and the stationary shaft will increase the centrifugal load of the fixed shaft, this load of centrifugal force by a fixed shaft can be calculated as the mass of the rotor of the motor times the centrifugal acceleration of rotation, and centrifugal acceleration of rotation can be calculated as the total for The rotor eccentricity must be multiplied by the angular velocity squared, where the total radius of the eccentricity is the radius of the eccentricity of the rotor unbalance plus the radius of the eccentricity of the hydraulic bearings. However, increased stiffness of the fixed shaft and a reduction in the mass of the rotor of the engine will be required. There are already some solutions related to the above issues.
В патенте Великобритании GB 2417981 раскрыта конструкция неподвижного вала, который является консольным валом, и в нижней части защитной оболочки инжектирован конструкционный элемент высокой жесткости, чтобы плотно объединить пластиковый материал с неподвижным валом и повысить опорную прочность вала. Некоторые из смачивающихся деталей, такие как фланец защитной оболочки, изготовленные из металла, инжектируются с пластиком; пластиковым материалом, используемым в этом патенте, является пластик технического сорта, который устойчив к действию высоких температур и имеет высокую жесткость, но этот материал не может выдерживать высокоагрессивные жидкости, такие как фтористоводородную кислоту. Поскольку этот патент применяется для охлаждающей жидкости двигателя, вопрос о стойкости к коррозии не возникает. Во-вторых, поскольку толщина колонной части защитной оболочки небольшая, жесткость недостаточна, чтобы поддерживать нагрузку неподвижного вала, что может легко привести к смещению неподвижного вала.GB 2417981 discloses the design of a fixed shaft, which is a cantilever shaft, and a high rigidity structural element is injected at the bottom of the containment to tightly combine the plastic material with the fixed shaft and increase the shaft support strength. Some of the wetted parts, such as the flange of the containment made of metal, are injected with plastic; The plastic material used in this patent is a technical grade plastic that is resistant to high temperatures and has high stiffness, but this material cannot withstand highly aggressive liquids such as hydrofluoric acid. Since this patent is applied to engine coolant, the issue of corrosion resistance does not arise. Secondly, since the thickness of the column portion of the containment is small, the rigidity is insufficient to support the load of the fixed shaft, which can easily lead to the displacement of the fixed shaft.
Однако эта конструкция дает хорошее решение по объединению материалов в нижней части защитной оболочки и для применения при высоких температурах, но она не может решить проблему конструкционной жесткости в колонной части защитной оболочки и не отвечает требованию применения в высокоагрессивных средах.However, this design provides a good solution for combining materials in the lower part of the containment and for use at high temperatures, but it cannot solve the problem of structural rigidity in the column part of the containment and does not meet the requirement for use in highly aggressive environments.
В еще одном решении, патенте Японии JP 2005299559, раскрыта конструкция неподвижного вала, который имеет опоры на каждом конце, в качестве которых используется передний держатель на входе в корпус насоса и задний держатель на нижней части защитной оболочки с дополнительным жестким конструкционным элементом для упрочнения. Этот патент направлен на снижение массы ротора, и этот признак может эффективно решать проблему центробежной силы ротора, поскольку пониженная центробежная сила означает снижение требования к жесткости неподвижного вала. Однако эта конструкция также не может решить вопрос объединения жесткости и вопрос конструкционной жесткости для применения в условиях агрессивных сред и высоких температур. Изобретение по этому патенту используется только для циркуляции охлаждающей жидкости в двигателе, но не для агрессивной жидкости.In yet another solution, Japanese Patent JP 2005299559, discloses a fixed shaft structure that has bearings at each end, which use a front holder at the entrance to the pump housing and a rear holder at the bottom of the containment with an additional rigid structural member for hardening. This patent is aimed at reducing the mass of the rotor, and this feature can effectively solve the problem of centrifugal force of the rotor, since a lower centrifugal force means a decrease in the stiffness requirement of the fixed shaft. However, this design also cannot solve the problem of combining stiffness and the question of structural stiffness for use in aggressive environments and high temperatures. The invention of this patent is used only for circulating coolant in an engine, but not for aggressive fluids.
Поскольку вышеописанные решения не могут дать полного решения для использования в производственном процессе с высокоагрессивной жидкостью, настоящее изобретение предлагает более хорошее решение вышеупомянутых проблем.Since the above solutions cannot provide a complete solution for use in a highly aggressive liquid manufacturing process, the present invention provides a better solution to the above problems.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯSUMMARY OF THE INVENTION
Поэтому главная цель настоящего изобретения заключается в том, чтобы предложить экранированный электронасос с усовершенствованным консольным валом, зафиксированным на одном конце, где прочность неподвижного вала позволяет выполнять любые требования, такие как переменная мощность на вале и высокая частота вращения. Кроме того, функция герметизации защитной оболочки улучшена и соответствует требованиям стойкости к коррозии при любых типах химических жидкостей, а также благодаря оригинальной конструкции лучше выполняет требование конструкционной прочности при применении в условиях высоких температур.Therefore, the main objective of the present invention is to provide a shielded electric pump with an improved cantilever shaft fixed at one end, where the strength of the fixed shaft allows any requirements, such as variable shaft power and high speed. In addition, the sealing function of the containment is improved and meets the requirements of corrosion resistance for all types of chemical liquids, and thanks to the original design it better fulfills the requirement of structural strength when applied at high temperatures.
Для того чтобы лучше понять указанные цели и технические способы настоящего изобретения, ниже приведено краткое описание чертежей, за которым следует подробное описание предпочтительных вариантов осуществления.In order to better understand these objectives and technical methods of the present invention, the following is a brief description of the drawings, followed by a detailed description of preferred embodiments.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙBRIEF DESCRIPTION OF THE DRAWINGS
ФИГ.1 - поперечный разрез традиционного экранированного электронасоса с неподвижным валом, имеющим опоры на обоих концах.FIG. 1 is a cross-sectional view of a conventional shielded electric pump with a fixed shaft having supports at both ends.
ФИГ.2 - поперечный разрез другого традиционного экранированного электронасоса с консольным валом.FIG.2 is a cross section of another traditional shielded electric pump with a cantilever shaft.
ФИГ.3 - поперечный разрез экранированного электронасоса согласно одному варианту осуществления настоящего изобретения.FIG. 3 is a cross-sectional view of a shielded electric pump according to one embodiment of the present invention.
ФИГ.4 - поперечный разрез неподвижного вала настоящего изобретения.FIG. 4 is a cross-sectional view of a fixed shaft of the present invention.
ФИГ.5 - поперечный разрез ротора двигателя и рабочего колеса настоящего изобретения.FIG.5 is a cross section of the rotor of the engine and the impeller of the present invention.
ФИГ.6 - поперечный разрез защитной оболочки настоящего изобретения.FIG.6 is a cross section of the protective sheath of the present invention.
ФИГ.7 - поперечный разрез металлического вала настоящего изобретения.FIG.7 is a cross section of a metal shaft of the present invention.
ФИГ.8 - поперечный разрез заднего корпуса двигателя настоящего изобретения.FIG. 8 is a cross-sectional view of a rear engine housing of the present invention.
ФИГ.9 - поперечный разрез втулки керамического вала настоящего изобретения.FIG.9 is a cross section of a sleeve of a ceramic shaft of the present invention.
ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯDETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Со ссылкой на фиг.3 экранированный электронасос настоящего изобретения имеет консольный вал и включает корпус 4, рабочее колесо 5 и экранированный двигатель 8. Корпус 4 насоса имеет входное отверстие 44, выходное отверстие 45 и проточный канал 47, в котором расположено рабочее колесо 5. Входное упорное кольцо 46 расположено на внутренней стороне корпуса 4 насоса на впускном отверстии 44 и связано с изнашиваемым кольцом 53 на входной стороне рабочего колеса 5, составляя осевой упорный подшипник.With reference to FIG. 3, the shielded electric pump of the present invention has a cantilever shaft and includes a housing 4, an
Рабочее колесо 5 установлено в корпусе 4 насоса, и пластина 55 ступицы рабочего колеса имеет несколько отверстий 54, которые служат для внутренней смазки и в качестве балансировочных отверстий для уменьшения осевого упора. Ступица 52 рабочего колеса имеет раструбную конструкцию, которая вытянута по оси и используется для соединения с вытянутой по оси частью 16 ротора 7 двигателя, этим соединяя рабочее колесо 5 и ротор 7 двигателя в один неразъемный узел.The
Экранированный двигатель 8 включает статор 83, корпус 81, задний корпус 82, защитную оболочку 41, ротор 7 и неподвижный вал 3. Статор 83 двигателя установлен в корпусе 81 двигателя, задний корпус 82 двигателя зафиксирован на корпусе 81 двигателя, фланец 411 защитной оболочки 41 объединен с задней пластиной 417 для образования жесткой фланцевой конструкции, и фланец 811 на стороне насоса в корпусе 81 двигателя используется для плотной блокировки фланца 411 и корпуса 4 насоса, чтобы предотвратить утечки через защитную оболочку. Статор 83 двигателя и обмотка 831 статора полностью герметизированы защитной оболочкой 41, чтобы предотвратить утечки и контакт с агрессивной жидкостью. Выходной канал под задним корпусом 82 двигателя позволяет соединить электрическим силовым кабелем 822 контроллер и обмотку 831 статора для приведения в действия двигателя 8.The shielded
Ротор 7 экранированного двигателя 8 содержит набор постоянных магнитов 71, ярмо ротора 72 и седло 75 подшипника и покрыт коррозионностойкой смолой 74 для образования покрытого смолой магнитного ротора 7 в форме кольца без швов, через которые может происходить утечка. Пустотелая деталь в центральной части ротора 7 снабжена подшипником 79 для соединения с неподвижным валом 3, образуя систему гидравлических опор для вращения и передачи мощности ротора 7. Вытянутая по оси часть 76 ротора 7 является пустотелой колонной конструкцией, усиленной седлом подшипника 75 для увеличение жесткости и прочности, и используется в качестве переходника при соединении со ступицей 52 рабочего колеса для эффективной передачи мощности ротора 7.The
Защитная оболочка 41 экранированного двигателя 8 имеет чашевидную форму, передний фланец 411 которой соединен с задней пластиной 417 для образования жесткой фланцевой конструкции и затем для соединения с корпусом 4 насоса и фланцем 811 двигателя 8 для предотвращения утечек через защитную оболочку и улучшения герметизации. Колонная часть 412 защитной оболочки 41 введена во внутреннюю окружность статора 83 двигателя для того, чтобы изолировать агрессивную жидкость, этим защищая от коррозии обмотку 831 двигателя, в центре нижней части защитная оболочка 43 имеет отверстие 418 с уплотнительными кольцами, и металлический вал 32 неподвижного вала 3 может проходить через него; металлический вал 32 неподвижного вала 3 проходит через центральное отверстие 332 втулки 33 керамического вала, показанной на Фиг.7, круглая головка 321 на одном конце металлического вала 32 имеет уплотнительное кольцо, оно может быть прижато на передней торцевой поверхности 333 втулки 33 керамического вала, показанной на Фиг.9, и на другом конце имеет шестеренную деталь 323, металлический вал 32 может проходить через отверстие 418 с уплотнительными кольцами и отверстие 823 заднего корпуса 82 двигателя, показанное на Фиг.8, гайка 324 используется для крепления металлического вала 32 с высоким натяжением, и втулка 33 керамического вала будет прижата к заднему корпусу 82 двигателя, чтобы обеспечить хорошее уплотнение неподвижного вала 3 в условиях высокой жесткости с помощью уплотнительного кольца. Втулка 33 керамического вала и защитная оболочка 41 могут плотно опираться на задний корпус 82 двигателя и уплотняться уплотнительными кольцами, этим можно обеспечить правильное сжатие уплотнительных колец и получить надежную систему уплотнений. Внутреннее пространство 415 защитной оболочки 41 используется для установки неподвижного вала 3 и ротора 7 двигателя.The
Неподвижный вал 3 экранированного двигателя 8 является консольным, жесткость неподвижного вала полностью не зависит от конструкционной жесткости защитной оболочки 4; неподвижный вал 3 содержит металлический вал 32, втулку 33 керамического вала, задний корпус 82 двигателя и защитную оболочку 41, металлический вал 32 имеет круглую головку 321 на одном конце и шестеренную деталь 323 на другом конце, круглая головка 321 имеет смолистую оболочку 322, снабженную уплотнительным кольцом для обеспечения герметичности и стойкости к коррозии, металлический вал 32 пропущен через центральное отверстие 332 втулки 33 керамического вала, и другой конец может проходить через отверстие 418 с уплотнительными кольцами и отверстие 823 заднего корпуса 82 двигателя. Когда металлический вал 32 плотно затянут гайкой 324, круглая головка 321 плотно примыкает к передней торцевой поверхности 333 втулки 33 керамического вала, и задняя торцевая поверхность 335 втулки 33 керамического вала может плотно примыкать к контактной поверхности 825 заднего корпуса 82 двигателя, и уплотнительные кольца на нижней части защитной оболочки 41 могут обеспечивать правильное сжатие для образования полностью герметичной системы, круглая поверхность 334 втулки 33 гладкая и составляет гидравлический подшипник с поверхностью внутреннего диаметра подшипника 79 ротора 7, обеспечивая ротору 7 опорную поверхность скольжения, необходимую для вращения. Другая упорная поверхность 331 снабжена упорной кольцевой конструкцией в форме диска, соединенной с осевой торцевой поверхностью подшипника 79 ротора 7, этим составляя упорный подшипник ротора 7 двигателя.The fixed
Со ссылкой на фиг.3, когда насос работает, жидкость проходит в направлении 6 через проточный канал рабочего колеса 5, ее напор в направлении 61 повышается, и она затем выходит из выходного отверстия 45. Одновременно часть жидкости проходит в направлении 62, входит во внутреннее пространство 415 защитной оболочки 41 через заднюю сторону рабочего колеса 5 и проходит в направлении нижней части защитной оболочки 41 через зазор между наружной стороной ротора 7 и внутренней стороной защитной оболочки 41 в направлении 63 и затем поворачивает в нижней части защитной оболочки 41. Далее жидкость проходит через зазор между неподвижным валом 3 и подшипником 79 в направлении 64 и затем проходит через отверстия 54 на ступице 52 рабочего колеса, чтобы вернуться на вход рабочего колеса в направлении 65. Эта циркуляция жидкости используется для смазки втулки 33 керамического вала и отвода теплоты, выделяемой ротором 7 и подшипником 79.With reference to FIG. 3, when the pump is running, the fluid flows in
Со ссылкой на фиг.4, на которой подробно показана система уплотнений защитной оболочки 41 и неподвижного вала 3. Жесткость неподвижного вала полностью не зависит от конструкционной жесткости защитной оболочки 41, консольная конструкция неподвижного вала 3 включает втулку 33 керамического вала, металлический вал 32, задний корпус 82 двигателя и защитную оболочку 41. Металлический вал 32 неподвижного вала 3 пропущен через центральное отверстие 332 втулки 33 керамического вала, и шестеренная деталь 323 через отверстие 418 с уплотнительными кольцами и отверстие 823 заднего корпуса 82 двигателя. Стойкость неподвижного вала 3 вызвана тем, что гайка 324 металлического вала 32 плотно блокирует шестеренную деталь 323 металлического вала для создания натяжения большой силы, так что сила натяжения будет сильно прижимать круглую головку 321 металлического вала 32 к передней торцевой поверхности 333 втулки 33 керамического вала, задняя поверхность 335 втулки 33 керамического вала плотно примыкает к контактной поверхности 825 заднего корпуса 82 двигателя, этим создавая комплексную жесткую конструкцию неподвижного вала 3. Поэтому опорная сила неподвижного вала 3 теперь обеспечивается не только металлическим валом 32, а также комплексными конструкциями и задним корпусом 82 двигателя. Конструктивная стойкость неподвижного вала 3 настоящего изобретения способна полностью преодолеть конструктивную слабость защитной оболочки 41. Круглая головка 321 имеет смолистую оболочку 322, на которой имеется уплотнительное кольцо для уплотнения передней торцевой поверхности 333 втулки 33 керамического вала, а задняя торцевая поверхность 335 может быть уплотнена уплотнительными кольцами на нижней части защитной оболочки 41, и эти уплотнительные кольца могут обеспечивать правильное сжатие, создавая полную герметичность.With reference to FIG. 4, which shows in detail the sealing system of the
Со ссылкой на фиг.5, на которой показана конструкция ротора 7 двигателя, который соединен с рабочим колесом 5 в один неразъемный узел. Ротор 7 двигателя имеет набор постоянных магнитов 71, ярмо 72 и седло 75 подшипника и покрыт коррозионностойкой смолой 74 для формирования заключенного в смолу магнитного ротора 7 в форме кольца без возможности утечки, ротор двигателя имеет небольшую массу из-за небольшой массы ярма и небольшой массы высокопрочного седла 75 подшипника. Поскольку насос работает с высокой частотой вращения, важным вопросом будет являться центробежная сила, развитию которой будут способствовать некоторые параметры ротора двигателя; масса ротора 7 двигателя является одним из этих параметров, другими являются радиус эксцентриситета в процессе заключения в оболочку и зазор в радиусе подшипника 79. В настоящем изобретении снижение центробежной силы достигается снижением массы ротора, по большей части снижением массы ярма 72 ротора при поддержании достаточного магнитного потока через него и возможности постоянного магнита 71 создавать достаточную магнитную движущую силу путем увеличения полюсов двигателя, чтобы уменьшить длину магнитного потока и поддерживать увеличенное кольцевое пространство между наружным диаметром подшипника 79 вала и внутренним диаметром ярма 72 ротора. Если это кольцевое пространство заполнить смолой для заключения ротора 74 в оболочку, то толщина смолы будет слишком большой, что может привести к деформации и смещению. В настоящем изобретении использовано высокопрочное седло 75 подшипника, имеющее небольшую массу, которое введено в это кольцевое пространство, чтобы поддерживать приемлемую толщину смолы и предотвращать деформации и смещения, что также гарантирует, что смолистая оболочка конструкции ротора 7 будет иметь пренебрежимо малый остаточный дисбаланс. Длина седла 75 покрывает всю длину ярма 72 ротора и вытянутой по оси части 76, обеспечивая опору последней, и седло имеет наилучшую жесткость для передачи мощности. Ступица 52 рабочего колеса является конструкцией раструбной формы, вытянутой по оси, и соединена с вытянутой по оси частью 76 ротора 7 для передачи мощности от ротора 7.With reference to figure 5, which shows the design of the
Со ссылкой на фиг.6 защитная оболочка 41 экранированного двигателя 8 имеет чашевидную форму, открывающаяся сторона защитной оболочки 41 снабжена фланцем 411 для соединения с корпусом 4 насоса и формирования герметичного проточного канала 47 и внутреннего пространства 415. Задняя пластина 417 расположена на задней стороне фланца 411 для придания последнему повышенной конструкционной жесткости и обеспечения того, чтобы защитная оболочка 41 и корпус 4 насоса имели более герметичные конструкции для предотвращения утечки агрессивной жидкости. Колонная часть 412 защитной оболочки 41 введена во внутреннюю окружность статора 83 двигателя для изоляции агрессивной жидкости, как показано на фиг.4, этим предотвращая коррозию обмотки 831 двигателя. Толщина колонной части 412 должна иметь основную конструкционную жесткость и запас против коррозии. Если толщина слишком большая, зазор между ротором и статором увеличивается и тогда производительность двигателя может снижаться; наоборот, если толщина недостаточна, то срок действия сопротивления коррозии будет коротким. Нижняя часть защитной оболочки 41 имеет отверстие 418 для прохода металлического вала 32. Чтобы добиться полной герметичности защитной оболочки 41, металлический вал 32 используется для соединения с втулкой 33 керамического вала и задним корпусом 82 двигателя и для отсутствия действия жесткости вала на защитную оболочку 41.With reference to FIG. 6, the
Со ссылкой на фиг.6-9 неподвижный вал 3 экранированного двигателя 8 является консольным и включает металлический вал 32, втулку 33 керамического вала, задний корпус 82 двигателя и защитную оболочку 41; металлический вал 32 проходит через центральное отверстие 332 втулки 33 керамического вала, отверстие 418 защитной оболочки 41 с уплотнительными кольцами и отверстие 823 под вал в заднем корпусе 82 двигателя, один конец металлического вала 32 снабжен круглой головкой 321, причем круглая головка 321 заключена в оболочку из смолы 322, на которой установлено уплотнительное кольцо с целью герметизации и сопротивления коррозии, и другой конец металлического вала 32 снабжен шестеренной деталью 323. Если металлический вал 32 установлен правильно и гайка 324 плотно затянута, то круглая головка 321 плотно примыкает к передней торцевой поверхности 333 втулки 33 керамического вала, и задняя торцевая поверхность 335 втулки 33 керамического вала может плотно примыкать к контактной поверхности 825 заднего корпуса 82 двигателя, и уплотнительные кольца на нижней части защитной оболочки 41 могут обеспечивать правильное сжатие с образованием полностью герметичной системы. Чтобы придать высокую жесткость комплексному неподвижному валу 3, втулка 33 керамического вала плотно затянута и сжата вместе с задним корпусом 82 двигателя силой сжатия металлического вала 32 с помощью гайки 324.With reference to Fig.6-9, the fixed
Со ссылкой на фиг.8 задний корпус 82 двигателя является металлическим и используется для герметизации обмотки 831 от агрессивного воздуха, он также обеспечивает мощную опору жесткому консольному неподвижному валу 3. Центральное отверстие 823 позволяет проходить через него шестеренной детали 323 металлического вала 32, и контактная поверхность 825 используется для соединения с задней торцевой поверхностью 335 втулки 33 керамического вала, что обеспечивает прочную опорную конструкцию, когда втулка 33 керамического вала прижата. Когда защитная оболочка 41 плотности стянута неподвижным валом 3, задний корпус 82 двигателя и втулка 33 керамического вала будут обеспечивать прижатие и герметизацию защитной оболочки 41 с помощью уплотнительных колец. Задний корпус 82 двигателя снабжен несколькими уплотнительными кольцами, которые используются для обеспечения герметичности обмотки 831 двигателя и защитной оболочки 41. Задний корпус 82 двигателя также имеет выходной канал для электрического силового кабеля 822, который соединяет контроллер с обмоткой 831 двигателя.With reference to Fig. 8, the
Со ссылкой на фиг.9 втулка 33 керамического вала имеет форму трубы, через центральное отверстие 332 которой проходит металлический вал 32. Передняя торцевая поверхность 333 используется для герметизации и сжатия круглой головки 321 металлического вала 32, задняя торцевая поверхность 335 используется для герметизации и сжатия контактной поверхности 825 заднего корпуса 82 двигателя, круглая поверхность 334 втулки 33 гладкая, что составляет гидравлический подшипник с поверхностью внутреннего диаметра подшипника 79 ротора 7, обеспечивая ротору 7 опорную поверхность скольжения, необходимую для вращения, другая упорная поверхность 331 имеет конструкцию упорного кольца дисковой формы, которая соединена с осевой торцевой поверхностью подшипника 79 ротора 7, этим составляя упорный подшипник ротора 7 двигателя.Referring to FIG. 9, the
Консоль неподвижного вала 3 настоящего изобретения полностью решает вопросы низкой жесткости опорной конструкции вала, вопрос недостаточной жесткости при объединении и вопрос центробежной силы из существующего уровня техники. Неподвижный вал 3 имеет конструкцию, концепция которой другая, поэтому стойкость защитной оболочки 41 не испытывает действия жесткости вала 3 и также решает вопрос жесткости при объединении благодаря использованию подходящей системы герметизации с помощью уплотнительных колец и вопрос различных тепловых свойств пластика и керамики. С ростом температуры и давления до возможности деформации защитной оболочки 41 неподвижный вал 3 будет продолжать обеспечивать достаточную жесткость без каких-либо повреждений. Если рабочая частота вращения превысит номинальную, легкий ротор двигателя будет создавать меньшую центробежную силу, и неподвижный вал 3 может полностью выдерживать действие центробежной силы, которая увеличивается в порядке квадратов частоты вращения.The fixed
На основе вышеизложенного в соответствии с настоящим изобретением усовершенствованный экранированный электронасос с консольным неподвижным валом включает защитную оболочку, задний корпус двигателя, втулку керамического вала и металлический вал. Эта простая конструкция с высокой жесткостью может эффективно выдерживать вращение ротора двигателя и поддерживать герметичность насоса при перекачке агрессивных жидкостей без утечки, таким образом решены все вопросы недостаточной жесткости из-за различных тепловых свойств пластикового материала и керамического материала и низкой стойкости пластикового материала при высокой температуре и большой центробежной силе при высокой частоте вращения.Based on the foregoing, in accordance with the present invention, an improved shielded electric pump with a cantilever fixed shaft includes a protective sheath, a rear motor housing, a ceramic shaft sleeve and a metal shaft. This simple design with high rigidity can effectively withstand the rotation of the motor rotor and maintain the tightness of the pump when pumping aggressive liquids without leakage, thus resolving all the issues of insufficient rigidity due to the different thermal properties of the plastic material and ceramic material and the low resistance of the plastic material at high temperature and high centrifugal force at high speed.
Claims (12)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN098114074 | 2009-04-28 | ||
CN09114074 | 2009-04-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2419948C1 true RU2419948C1 (en) | 2011-05-27 |
Family
ID=44734992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2010115191/07A RU2419948C1 (en) | 2009-04-28 | 2010-04-16 | Improved design of screened electric pump (versions) |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2419948C1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107664125A (en) * | 2017-11-03 | 2018-02-06 | 安徽龙泉泵阀制造有限公司 | Magnetic drive pump |
US20200191164A1 (en) * | 2018-12-17 | 2020-06-18 | Bestway Inflatables & Material Corp. | Motor rotor for water pump, water pump, and pool circulation system |
CN111884429A (en) * | 2020-09-01 | 2020-11-03 | 宁波锴晟电气有限公司 | Motor for submersible well |
CN113464453A (en) * | 2020-03-31 | 2021-10-01 | 日立安斯泰莫株式会社 | Electric liquid feeding pump |
-
2010
- 2010-04-16 RU RU2010115191/07A patent/RU2419948C1/en active
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107664125A (en) * | 2017-11-03 | 2018-02-06 | 安徽龙泉泵阀制造有限公司 | Magnetic drive pump |
US20200191164A1 (en) * | 2018-12-17 | 2020-06-18 | Bestway Inflatables & Material Corp. | Motor rotor for water pump, water pump, and pool circulation system |
CN113464453A (en) * | 2020-03-31 | 2021-10-01 | 日立安斯泰莫株式会社 | Electric liquid feeding pump |
CN113464453B (en) * | 2020-03-31 | 2024-05-24 | 日立安斯泰莫株式会社 | Electric liquid feeding pump |
CN111884429A (en) * | 2020-09-01 | 2020-11-03 | 宁波锴晟电气有限公司 | Motor for submersible well |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8597000B2 (en) | Structural improvement of a canned motor pump | |
KR101390792B1 (en) | Magnetic drive pump | |
US8297948B2 (en) | Arrangement for delivering fluids | |
JP5792346B2 (en) | Permanent magnet motor pump | |
US20090062020A1 (en) | Multi-ribbed keyless coupling | |
US2958292A (en) | Canned motor | |
RU2419948C1 (en) | Improved design of screened electric pump (versions) | |
EP1211784A1 (en) | Motor frame and motor using the motor frame and motor pump | |
WO2001009512A1 (en) | Shaftless canned rotor inline pipe pump | |
JP2000303986A5 (en) | ||
CN103089655B (en) | A kind of magnetic drive pump | |
TWM369391U (en) | Improved structure of permanent-magnet bottle-packaged pump | |
WO2023032368A1 (en) | Motor pump | |
WO2023032366A1 (en) | Motor pump | |
RU2742704C1 (en) | Centrifugal pump keyless rotor | |
CN117098919A (en) | Motor pump, pump unit, and method for adjusting balance of impeller of motor pump | |
RU2220326C2 (en) | Glandless electric pump with dc thyratron motor | |
CN117118154A (en) | High-power-density high-rotation-speed motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
HE4A | Change of address of a patent owner |
Effective date: 20181009 |