[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

RU2492872C2 - Вододиспергируемые пероральные, парентеральные и местные композиции для плохо растворимых в воде лекарственных препаратов, включающие улучшающие их свойства полимерные наночастицы - Google Patents

Вододиспергируемые пероральные, парентеральные и местные композиции для плохо растворимых в воде лекарственных препаратов, включающие улучшающие их свойства полимерные наночастицы Download PDF

Info

Publication number
RU2492872C2
RU2492872C2 RU2009116464/15A RU2009116464A RU2492872C2 RU 2492872 C2 RU2492872 C2 RU 2492872C2 RU 2009116464/15 A RU2009116464/15 A RU 2009116464/15A RU 2009116464 A RU2009116464 A RU 2009116464A RU 2492872 C2 RU2492872 C2 RU 2492872C2
Authority
RU
Russia
Prior art keywords
biologically active
vinyl
nanoparticles
polymer
agents
Prior art date
Application number
RU2009116464/15A
Other languages
English (en)
Other versions
RU2009116464A (ru
Inventor
Анирбан МАЙТРА
Георг ФЕЛЬДМАН
Савита БИШТ
Original Assignee
Дзе Джонс Хопкинс Юниверсити
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дзе Джонс Хопкинс Юниверсити filed Critical Дзе Джонс Хопкинс Юниверсити
Publication of RU2009116464A publication Critical patent/RU2009116464A/ru
Application granted granted Critical
Publication of RU2492872C2 publication Critical patent/RU2492872C2/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5138Organic macromolecular compounds; Dendrimers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/146Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/6931Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • A61K47/6933Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being obtained by reactions only involving carbon to carbon, e.g. poly(meth)acrylate, polystyrene, polyvinylpyrrolidone or polyvinylalcohol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/6931Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • A61K47/6935Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being obtained otherwise than by reactions involving carbon to carbon unsaturated bonds, e.g. polyesters, polyamides or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/18In situ polymerisation with all reactants being present in the same phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nanotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Neurology (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Neurosurgery (AREA)
  • Hospice & Palliative Care (AREA)
  • Rheumatology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Pain & Pain Management (AREA)
  • Psychiatry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Изобретение относится к фармацевтической промышленности, а именно к полимерным наночастицам с гидрофобным ядром и гидрофильной оболочкой, полученным из N-изопропилакриламида (NIPAAM), водорастворимых винильных производных типа винилпирролидона (ВП) или винилацетата (ВА), или водонерастворимых винильных производных типа метилметакрилата (ММА) или стирола (СТ) для специфических способов доставки, таких как пероральный и парентеральный. Полимерные наночастицы позволяют доставлять различные лекарственные средства или биологические активные агенты в рамках перорального, парентерального или местного способов введения. Благодаря реализации изобретения становится возможным формулировать в водном растворе плохо растворимые в воде лекарственные средства или биологические активные агенты или иные средства с плохой пероральной доступностью, что позволяет осуществлять доставку в системный кровоток. 6 н. и 58 з.п. ф-лы, 12 ил., 8 пр.

Description

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к композициям на основе наночастиц, предназначенных для солюбилизации и инкапсулирования лекарственных средств, включающих лекарственные средства, которые плохо растворимы в воде. Более конкретно, настоящее изобретение относится к композициям, обладающим «улучшенными» свойствами, такими как мукоадгезивность, пероральная биодоступность и полифункциональное действие, при системном введении.
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
За последние два десятилетия было разработано множество различных систем доставки гидрофобных и плохо растворимых в воде лекарственных средств. При разработке указанных систем основное внимание уделяли преодолению плохой доступности лекарственного средства и связанной с этим неэффективности терапии, в случае использования молекул такого типа.
Для решения указанной выше проблемы, которая ассоциирована с солюбилизацией плохо растворимых в воде лекарственных средств, были разработаны способы, описанные в патентах США NoNo. No. 5645 856 и 6096338, направленные на изготовление носителей для гидрофобных лекарственных средств и созданных на их основе фармацевтических композиций, в которых носитель включает биодоступное масло и фармацевтически приемлемый поверхностно-активный компонент для диспергирования масла in vivo при введении носителя. Используемый при этом амфифильный поверхностно-активный компонент по существу не приводит к ингибированию in vivo липолиза масла. Композиции указанного типа могут использоваться в качестве системы носителей для множества гидрофобных лекарственных средств, что приводит иногда к повышению биодоступности, в сравнении с существующими композициями таких лекарственных средств. Однако, композиции такого типа нестабильны in vivo и имеется возможность вытекания лекарственного средства из эмульсии, что может приводить к развитию неблагоприятных эффектов в организме. Кроме того, используемые поверхностно-активные вещества могут разрушать биологические мембраны, вызывая цитотоксичность. Дополнительно, при использовании таких эмульсионных систем практически невозможно осуществить направленное воздействие лекарственного вещества.
Были использованы другие носители для лекарственных средств, такие как амфифильные блок-сополимеры, которые образуют полимерные мицеллы или надмолекулярные структуры, где их гидрофобная часть формирует ядро, а гидрофильная часть формирует оболочку. В патенте США No. 5510103 описываются блок-сополимеры, содержащие гидрофильные и гидрофобные сегменты, которые формируют мицеллы и захватывают гидрофобные лекарственные средства по физическим механизмам. Гидрофильный сегмент предпочтительно представляет собой поли(этиленоксид), а гидрофобный сегмент предпочтительно представлен поли(эпсилон-бензил-L-аспартатом), и в этом случае предпочтительным лекарственным средством является Адриамицин.
В последнее время, полимерные мицеллы широко использовались в качестве носителей для доставки лекарственных средств при парентеральном введении. Мицеллярные носители для доставки лекарственных средств обладают рядом преимуществ, включающих биосовместимость, солюбилизацию гидрофобных лекарственных средств в ядре, нанометрический диапазон размеров, что облегчает выделение лекарственного носителя в сайте воспаления, сайт-специфическую доставку и т.п. Так, например, в патенте США No. 5955 509 описывается использование сополимеров поли(винил-N-гетероцикл)-b-поли(алкиленоксида) в мицеллах, содержащих фармацевтические композиции. Указанные сополимеры реагируют на изменения pH окружающей среды и могут использоваться для доставки терапевтических соединений при пониженных значениях pH. Указанные полимерные мицеллы остаются интактными при физиологических значениях pH, тогда как высвобождают свое содержимое при воздействии на них сниженного pH в окружающей среде, например, в случае опухолевой ткани.
В литературе имеются сообщения о различных амфифильных сополимерах, содержащих неионные и/или заряженные гидрофобные и гидрофильные сегменты, которые формируют мицеллы. Например, в патенте США No. 6322817 описывается инъецируемая композиция поперечно сшитых полимерных мицелл, состоящих из акриловых мономеров N-изопропилакриламида, N-винилпирролидона и ПЭГилированных моноэфиров малеиновой кислоты. По сообщениям, указанные полимерные наночастицы содержат растворенный паклитаксел и доставляют лекарственное средство в опухолевую ткань при парентеральном введении. Однако, как отмечается, указанные частицы пригодны лишь для доставки внутривенным способом. Кроме того, описанное использование акрилцианоакрилата, как одного из компонентов сополимерных мицелл, может сделать такие композиции токсичными и, соответственно, непригодными для введения in vivo.
В одном из патентов, патенте США No. 6555139, описывается способ микрофлюидизации и влажной микронизации гидрофобных лекарственных средств в сочетании с декстринами, такими как β-циклодекстрин. В патенте указывается, что способ микрофлюидизации способствует снижению среднего размера частиц слабо растворимых, но обладающих высокой проникающей способностью лекарственных средств и позволяют создавать однородную латексо-подобную микросуспензию. Смесь разбухаемого полимера и нерастворимых гидрофильных эксципиентов, гранулированных с микросуспензией, создает матрицу, которая, после уплотнения, равномерно эродирует в течение 24-часового периода. Однако, при использовании таких систем микрофлюидизации, возникают проблемы, определяемые тем, что для каждой молекулы лекарственного средства требуется одна молекула β-циклодекстрина, что ведет к необходимости вводить в организм большие количества этого соединения вместе с лекарственным средством. Кроме того, вытекание лекарственного агента из β-циклодекстрина, а также плохая биодоступность комплекса β-циклодекстрин - лекарственное средство может вызвать побочные эффекты. И, наконец, размер частиц, до 500 нм в диаметре, может стать причиной их ограниченного использования с целью доставки лекарственных средств.
В другом патенте, патенте США No. 6579519, описываются композиции неПЭГилированных pH-чувствительных и температурочувствительных сшитых полимерных мицелл, состоящих из N-изопропилакриламида, акриловой кислоты и N-винилпирролидона. Указанные частицы обладают очень ограниченной сферой применения и могут использоваться лишь для специфических целей местного введения на поверхности глаза. Это связано с тем, что показатель LCST (нижняя критическая температура растворения (НКТР)) для данных частиц ниже температуры тела и частицы агрегируют in vivo с образованием гидрофобной массы. В этой связи, указанный частицы не пригодны для введения их в системный кровоток и для направленной доставки, в том числе пероральной доставки. Другие родственные патенты включают патенты США NoNo. 6746635 и 6824791.
В другом патенте США No. 7094 810 описывается композиция, которая состоит из гидрофильного сегмента, выполненного из поли(этиленоксида), и гидрофобного сегмента, состоящего из винильных мономеров, которые содержат по меньшей мере одну боковую карбоксильную группу. Более конкретно, винильные мономеры, включенные в состав полимера, представляют собой акриловую кислоту или метакриловую кислоту, содержащие боковые карбоксильные группы, и бутил(алкил)акрилат, где указанный бутильный сегмент может быть линейно-цепочечным или разветвленным. Таким образом, гидрофобный сегмент представляет собой смесь неионизируемого бутил(алкил)- акрилата и ионизируемой (алкил)акриловой кислоты, которые контролируют гидрофобность полимера. Сообщается, что ионизируемая карбоксильная группа полимера, выходящая на поверхность частицы, отвечает за pH-чувствительность.
Несмотря на то что большинство указанных полимеров может использоваться для инъекции или для местной доставки биологически активных агентов, в настоящее время отсутствуют полифункциональные амфифильные полимеры, подходящие для пероральной доставки, за счет размера их частиц в нанодиапазоне и соответствующей мукоадгезивности. Реактивные функциональные группы на поверхности таких «быстрых» наночастиц характеризуются способностью к необязательной модификации путем ПЭГилирования, за счет присоединения лиганда или введения флуорофора для целей системной направленной доставки, что будет представлять интерес в контексте применяемых в настоящее время методов биологической диагностики, соответствующих терапевтических средств и способов визуализации. В настоящем изобретении описывается такая биодоступная при пероральном приеме быстрая полимерная система на основе наночастиц.
КРАТКОЕ ОПИСАНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
Настоящее изобретение относится к поперечно сшитым полимерным наночастицам, которые могут содержать один или несколько биологически активных агентов, таких как плохо растворимые в воде лекарственные средства, которые особенно хорошо подходят для пероральной доставки, но также применимы для других способов их использования, включая инъецируемые или местные композиции.
Другим объектом настоящего изобретения является разработка способа получения полимерных наночастиц, которые могут захватывать плохо растворимые в воде лекарственные средства, по отдельности или в сочетании с другими биологически активными агентами, до максимально достижимого уровня. Полимерные наночастицы предпочтительно захватывают одного или нескольких типов лекарственных средств. Предпочтительно, полимерные наночастицы имеют средний диаметр меньше или равный 50-100 нм и менее 5% из них имеют размер более 200 нм в диаметре.
Другим объектом настоящего изобретения является разработка способа получения наночастиц, содержащих полимерные цепи с межцепьевыми сшивками, так что может контролироваться высвобождение захваченных одного или нескольких лекарственных средств и инкапсулированных в указанной наночастице.
Еще одним объектом настоящего изобретения является разработка способа получения наночастиц, содержащих включенные в них один или сочетание лекарственных препаратов, но так что при этом сохраняется возможность химического конъюгирования полиэтиленгликолевых (ПЭГ) цепей с варьирующей длиной цепи (50-8000 Да) на наружной поверхности наночастиц с реактивными фрагментами на поверхности сформированных наночастиц. ПЭГ-цепи способствуют циркуляции указанных частиц в крови в течение относительно длительного времени, после их системного введения.
Кроме того, настоящее изобретение относится к доставке в принципе водорастворимых лекарственных средств, но в случае которых пероральная доставка по какой-либо причине в настоящее время не применима, путем химического конъюгирования лекарственного средства или сочетания лекарственных средств на поверхности наночастиц, которые затем действуют в качестве носителя для абсорбции по пероральному пути доставки, так что достигается нужная биодоступность лекарственного средства.
Другой целью настоящего изобретения является использование производных акриловых соединений, полученных на основе карбоновой кислоты, амина или альдегида, или аналогичных винильных производных, по отдельности или в сочетании, в качестве мономеров, в ходе полимеризации, с тем чтобы получить наночастицы с полифункциональными характеристиками, так называемые «быстрые» наночастицы.
Еще одним объектом настоящего изобретения является разработка способа получения полимерных наночастиц, включающих плохо растворимые лекарственные средства или сочетания лекарственных средств, диспергированных в водном растворе, которые свободны от нежелательных и токсичных материалов, таких как непрореагировавшие мономеры.
Другим объектом настоящего изобретения являются разработка способа получения полимерных наночастиц, включающих плохо растворимое/ые в воде лекарственное средство или сочетания лекарственных средств, которые могут использоваться в экспериментах in vivo для целей направленной доставки максимально возможных количеств лекарственных средств в пораженный сайт и лишь незначительных количеств в другие ткани, что позволит преодолеть недостатки, ассоциированные со способами, используемыми в настоящее время. Так, например, полимеризованные мицеллярные комплексы, согласно настоящему описанию, могут быть функционализированы с использованием направленного фрагмента, такого как флуорофор, краситель, контрастное вещество, антиген, антитело, аминокислота или сахар типа глюкозамина, или родственные углеводные производные, за счет химической конъюгации с ПЭГ-цепями, ассоциированными с полимерными мицеллами, так что указанные комплексы могут быть использованы, в дополнение к указанным пероральным композициям, в рамках терапевтических и диагностических процедур и методов визуализации, в случае которых требуется направленная доставка в конкретные типы клеток или тканей.
Еще одним объектом настоящего изобретение является маскирование нативного вкуса некоторых лекарственных средств, включенных в полимерные мицеллы, путем химического конъюгирования агентов, модифицирующих вкус, с поверхностью мицелл, так что получаемая при этом композиция имеет более приемлемый вкус при пероральном приеме.
Еще одним объектом настоящего изобретения является разработка способа использования полимерных наночастиц, включающих плохо растворимые в воде одно или сочетания лекарственных средств, полученных по способу настоящего изобретения, для лечения состояний, возникающих в случае нежелательных патогенных и анатомических состояний.
Согласно настоящему изобретению, получают медицинские композиции, которые включают полимерные наночастицы, предпочтительно обладающие средним размером менее 100 нм в диаметре, которые способны захватывать по меньшей мере одно плохо растворимое в воде гидрофобное лекарственное средство или его сочетание с одним или несколькими дополнительными лекарственными средствами. Указанные амфифильные наночастицы могут быть получены из поперечно сшитых полимеров, которые в основном состоят из трех следующих компонентов, добавляемых в качестве мономеров в специфических молярных соотношениях: (1) N-изопропилакриламид (NIPAAM); плюс (2) либо водорастворимое винильное соединение типа винилацетата (ВА), либо винилпирролидон (ВП), так что создается более гидрофильная оболочка у образуемых частиц, или добавляется водонерастворимое винильное производное, такое как стирол (ST) или метилметакрилат (MMA), так что получают более гидрофобное ядро у частиц, плюс (3) акриловая кислота (АК), которая обеспечивает наличие реактивных функциональных групп на поверхности частиц. Поверхность наночастиц может быть необязательно функционализирована с использованием реактивных функциональных групп, обеспечиваемых за счет АК, включая способы ПЭГилирования для достижения длительной циркуляции в крови, или за счет добавления других локализованных на поверхности реактивных групп, которые могут использоваться для направленной доставки в ткани in vivo терапевтических, диагностических и визуализирующих средств.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
На фиг. 1 приведена иллюстрация наночастицы, содержащей гидрофобное ядро (10), состоящее из гидрофобных частей полимера с захваченным в него лекарственным средством (11), гидрофильных частей, образующих гидрофильную оболочку (12), которая направлена в сторону водной среды. Наночастицы имеют размер менее 10 нм и могут включать одну или несколько молекул лекарственных средств или других биологически активных агентов.
На фиг. 2 приведена иллюстрация трех примеров плохо растворимых в воде лекарственных средств, солюбилизация которых может быть достигнута при их включении в полимерные наночастицы согласно настоящему изобретению. Свободный паклитаксел (таксол) (А), свободный рапамицин (С) и свободный рифампицин (Е) практически не растворимы в воде, что следует из мутности раствора и видимых взвешенных частиц каждого из лекарственных средств. Тогда как эквивалентные количества инкапсулированного в наночастицы паклитаксела (B), инкапсулированного в наночастицы рапамицина (D) и инкапсулированного в наночастицы рифампицина (F) образуют прозрачные растворы в воде.
На фиг. 3 показано значение нижней критической температуры растворения (НКТР (LCST)) в виде функции процентного соотношения веса к компонентам и, в частности, молярная пропорция NIPAAM в наночастицах. В приведенном на иллюстрации примере показаны три разных композиции наночастиц, каждая из которых характеризуется определенной, отличной от других, молярной пропорцией NIPAAM (NP), винилпирролидона (ВП) и акриловой кислоты (АК), включенных в полимерные наночастицы. Средний размер наночастиц (нм) определяют с использованием метода динамического рассеяния света и ряда других методик. Композиции с молярной пропорцией NIPAAM 90% имеют показатель НКТР (LCST) ниже, чем температура тела, тогда как композиции с молярной пропорцией NIPAAM 60% имеют показатель НКТР (LCST) выше температуры тела.
На фиг. 4а показан снимок, полученный методом трансмиссионной электронной микроскопии (ТЭМ) NIPAAM/ВП/АК полимерных наночастиц (молярные соотношения 60:20:20), которые имеют средний диаметр 50 нм или меньше (в нижней правой части чертежа приведена иллюстрация по шкале 100 нм). На фиг. 4b приведен ТЭМ-снимок с NIPAAM/MMA/АК полимерными наночастицами (молярные соотношения 60:20:20), которые имеют средний диаметр 50 нм или меньше (в нижней правой части чертежа приведена иллюстрация по шкале 500 нм). Наблюдается минимальная полидисперсия.
На фиг. 5a-c проиллюстрирован факт отсутствия видимой токсичности in vivo при пероральном введении пустых (со свободным пространством) полимерных наночастиц. Используют два типа перорально доставляемых «пустых» наночастиц: NIPAAM/ВП/АК с молярными соотношениями 60:20:20 (обозначены как NVA622) и NIPAAM/MMA/АК с молярными соотношениями 60:20:20 (обозначены как NMA622). Мышам в группах, включающих по четыре животных CD1 дикого типа (два самца, две самки), вводят в дозе 500 мг/кг пустые NVA622 или пустые NMA622 наночастицы в 500 мкл воды, в течение пяти последовательных дней в неделю и в течение двух недель. В ходе всего процесса и в верхней точке введения пустых наночастиц у животных не отмечается снижения веса, бихевиоральных аномалий или других аномальных особенностей. Не наблюдалось также выраженных (макроскопических) проявлений токсичности у мышей, которым вводили либо пустые NVA622, либо пустые NMA622 наночастицы.
На фиг. 6 проиллюстрирована жизнеспособность in vitro клеток в тестах (с использованием бромида 3-(4,5-диметилтиазол-2-ил)-2,5-дифенилтетразолия, или MTT), проведенных с полимерными наночастицами (паклитаксел) (нанопаклитаксел), в сравнении со свободным паклитакселом. В указанном проиллюстрированном примере для инкапсулирования паклитаксела были использованы NIPAAM/ВП/АК полимерные наночастицы с молярным соотношением 60:20:20. Три клеточных линии клеток рака поджелудочной железы человека (XPA-1, BxPC3 и PANC-1) инкубируют с возрастающими концентрациями (1, 10, 20, 50 и 100 нм) либо свободного паклитаксела (черные прямоугольники), либо с эквивалентным количеством нанопаклитаксела (серые прямоугольники) в течение 48 часов. В каждый из вариантов включают в качестве контроля свободные полимерные наночастицы, соответствующие тому количеству, которое требуется для инкапсулирования указанной дозы нанопаклитаксела (белые прямоугольники) и растворитель (диметилсульфоксид, ДМСО) (синие прямоугольники), соответствующий тому количеству, которое требуется для растворения указанной дозы свободного паклитаксела. Нанопаклитаксел (серые прямоугольники) демонстрирует сравнимую цитотоксичность во всех клеточных линиях in vitro, что и свободный паклитаксел (черные прямоугольники). Таким образом, наноинкапсулирование лекарственного средства не ассоциировано с потерей активности лекарственного средства. И при этом, как это ожидалось, введение одного свободного полимера не демонстрирует какой-либо значительной цитотоксичности в сравнении с базовым контрольным ростом клеток (точка 0 нм). Все тесты проводились в тройном повторе и на диаграмме показаны значения стандартного отклонения.
На фиг. 7 проиллюстрирована жизнеспособность клеток in vitro (MTT) в тестах, проводимых для демонстрации синергических эффектов полимерных наночастиц с инкапсулированным паклитакселом (нанопаклитаксел) и полимерных наночастиц с инкапсулированым куркумином (нанокуркумин). Три клеточных линии рака поджелудочной железы человека (XPA-1, BxPC3 и PANC-1) инкубируют с возрастающими концентрациями (1, 2, 4, 6, 8 и 10 нм) либо свободного паклитаксела (черные прямоугольники), либо с эквивалентным количеством нанопаклитаксела (белые прямоугольники) в течение 48 часов. Для тестирования наличия терапевтической синергии с куркумином, клетки также инкубируют либо со свободным куркумином (15 мкМ) плюс свободный паклитаксел (серые прямоугольники), либо с эквивалентным количеством нанокуркумина (15 мкм) плюс нанопаклитаксел (синие прямоугольники). Как показано на иллюстрации, сочетание нанопаклитаксела и нанокуркумина демонстрирует повышенную цитотоксичность, чем свободный паклитаксел или нанопаклитаксел, каждый из них, в любой данной дозе паклитаксела. Следует отметить, что, особенно при низких дозировках, используемых в случае двух клеточных линий (XPA-1 и Panc-1), сочетание нанопаклитаксела и нанокуркумина также обладает, по всей видимости, большей эффективностью, чем сочетание свободного паклитаксела и свободного куркумина, возможно в связи повышенным клеточным поступлением наноинкапсулированных соединений. При более высоких дозировках комбинированная терапия с использованием либо свободного, либо наноинкапсулированного лекарственного средства, демонстрирует, как это видно, сравнимые эффекты.
На фиг. 8 проиллюстрированы бактерицидные эффекты наночастиц с инкапсулированным рифампицином и свободным рифампицином против Mycobacterium tuberculosis (MTB). В этом эксперименте, MTB культивируют в течение двух недель без какой-либо обработки, а также с наноинкапсулированным рифампицином, свободным рифампицином и пустыми наночастицами. Отмечается стабильный рост в варианте без обработки и в случае введения пустых наночастиц, причем в последнем случае отмечается отсутствие токсичности от полимера per se. Тогда как рост MTB полностью ингибируется в случае введения наноинкапсулированного рифампицина и трубок со свободным рифампицином.
На фиг. 9 приведена иллюстрация жизнеспособности клеток in vitro (MTT тест), где указанный тест проводится с использованием водорастворимого лекарственного средства гемцитабина, конъюгированного с акриловой кислотой (АК) по ее реактивной функциональной группе на поверхности полимерной наночастицы. В отличие от плохо растворимых в воде лекарственных средств, которые инкапсулируют в составе наночастиц, водорастворимые лекарственные средства типа гемцитабина могут быть конъюгированы с поверхностью наночастицы, что придает такому соединения способность к пероральной доставке. Клеточную линию рака поджелудочной железы человека BxPC3 инкубируют с возрастающими дозировками либо свободного гемцитабина (черные прямоугольники), либо наногемцитамина (белые прямоугольники), либо свободного полимера (серые прямоугольники), либо растворителя ФБР (заштрихованный прямоугольник). Знак UT=нет обработки. После 96 часов, свободный гемцитабин и наногемцитабин демонстрируют сравнимую активность. Все тесты проводят в тройном повторе и на графике показаны средние значения и данные по стандартным отклонениям.
На фиг. 10 проиллюстрированы результаты определения уровня рапамицина в крови после пероральной доставки полимерных наночастиц. Рапамицин инкапсулируют в наночастицы, включающие повышенное процентное содержание акриловой кислоты (АК) в сополимерной композиции. Наночастицы вводят либо сами по себе, либо после проведения поверхностного ПЭГилирования. Приведены для сравнения: контроль А (рапамицин, суспендированный в воде); наночастицы с рапамицином, включающие NIPAAM:ВП:АК в соотношении 60:30:10 (обозначены как NVA631); наночастицы с рапамицином, состоящие из NIPAAM:ВП:АК в соотношении 60:20:20 (обозначены как NVA622); наночастицы с рапамицином, состоящие из NIPAAM:ВП:АК в соотношении 60:10:30 (обозначены как NVA613); и наночастицы с рапамицином, состоящие из NEPAAM:MMA:АК в соотношении 60:20:20 (обозначены как NMA622). Соответствующие ПЭГилированные наночастицы (PEG-NVA-631, PEG-NVA-622, PEG-NVA-613 и PEG-NMA-622) с инкапсулированным рапамицином показаны в виде зачерненных прямоугольников. Рапамицин вводят либо в виде свободного лекарственного средства, диспергированного в воде (15 мг/кг), либо в виде эквивалентной дозировки наноинкапсулированного рапамицина в соответствующей композиции полимерных наночастиц. В каждую группу данного исследования включают по шесть мышей дикого пита C57/B6. Уровни исследуемых лекарственных средств определяют в образцах, полученных через два часа после пероральной доставки, с использованием метода ВЭЖХ. Два типа наночастиц, каждый из которых содержит 20% молярную долю АК (NVA622 и NMA622), демонстрирует наивысшие уровни рапамицина в крови после пероральной доставки.
На фиг. 11 проиллюстрированы результаты фармакокинетического анализа (ФК) после проведения пероральной доставки наноинкапсулированного рапамицина мышам в течение 24-часового периода. Для данного исследования отбирают две полимерных наночастичных композиции, в которых были отмечены наивысшие уровни соединений в крови через 2 часа после пероральной доставки (фиг. 10): NVA622 и NMA622, которые содержат NIPAAM/ВП/АК и NEPAAM/MMA/АК в молярном соотношении 60:20:20, соответственно. В каждую группу данного исследования включают шесть мышей дикого типа C57/B6. Однократную дозу наноинкапсулированного рапамицина (эквивалентную 15 мг/кг лекарственного средства) вводят в момент времени 0 и кровь отбирают из лицевой вены путем венопунктуры через 30 минут, 2, 4, 8 и 24 часа после перорального введения. Уровни рапамицина определяют в плазме мышей методом ВЭЖХ. На графике для каждой временной точки исследования композиции наночастиц приведены средние значения полученных данных и стандартные отклонения (стрелки ошибок измерения). Наночастицы NMA622 характеризуются более высоким значением площади под кривой (AUC) в сравнении с наночастицами NVA622 (среднее значение AUC 26,949, в сравнении с 11,684, соответственно).
На фиг. 12 проиллюстрированы уровни рапамицина в центральном и периферическом венозном кровотоке через два часа после перорального введения наночастиц с инкапсулированным рапамицином. Частицы NVA622 с инкапсулированным рапамицином вводят в пероральном режиме трем мышам (доза 15 мг/кг) и уровни рапамицина измеряют в центральном венозном и периферическом венозном (лицевая вена) кровотоке через 2 часа. Уровни оказываются идентичными во всех трех независимых измерениях для двух сайтов, что соответствует равному системному распределению перорально введенного инкапсулированного в наночастицах рапамицина в системе кровообращения.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
В настоящем описании приводятся терапевтические композиции плохо растворимых в воде лекарственных средств, по отдельности или в сочетании с двумя или более лекарственными средствами, включенными в состав полимерных наночастиц. Описывается также терапевтическая композиция водорастворимых лекарственных средств, таких как гемцитабин, конъюгированных с поверхностью полимерных наночастиц. Наночастицы, после своего формирования, имеют почти сферическую форму и предпочтительно характеризуются размером по диаметру в диапазоне 50-100 нм или меньше. Наночастицы могут быть описаны как частицы мицеллярных агрегатов амфифильных и сшитых полимеров с размерами в нанодиапазоне.
Согласно настоящему изобретению, наночастицы полимерных мицелл получают в рамках методов, включающих:
(i) растворение NIPAAM и АК в воде с образованием мицелл;
(ii) добавление по меньшей мере одного соединения винильного производного, которое может быть либо водорастворимым, либо нерастворимым в воде, но где оба растворимым в указанных мицеллах и где указанное производное может быть полимеризовано в реакции свободнорадикальной полимеризации;
(iii) добавление соответствующего количества активатора и инициатора, которые представляют собой, например, тетраметилэтилендиамин (ТМЭД) и сульфат железа-аммония. В качестве активатора используют пердисульфат аммония;
(iv) добавление сшивающего агента к указанному мицеллярному раствору, который предпочтительно представляет собой N,N'-метилен-бис-акриламид;
(v) полимеризацию мономеров с образованием сополимера в атмосфере инертного газа, такого как азот, при температуре 30ºC-40ºC в течение 24 часов, практически до полного завершения реакции;
(vi) очистку наночастиц полученных сополимерных мицелл путем диализа в течение трех часов для удаления токсичных мономеров и других не прореагировавших материалов;
(vii) необязательную поверхностную модификацию наночастиц путем химического конъюгирования ПЭГ-амина варьирующей длины цепи (50-8000 Да) или других конъюгированных фрагментов с реактивными функциональными группами на поверхности наночастиц;
(viii) добавление одного или нескольких биологически активных агентов, которые следует встроить в сформированные полимерные наночастицы в водном растворе, или лиофилизацию пустых полимерных наночастиц до получения сухого порошка с целью будущего использования;
(ix) восстановление сухого порошка пустых полимерных наночастиц в водном растворе и добавление одного или нескольких биологически активных агентов с целью их включения в указанные полимерные наночастицы;
(x) лиофилизацию полимерных наночастиц с включенным в них лекарственным средством до получения сухого порошка; и
(xi) восстановление полимерных наночастиц с включенным в них лекарственным средством в водном растворе для дальнейшей пероральной, инъекционной или местной доставки.
Кроме NIPAAM и АК, винильные мономеры отбирают из водорастворимых винильных соединений, таких как винилацетат, 4-винилбензойная кислота, N-винилпирролидон (ВП) и N-винилпиперидон, а нерастворимые в воде амфифильные винильные соединения включают метилметакрилат (MMA), винилметакрилат, N-винилкапролактум, N-винилкарбазол и стирол.
В одном варианте осуществления настоящего изобретения, наночастицы формируют путем полимеризации мономеров в составе реакционной смеси. Композиции берут в следующих молярных соотношениях: NIPAAM, от примерно 50% до примерно 90%, и предпочтительно 60% для специфических способов доставки, таких как пероральный или парентеральный; винильный мономер типа водорастворимого ВП или водонерастворимого ММА: от примерно 10% до примерно 30%; и АК от примерно 10% до примерно 30%. Мономеры растворяют в воде и добавляют к ним пердисульфат аммония, TEMED и сульфат аммония-железа. К сшитому полимеру также добавляют N,N'-метилен-бис-акриламид. Смесь оставляют для полимеризации, предпочтительно в атмосфере инертного газа (например, азота, аргона и т.п.), при температуре, предпочтительно варьирующей от 20°C до 80°C, или более предпочтительно, от 30°C до 40°C, до завершения полимеризации. Завершение полимеризации может быть определено по снижению содержания мономеров в реакционной смеси, по результатам оценки в рамках ВЭЖХ-анализа или 1H-ЯМР винильных протонов. Раствор может быть очищен путем диализа, например, в течение 2-4 часов, с целью удаления токсичных мономеров или других не прореагировавших продуктов. В рамках Примера 1, используют NIPAAM, ВП и АК для целей получения сополимеров, характеризующихся молярными соотношениями 60:30:10, 60:20:20 и 60:10:30, с тем чтобы достичь возможной модуляции мукоадгезивности перорально вводимых наночастиц в ЖКТ, за счет варьирования доли АК в полимере. В рамках Примера 2, получают аналогичные сополимерные наночастицы, в которых ВП заменен на ММА, и в конкретном приведенном примере используемые компоненты берут в количествах, позволяющих достичь молярных пропорций в полученном продукте 60:20:20, применительно к NIPAAM, MMA и АК, соответственно. Как будет обсуждаться ниже, доля используемых мономеров также влияет на стабильность наночастиц при температуре тела.
Один вариант осуществления настоящего изобретения проиллюстрирован на фиг. 1, где показано, что наночастицы содержат гидрофобное ядро (помечено меткой 10), состоящее из гидрофобных частей полимеров с включенным в них лекарственным средством (помечено цифрой 11), тогда как гидрофильные части, формирующие гидрофильную оболочку (помечено цифрой 12), локализованы ближе к водной среде. На фиг. 1 показано также, что полимерные наночастицы предпочтительно имеют размер меньше, чем 100 нм, и могут включать одну или несколько молекул лекарственных средств или других биологически активных агентов.
В связи с наличием NIPAAM в композиции сополимера, оболочка наночастиц превращается из гидрофильной в гидрофобную структуру, при сниженных значениях критической температуры растворения (НКТР (LCST)), которая может подвергаться модуляции путем изменения доли NIPAAM в используемых мономерах, как показано на фиг. 3. Для того, чтобы указанные наночастицы были пригодны для системного введения в кровоток, наночастицы должны иметь показатель НКТР (LCST) выше температуры тела человека (примерно 37°C). С тем чтобы получить наночастицы с более высоким показателем НКТР (LCST), например, в диапазоне 45-50°C, что позволило бы осуществить системную доставку лекарственных средств и достичь стабильности наночастиц при температуре тела, требуется, чтобы компонент NIPAAM использовался в оптимальном для этого молярном соотношении 50-70%, тогда как два оставшихся мономера будут составлять оставшиеся 100%. Как отмечалось выше, в композицию могут быть также включены дополнительные мономеры или функциональные фрагменты, и это не будет влиять на показатель НКТР (LCST).
Наночастицы, приведенные в настоящем описании, могут использоваться в качестве системы для доставки лекарственных средств или, необязательно, поверхность наночастиц может быть модифицирована за счет использования соответствующих функциональных реакционных поверхностных групп (COO-) из АК для присоединения ПЭГ-аминных цепей варьирующей длины (50-8000 Да) или для химической конъюгации направляющих фрагментов типа лигандов, антител, радионуклидов, флуорофоров и контрастирующих веществ, или для добавления маскирующих вкус агентов типа аспартама. Добавление ПЭГ-аминных цепей не снижает пероральную биодоступность, характерную для лекарственного вещества, инкапсулированного в наночастицы, как видно на фиг. 10. На данном чертеже четыре независимых наночастичных композиции (NVA631, NVA622, NVA613 и NMA622) вводили мышам в пероральном режиме и уровни лекарственного средства в системном кровотоке через два часа после введения сравнивали с уровнями рапамицина, инкапсулированного в соответствующие ПЭГилированные наночастицы (ПЭГ-NVA631, ПЭГ-NVA622, ПЭГ-NVA613 и ПЭГ-NMA622). Как видно на приведенном чертеже, уровни рапамицина в крови после пероральной доставки не ПЭГилированных и ПЭГилированных наночастиц сравнимы. Для специалистов в данной области понятно, что ПЭГилирование придает наночастицам способность к длительной циркуляции в кровотоке, за счет того, что могут обходить ретикулоэндотелиальную систему (РЭС) и конструирование «РЭС-уклоняющихся» наночастиц, согласно настоящему изобретению, не ухудшает их пероральную биодоступность.
Полимерные наночастицы согласно настоящему изобретению предпочтительно содержат включенные в них лекарственные средства или другие биологически активные вещества в максимально возможном количестве. Указанные лекарственные вещества или биологически активные агенты могут представлять собой органические соединения, которые плохо растворяются в воде или вовсе не растворимы в воде, но которые легко растворяются в органических растворителях. Указанные лекарственные вещества или биологически активные агенты вносят в полимерный раствор либо в виде сухого порошка, либо в виде раствора в хлороформе, этаноле или эфире, в зависимости от растворимости лекарственного вещества в данном растворителе, с образованием оптически прозрачного раствора. Примеры таких лекарственных средств включают, без ограничения, антинеопластические агенты, такие как паклитаксел, доцетаксел, рапамицин, доксорубицин, даунорубицин, идарубицин, эпирубицин, капецитабин, митомицин С, амсакрин, бусульфан, третиноин, этопозид, хлорамбуцил, хлорметин, мелфалан и бензилфенилмочевины (БФМ); фитохимические и другие природные соединения, такие как куркумин, куркуминоиды и другие флавоноиды; стероидные соединения, такие как природные и синтетические стероиды и стероидные производные типа циклопамина; антивирусные соединения, такие как ацикловир, индинавир, ламивудин, ставудин, невирапин, ритонавир, ганцикловир, саквинавир, лопинавир, нельфинавир; противогрибные агенты, такие как итраконазол, кетоконазол, миконазол, оксиконазол, сертаконазол, амфотерицин В и гризеофульвин; антибактериальные агенты, такие как хинолоны, включающие ципрофлоксацин, офлоксацин, моксифлоксацин, метоксифлоксацин, перфлоксацин, норфлоксацин, спарфлоксацин, темафлоксацин, левофлоксацин, ломефлоксацин, циноксацин; антибактериальные агенты, такие как пенициллины, включающие клоксациллин, бензилпенициллин, фенилметоксипенициллин; антибактериальные агенты, такие как аминогликозиды, включающие эритромицин и другие макролиды; противотуберкулезные агенты, такие как рифампицин и рифапентин; и противовоспалительные средства, такие как ибупрофен, индометацин, кетопрофен, напроксен, оксапрозин, пироксикам, сулиндак. Предпочтительно, количества вносимых в композиции одного или нескольких лекарственных средств варьируют от 1 вес.% до 20 вес.% от всего полимера. Однако, в некоторых вариантах может использоваться гораздо большее количество.
В основном, биологически активные агенты, один или несколько, такие как лекарственные средства, которые плохо растворимы в водных средах, но это могут быть также и другие агенты, оказывающие определенный биологический эффект, растворяют в подходящем растворителе, таком как этанол или хлороформ, и добавляют к раствору наночастиц. Эта стадия добавления может проводиться до или после образования наночастиц. Объединение лекарственных средств или биологических агентов с раствором наночастиц приводит к включению лекарственных средств или биологически активных агентов в гидрофобное ядро (внутреннюю часть) наночастиц. Наночастицы, содержащие включенные в них лекарственные средства или биологические агенты, могут быть лиофилизированы, если это желательно, или иным образом превращены в порошковую форму с целью ее восстановления в подходящем жидком носителе и с последующим введением человеку или другому млекопитающему. Ниже приводится обсуждение результатов, полученных в рамках примера 5, в сочетании с фиг. 10, 11 и 12, где продемонстрирована пероральная биодоступность in vivo рапамицина, инкапсулированного в полимерные наночастицы.
В другом варианте осуществления настоящего изобретения, терапевтический агент, который является водорастворимым, но, по другим причинам, обладает низкой биологической доступностью при пероральном приеме, может быть присоединен к поверхности наночастиц за счет ковалентного конъюгирования между реакционными карбоновыми группами на наночастице и комплементарными функциональными группами, такими как аминные или тиоловые группы, на терапевтическом средстве. Конъюгирование с наночастицами придает таким терапевтическим агентам биодоступность при пероральном приеме. Примеры таких соединений включают, без ограничения, антинеопластические агенты, такие как гемцитабин.
Наночастицы, содержащие по меньшей мере одно лекарственное средство или сочетание лекарственных средств и биологически активные агенты, полученные по описанному выше способу (то есть, наночастицы, содержащие включенные в них лекарственные средства или лекарственные средства, конъюгированные с поверхностью, или даже сочетание таких вариантов), могут использоваться для лечения патологических состояний, возникающих при разных заболеваниях, включающих рак, воспаление, инфекцию и нейродегенерацию.
Ниже настоящее изобретение описывается со ссылкой на соответствующие неограничивающие примеры.
ПРИМЕРЫ
ПРИМЕР 1. Синтез поперечно сшитых сополимерных мицелл NIPAAM, ВП (водорастворимых винильных производных) и АК
Сополимер NIPAAM с ВП и АК синтезируют в ходе свободно-радикальной полимеризации. Водорастворимые мономеры, NIPAAM, ВП и АК растворяют в воде в молярных соотношениях 60:30:10, применительно к NVA631, 60:20:20, применительно к NVA622, и 60:10:30, применительно к NVA613. Полимеризацию начинают с использованием персульфата аммония (APS), в качестве инициатора реакции, в атмосфере N2. Добавляют сульфат железа-аммония (FAS) для активации реакции полимеризации, а также для гарантии полной полимеризации мономеров и для достижения хорошего выхода. При использовании NVA631 в качестве прототипного варианта, в типичном протоколе проведения эксперимента используют 62,8 мг рекристаллизованного NIPAAM, 30,5 мкл свежеперегнанного ВП и 6,61 мкл АК (свежеперегнанного) в 10 мл воды. Для достижения сшивки полимерной цепи добавляют 30 мкл MBA (0,049 г/мл) в водном растворе мономеров. Растворенный кислород удаляют при пропускании газообразного азота в течение 30 минут. Затем добавляют 20 мкл FAS (0,5% вес/объем), 30 мкл APS и 20 мкл TEMED для инициации реакции полимеризации. Полимеризацию проводят при температуре 30°C в течение 24 часов в атмосфере азота. После завершения полимеризации, весь водный раствор полимера диализуют в течение ночи с использованием диализного пакета со спектрапористой мембраной (с отсечением размера 12 кДа). Затем диализованный раствор сразу же лиофилизируют с получением сухого порошка для последующего использования, который легко подвергается повторному диспергированию в водном буфере. Выход полимерных наночастиц превышает 90%. В том случае, когда ВП заменяют другими водорастворимыми винильными типа винилового спирта (ВС), способ получения остается тем же и сополимер не меняет своих свойств.
ПРИМЕР 2. Синтез поперечно сшитых сополимерных мицелл NIPAAM, MMA (водонерастворимое винильное производное) и АК
Сополимер NIPAAM с MMA и АК синтезируют в реакции свободнорадикальной полимеризации. Водорастворимые мономеры - NIPAAM и АК, растворяют в воде, а нерастворимый в воде MMA растворяют в мицеллярном растворе NIPAAM и АК, в молярных соотношениях 60:30:10, применительно к NMA631, 60:20:20, применительно к NMA622, и 60:10:30, применительно к NMA613. Полимеризацию начинают с использования персульфата аммония (APS), в качестве инициатора реакции, в атмосфере N2. Добавляют сульфат железа-аммония (FAS) для активации реакции полимеризации, а также для гарантии полной полимеризации мономеров и для достижения хорошего выхода. При использовании NMA622, в качестве прототипного варианта, в типичном протоколе проведения эксперимента получения NMA662, используют 66,6 мг рекристаллизованного NIPAAM, 19,4 мкл свежеперегнанного ММА и 14 мкл АК (свежеперегнанного) в 10 мл воды. Для достижения поперечной сшивки полимерной цепи, добавляют 30 мкл MBA (0,049 г/мл) в водном растворе мономеров. Растворенный кислород удаляют при пропускании газообразного азота в течение 30 минут. Затем добавляют 20 мкл FAS (0,5%, вес/объем), 30 мкл APS и 20 мкл TEMED, для инициации реакции полимеризации. Полимеризацию проводят при температуре 30°C в течение 24 часов в атмосфере азота. После завершения полимеризации, весь водный раствор полимера диализуют в течение ночи с использованием диализного пакета со спектрапористой мембраной (с отсечением размера 12 кДа). Затем диализованный раствор сразу же лиофилизируют с получением сухого порошка для последующего использования, который легко подвергается повторному диспергированию в водном буфере. Выход полимерных наночастиц составляет более, чем 90%. В том случае, когда ММА заменяют другими водонерастворимыми винильными производными типа стирола (ST), способ получения остается тем же самым и сополимер не меняет своих свойств.
ПРИМЕР 3. Поверхностная модификация сополимерных мицелл из NIPAAM/ВП/АК с использованием ПЭГ-фрагмента размером 5 кДа
Композиции NVA631, NVA622 или NVA613 получают с использованием протокола, который был выше описан достаточно подробно. Репрезентативные функционализирующие ПЭГ молекулы, используемые для конъюгации с АК после сополимеризации, представляют собой метоксиполиэтиленгликоль-амин (метокси-ПЭГамин, молекулярная масса 5000 Да). Конъюгирование метокси-ПЭГамина с карбоновой группой акриловой кислоты в сополимере проводят с использованием сшивающего линкера ЭДКИ. В общих чертах, процедура заключается в том, что 100 мг лиофилизированного порошка сополимера растворяют в 10 мл фосфатного буфера. К указанному буферу добавляют 5 мМ гидрохлорида 1-этил-3-(3-диметиламинопропил)карбодиимида (ЭДКИ) и перемешивают в течение 30 минут. Затем добавляют 5 мг метокси-ПЭГамина к раствору сополимера и перемешивают в течение ночи при комнатной температуре. На следующий день раствор диализуют в течение 2-4 часов для удаления неконъюгированного метокси-ПЭГамина, с использованием диализной мембраны на 12 кДа, с последующей лиофилизацией. Полученные наночастицы были обозначены как ПЭГ-NVA631, ПЭГ-NVA-622 и ПЭГ-NVA613. Идентичное ПЭГилирование может быть проведено с использованием композиций NIPAAM/MMA/АК, которые обозначаются, соответственно, как ПЭГ-NMA631, ПЭГ-NMA622 и РЭГ-NMA613.
ПРИМЕР 4. Получение полимерных наночастиц с инкапсулированным плохо растворимым в воде иммуномодулирующим противораковым средством рапамицином
Известно, что иммуномодулирующий и противораковый агент рапамицин плохо абсорбируется при его пероральном введении. Для исследования возможностей доставки рапамицина с использованием наночастиц, согласно настоящему изобретению, рапамицин включают в состав наночастиц NVA631, NVA622, NVA613 и NMA622 или в соответствующие ПЭГилированные производные (ПЭГ-NVA631, ПЭГ-NVA622, ПЭГ-NVA613 и ПЭГ-NMA622) следующим образом: 100 мг лиофилизированного порошка соответствующих наночастиц диспергируют в 10 мл дистиллированной воды и хорошо перемешивают для восстановления мицелл. Рапамицин, в виде свободного лекарственного средства, растворяют в хлороформе (10 мг/мл) и раствор лекарственного средства в CHCI3 медленно добавляют к полимерному раствору, при постоянном перемешивании в вихревом смесителе и слабом озвучивании. Рапамицин непосредственно вносят в гидрофобное ядро мицелл. Мицеллы с включенным в них лекарственным средством затем лиофилизируют до получения сухого порошка для последующего использования. В каждую из сополимерных мицелл (NVA631, NVA622, NVA613 и NMA622 и соответствующие ПЭГилированные производные) может быть внесено до 3 мг рапамицина на 100 мг мицеллярного порошка с образованием раствора наночастиц с соответствующим включенным лекарственным средством, что равнозначно внесению 3 вес.% от полимера.
Данный пример демонстрирует тот факт, что плохо растворимое в воде лекарственное средство может быть легко и эффективно внесено в состав наночастиц согласно настоящему изобретению.
ПРИМЕР 5. Пероральное введение in vivo полимерных наночастиц с инкапсулированным рапамицином
Рапамицин представляет собой плохо растворимое в воде лекарственное вещество, обладающее низкой пероральной биодоступностью. Описанные ниже эксперименты были проведены с целью определить, может ли наноинкапсулирование рапамицина в полимерные наночастицы согласно настоящему изобретению повысить уровень его абсорбции при пероральном введении, в сравнении с вариантом введения свободного рапамицина в водных средах. В эксперименте исследовали девять независимых групп мышей дикого типа C57B6 (N=6 мышей на группу). Рапамицин вводят мышам перорально в виде свободного рапамицина (15 мг/кг веса тела), суспендированного в воде, или вводят эквивалентное количество рапамицина, инкапсулированного в наночастицы NVA631, NVA622, NVA613 и NMA622 или в соответствующие ПЭГилированные производные с модифицированной поверхностью. Все дозировки вводят с помощью перорального зонда. Через 2 часа после перорального введения, у мышей отбирают кровь и определяют концентрацию рапамицина в крови по методу высокоэффективной жидкостной хроматографии (ВЭЖХ). Результаты проведенного исследования представлены на фиг. 10. Как следует из представленных данных, исследуемые наночастицы успешно доставляют высокие количества рапамицина в кровоток, в сравнении со свободным рапамицином, вводимым в воде, где рапамицин практически не выявляется. Авторы связывают такие высокие уровни в кровотоке после перорального введения как с размером наночастиц (примерно 50 нм в диаметре) полимеров-носителей, так и с их повышенными мукоадгезивными свойствами в желудочно-кишечном тракте, в связи с доступностью свободных COO-(карбоксильных) групп на поверхности, происходящих из АК компонента в полимере. Кроме того, две композиции наночастиц, NVA622 и NMA622, характеризуются наивысшими уровнями в крови через два часа, что авторы связывают с оптимальной молярной пропорцией мукоадгезивной АК в полимерной композиции. В исследовании также было показано, что частичное ПЭГилирование АК (как в случае ПЭГ-NVA631, ПЭГ-NVA622, ПЭГ-NVA613, так и в случае с ПЭГ-NMA622), не снижает мукоадгезивные свойства наночастиц, вероятно, в связи с наличием достаточных количеств COO- групп, которые доступны для слизистой адгезии, даже после ПЭГилирования. В этой связи, оптимальное ПЭГилирование указанных наночастиц, которое иногда необходимо для достижения длительной системной циркуляции, не ухудшает пероральную биодоступность. Эксперимент, проиллюстрированный на фиг. 11, подтверждает быстрое и стабильное поглощение инкапсулированного в наночастицы лекарственного средства при его пероральном введении, так что при этом отмечается выраженные высокие уровни уже к 30 минутам после перорального введения. Наконец, эксперимент, проиллюстрированный на фиг. 12, подтверждает равное системное распределение лекарственного средства, инкапсулированного в наночастицы, в кровотоке после его пероральной доставки, при этом выявляются практически идентичные уровни рапамицина в центральном и периферическом звене кровотока. Таким образом, данный пример демонстрирует способность полимерных наночастиц согласно настоящему изобретению эффективно доставлять одно или несколько инкапсулированных плохо растворимых в воде лекарственных средств в системный кровоток при пероральном введении.
ПРИМЕР 6. Ростовые тесты in vitro на основе наночастичных композиций противоракового агента и пример сочетанной терапии, проводимой с использованием наночастичных композиций из двух независимых противораковых средств
Паклитаксел представляет собой противораковое средство, плохо растворимое в воде, которое может быть солюбилизировано для дисперсии в водных средах с использованием полимерных наночастиц согласно настоящему описанию. Нанопаклитаксел, инкапсулированный в частицы NVA631, используют для тестов на жизнеспособность клеток in vitro (MTT) на панели трех клеточных линий рака поджелудочной железы человека (XPA-1, BxPC3 и PANC-1). Результаты данного исследования показаны на фиг. 6. Как видно из приведенного чертежа, нанопаклитаксел демонстрирует сравнимую эффективность со свободным лекарственным веществом для любой данной дозы паклитаксела, подтверждая тот факт, что способ наноинкапсулирования не снижает активность исходного материал. Результаты исследования двух независимых терапевтических агентов (нанопаклитаксела и нанокуркумина) показаны на фиг. 7. Как видно из приведенного чертежа, сочетание нанопаклитаксела и нанокуркумина демонстрирует повышенную цитотоксичность, чем либо свободный паклитаксел, либо один нанопаклитаксел в любой данной дозе паклитаксела. Следует отметить, и это особенно справедливо в случае сниженных дозировок, используемых в двух клеточных линиях (XPA-1 и Panc-1), что сочетание нанопаклитаксела и нанокуркумина, по всей видимости, демонстрирует большую эффективность, чем сочетание свободного паклитаксела и свободного куркумина, вероятно, в связи с повышенным внутриклеточным поступлением наноинкапсулированных соединений. В более высоких дозах, сочетанная терапия с использованием либо свободных, либо наноинкапсулированных лекарственных средств, демонстрирует сравнимые эффекты.
ПРИМЕР 7. Поверхностная модификация композиции полимерных наночастиц агентом маскирования вкуса аспартамом и инкапсулирование противогрибого агента гризеофульвина в наночастицы с модифицированной поверхностью
Противогрибной агент гризеофульвин плохо растворим в воде, характеризуется слабой пероральной биодоступностью и имеет горький вкус, что может ухудшить соблюдение пациентом режима лечения. В данном примере, авторы продемонстрировали применимость «быстрых» полимерных наночастиц (репрезентативным примером является композиция NMA622), в случае их поверхностной модификации агентами маскирования вкуса и включения гризеофульвина в состав таких модифицированных наночастиц. 10 мл дисперсии полимерных наночастиц NMA 622 (с содержанием 100 мг полимера) смешивают с 500 мкл 5 мМ ЭДКИ при перемешивании, до полного растворения. К полученной прозрачной дисперсии добавляют 30 мг твердого аспартама. Раствор перемешивают в течение ночи в течение 15-20 часов. Затем прозрачный раствор диализуют с использованием диализного пакета с отсекаемым размером 12 кДа в течение 4 часов, заменяя внешнюю воду каждый час. К диализируемому раствору добавляют 2 мг твердого гризеофульвина и раствор озвучивают в течение 30 минут до достижения полной дисперсии, с последующим слабым нагреванием, в условиях перемешивания, при температуре 50-60°С с получением прозрачного раствора. При необходимости, после процесса озвучивания может быть проведено слабое нагревание при перемешивании, которое повторяют до получения прозрачного раствора. Указанный прозрачный раствор наногризеофульвина при комнатной температуре лиофилизируют до получения сухого порошка с целью дальнейшего применения.
Далее исследуют кинетику высвобождения гризеофульвина из полимерных наночастиц с конъюгированным на поверхности аспартамом, при комнатной температуре. Полимерные наночастицы с модифицированной поверхностью NMA622, содержащие внесенные в них 10 мг лиофилизированного порошка гризеофульвина (обозначенного как «нано-гризеофульвин»), растворяют в 1 мл воды при перемешивании в вихревом смесителе. Затем 10 мкл прозрачного раствора наногризеофульвина добавляют к 1 мл воды и определяют поглощение смеси при длине волны 292 нм. Через каждые два часа, центрифугируют раствор исходного наногризеофульвина со скоростью 2000 об/мин в течение 10 минут и с поверхности осторожно отбирают пипеткой 10 мкл центрифугата и добавляют к 1 мл воды. Определяют величину поглощения при длине волны 292 нм. Через 10 часов исходный раствор наногризеофульвина оставляют на ночь и определяют поглощение, после 24-часового выдерживания, при длине волны 292 нм, как было описано выше. Аналогично, указанное поглощение измеряют через 48 часов и 72 часа. Вычисляют % высвобождения с использованием уравнения (Do-Dt)/Do×100, где Do обозначает поглощение в нулевой точке и Dt обозначает поглощение через t часов. При проведении данных расчетов полагают, что практически весь гризеофульвин, высвободившийся из наночастиц, осаждается в ходе центрифугирования и что концентрация гризеофульвина в воде практически равна нулю.
Результаты
Время ОП % высвобождения
0 часов 0,093 0,0
2 часа 0,085 8,6
4 часа 0,076 18,3
6 часов 0,072 23,0
10 часов 0,061 34,4
24 часа 0,053 43,0
48 часов 0,048 48,4
72 часа 0,018 80,6
Данный пример демонстрирует результаты инкапсулирования другого плохо растворимого в воде лекарственного средства, противогрибного агента гризеофульвина, в указанных полимерных наночастицах и возможность изменить присущий инкапсулированному лекарственному средству вкус за счет использования маскирующих вкус агентов, конъюгированных с поверхностью наночастиц. В данном примере также была продемонстрирована хорошая кинетика высвобождения лекарственного средства из наночастиц в течение 72 часов, включая отсутствие эффектов «выброса».
ПРИМЕР 8. Конъюгирование водорастворимого противоракового средства гемцитабина на поверхности полимерных наночастиц и применение указанного препарата «наногенцитабина» в тестах на жизнеспособность клеток in vitro с использованием клеточной линии рака человека
Гемцитабин представляет собой водорастворимое соединение, чем он отличается от плохо растворимых в воде лекарственных средств, которые были описаны выше и которые инкапсулировались в гидрофобное ядро полимерных наночастиц. В данном примере, авторы описывают химическую конъюгацию гемцитабина, как одного из репрезентативных представителей водорастворимых лекарственных средств, с гидрофильной поверхностью полимерных наночастиц. Такая конъюгация, как ожидалось, придаст гемцитабину способность к пероральной доставке, благодаря пероральной биодоступности, свойственной указанным полимерным наночастицам, которые используются в качестве носителя. 10 мг полимерных наночастиц NMA622 диспергируют в 10 мл воды при перемешивании в вихревом смесителе. К прозрачному раствору добавляют 6,5 мг ЭДКИ и все перемешивают в течение 10 минут. Затем добавляют 10,2 мг порошка гемцитабина при продолжении перемешивания. Указанный раствор перемешивают еще в течение 15-20 часов. Затем прозрачный раствор диализуют в течение 3 часов через диализную мембрану с размером, рассчитанным на 12 кДА, против воды. Далее проводят лиофилизацию до получения сухого порошка для дальнейшего использования. С тем чтобы продемонстрировать, что противораковые свойства гемцитабина, конъюгированного с полимерными наночастицами, сохранились, проводят тесты на жизнеспособность клеток (MTT), описанные в примере 6, с использованием клеточной линии рака поджелудочной железы человека BxPC3. Данные, показанные на фиг. 9, подтверждают, что через 96 часов наногемцитабин обладает сравнимой эффективностью со свободным гемцитабином.
Несмотря на то что настоящее изобретение было описано с использованием предпочтительных вариантов его осуществления, специалисты в данной области понимают, что настоящее изобретение может быть осуществлено с введением в него модификаций, которые соответствуют принципам и области настоящего изобретения, описанным в прилагаемой формуле изобретения.

Claims (64)

1. Способ получения полимерных наночастиц, обладающих нижней критической температурой растворения (НКТР) выше температуры тела человека (примерно 37°C), включающий стадии:
растворения в водной жидкости с образованием мицелл N-изопропилакриламида (NIPAAM), акриловой кислоты (АК) и по меньшей мере одного из винильных мономеров, выбранных из винилацетата, 4-винилбензойной кислоты, метилметакрилата, винилметакрилата, N-винилпирролидона, N-винилпиперидона, N-винилкапролактума, N-винилкарбазола и стирола; где указанные NIPAAM, АК и винильный мономер присутствуют в молярном соотношении 50-70:10-30:30-10, полимеризации указанных мицелл; удаления непрореагировавших материалов из указанного раствора; добавления одного или нескольких биоактивных агентов к указанному раствору и последующего включения указанных одного или нескольких биоактивных агентов в полимеризованные мицеллы в указанном растворе или конъюгирования с поверхностью указанных полимерных мицелл в указанном растворе.
2. Способ по п.1, отличающийся тем, что указанная стадия полимеризации включает стадию добавления одного или нескольких: сшивающего агента, активатора и инициатора.
3. Способ по п.1, отличающийся тем, что указанная стадия полимеризации включает стадию добавления сшивающего агента к указанному раствору, где указанный сшивающий агент представляет собой N,N'-метилен-бис-акриламид.
4. Способ по п.1, отличающийся тем, что указанная стадия полимеризации включает добавление инициатора, который представляет собой персульфатную соль аммония, калия или натрия.
5. Способ по п.1, отличающийся тем, что указанная стадия полимеризации включает добавление активатора, выбранного из группы, состоящей из тетраметилэтилендиамина (ТМЭД), сульфата железа-аммония и их смесей.
6. Способ по п.1, отличающийся тем, что указанную стадию полимеризации проводят в присутствии инертного газа.
7. Способ по п.6, отличающийся тем, что указанный инертный газ выбирают из аргона и азота.
8. Способ по п.1, отличающийся тем, что указанную стадию полимеризации проводят при температуре, варьирующей от 20°C до 80°C.
9. Способ по п.8, отличающийся тем, что указанная температура варьирует от 30°C до 40°C.
10. Способ по п.1, отличающийся тем, что указанные полимерные наночастицы имеют диаметр 50-100 нм.
11. Способ по п.1, отличающийся тем, что, по меньшей мере, один или несколько указанных биологически активных агентов включаются в указанные мицеллы.
12. Способ по п.1, отличающийся тем, что, по меньшей мере, один из указанных одного или нескольких биологически активных агентов представляет собой лекарственное средство.
13. Способ по п.1, отличающийся тем, что, по меньшей мере, один плохо растворимый в воде биологический агент выбирают из группы, состоящей из антинеопластических агентов, стероидных соединений, фитохимических средств, противогрибных агентов, противовирусных агентов, антибактериальных агентов, противотуберкулезных агентов и противовоспалительных агентов.
14. Способ по п.1, отличающийся тем, что, по меньшей мере, один плохо растворимый в воде биологический агент выбирают из группы, состоящей из флавоноидов, куркуминоидов.
15. Способ по п.1, отличающийся тем, что по меньшей мере один из указанных одного или нескольких биологически активных агентов выбирают из группы, состоящей из паклитаксела, доцетаксела, рапамицина, доксорубицина, даунорубицина, идарубицина, эпирубицина, капецитабина, митомицина C, амсакрина, бусульфана, третиноина, этопозида, хлорамбуцила, хлорметина, мелфалана, гемцитабина, 5-фторурацила (5-ФУ), соединений бензилфенилмочевины (БФМ), куркуминоидов, циклопамина, ацикловира, индинавира, ламивудина, ставудина, невирапина, ритонавира, ганцикловира, саквинавира, лопинавира, нельфинавира, итраконазола, кетоконазола, миконазола, оксиконазола, сертаконазола, амфотерицина B, гризеофульвина, ципрофлоксацина, моксифлоксацина, офлоксацина, метоксифлоксацина, пефлоксацина, норфлоксацина, спарфлоксацина, темафлоксацина, левофлоксацина, ломефлоксацина, циноксацина, клоксациллина, бензилпенициллина, фенилметоксипенициллина, эритромицина, рифампицина, рифапентина, ибупрофена, индометацина, кетопрофена, напроксена, оксапрозина, пироксикама и сулиндака.
16. Способ по п.1, в котором куркуминоидом является куркумин.
17. Способ по п.1, дополнительно включающий необязательную стадию поверхностной модификации частиц путем функционализации АК в указанных полимеризованных мицеллах после проведения указанной стадии полимеризации полиэтиленгликоль-амином (ПЭГамином).
18. Способ по п.17, отличающийся тем, что указанную стадию функционализации проводят путем химической конъюгации между поверхностными карбоксильными группами АК на указанных полимеризованных мицеллах и концевыми аминогруппами ПЭГ или производными ПЭГ с использованием сшивающего линкера.
19. Способ по п.17, отличающийся тем, что указанный ПЭГ имеет длину цепи в диапазоне от 50 Да до 8000 Да.
20. Способ по п.17, отличающийся тем, что указанный ПЭГамин получают из метокси-ПЭГамина.
21. Способ по п.17, отличающийся тем, что указанный ПЭГамин содержит функциональную группу на другом конце цепи полиэтиленгликоля.
22. Способ по п.1, дополнительно включающий необязательную стадию поверхностной модификации частиц за счет химического конъюгирования карбоксильной группы в указанной полимерной мицелле с аминогруппой конъюгированного фрагмента.
23. Способ по п.22, отличающийся тем, что указанный конъюгированный фрагмент ассоциирован с контрастным веществом.
24. Способ по п.23, отличающийся тем, что указанное контрастное вещество представляет собой хелатированный комплекс металла.
25. Способ по п.22, отличающийся тем, что указанный конъюгированный фрагмент представляет собой антитело.
26. Способ по п.22, отличающийся тем, что указанный конъюгированный фрагмент представляет собой лиганд к рецептору клеточной поверхности.
27. Способ по п.26, отличающийся тем, что указанный лиганд к рецептору на клеточной поверхности представляет собой пептид, сахар или глюкозамин.
28. Способ по п.22, отличающийся тем, что указанный конъюгированный фрагмент представляет собой флуорофор, или краситель, или радионуклид.
29. Способ по п.23, отличающийся тем, что указанный конъюгированный фрагмент представляет собой агент для маскирования вкуса.
30. Способ по п.23, отличающийся тем, что указанный конъюгированный фрагмент представляет собой водорастворимое лекарственное средство.
31. Способ по п.23, в котором водорастворимое лекарственное средство представляет собой гемцитабин.
32. Способ получения мицеллярной композиции, включающий стадии: восстановления полимерных мицелл, состоящих из полимеризованного N-изопропилакриламида (NIPAAM), в сочетании по меньшей мере с одним из мономеров, выбранных из винилацетата, 4-винилбензойной кислоты, метилметакрилата, винилметакрилата, N-винилпирролидона, N-винилпиперидона, N-винилкапролактума, N-винилкарбазола и стирола, дополнительно к акриловой кислоте (АК), в водном растворе, причем указанные NIPAAM, АК и винильный мономер присутствуют в молярном соотношении 50-70:10-30:30-10.
33. Способ по п.32, дополнительно включающий проведение необязательной поверхностной функционализации указанной полимеризованной мицеллы в водном растворе с использованием ПЭГамина с длиной цепи от 50 до 8000 Да или с использованием конъюгированного фрагмента, включающего контрастное вещество, антитело, лиганд к рецептору клеточной поверхности, флуорофор, краситель, радионуклид, агент для маскирования вкуса или водорастворимое лекарственное средство.
34. Способ по п.32, дополнительно включающий добавление одного или нескольких биологически активных агентов к указанным полимерным мицеллам в указанном водном растворе и включение указанных одного или нескольких биологически активных агентов в указанные полимеризованные мицеллы.
35. Способ по п.32, дополнительно включающий стадию лиофилизации указанного раствора с получением диспергируемого сухого порошка полимеризованных мицелл, содержащих включенные в них биологически активные агенты.
36. Восстанавливаемые полимерные мицеллы, состоящие из сополимера мономеров:
N-изопропилакриламида (NIPAAM), акриловой кислоты и
по меньшей мере одного из мономеров, выбранных из винилацетата, 4-винилбензойной кислоты, метилметакрилата, винилметакрилата, N-винилпирролидона, N-винилпиперидона, N-винилкапролактума, N-винилкарбазола и стирола,
причем указанные NIPAAM, АК и винильный мономер присутствуют в молярном соотношении 50-70:10-30:30-10.
37. Биологически активная полимерная композиция на основе наночастиц, включающая: по меньшей мере один биологически активный агент; жидкий носитель; и множество полимерных наночастиц, обладающих нижней критической температурой растворения (НКТР) выше температуры тела человека (примерно 37°C), диспергированных в указанном жидком носителе, где указанные полимерные наночастицы состоят из сополимера, включающего
N-изопропилакриламид (NIPAAM), в молярной пропорции, варьирующей от 50 до 70,
акриловую кислоту (АК), в молярной пропорции, варьирующей от 10 до 30,
и по меньшей мере один из винильных мономеров, выбранных из винилацетата, 4-винилдензойной кислоты, метилметакрилата, винилметакрилата, N-винилпирролидона, N-винилпиперидона, N-винилкапролактума, N-винилкарбазола и стирола, в молярной пропорции, варьирующей от 10 до 30,
где по меньшей мере один биологически активный агент ассоциирован с указанными полимерными наночастицами.
38. Биологически активная полимерная композиция по п.37, отличающаяся тем, что указанный биологически активный агент плохо растворим в воде.
39. Биологически активная полимерная композиция по п.38 отличающаяся тем, что указанный плохо растворимый в воде биологически активный агент имеет растворимость в воде менее чем 10 мкг/мл.
40. Биологически активная полимерная композиция по п.37, отличающаяся тем, что указанный биологически активный агент растворим в воде и содержит химически реакционную функциональную группу.
41. Биологически активная полимерная композиция по п.40, отличающаяся тем, что указанный водорастворимый биологически активный агент присоединен к поверхности частицы за счет химического конъюгирования.
42. Биологически активная полимерная композиция по п.37, отличающаяся тем, что указанный биологически активный агент выбирают из группы, состоящей из антинеопластических агентов, стероидных соединений, фитохимических средств, противогрибных агентов, противовирусных агентов, антибактериальных агентов, противотуберкулезных агентов и противовоспалительных агентов.
43. Биологически активная полимерная композиция по п.37, отличающаяся тем, что указанный биологически активный агент выбирают из группы, состоящей из флавоноидов и куркуминоидов.
44. Биологически активная полимерная композиция по п.37, отличающаяся тем, что указанный по меньшей мере одни биологически активный агент выбирают из группы, состоящей из паклитаксела, доцетаксела, рапамицина, доксорубицина, даунорубицина, идарубицина, эпирубицина, капецитабина, митомицина C, амсакрина, бусульфана, третиноина, этопозида, хлорамбуцила, хлорметина, мелфалана, гемцитабина, 5-фторурацила (5-ФУ), соединений бензилфенилмочевины (БФМ), куркуминоидов, циклопамина, ацикловира, индинавира, ламивудина, ставудина, невирапина, ритонавира, ганцикловира, саквинавира, лопинавира, нельфинавира, итраконазола, кетоконазола, миконазола, оксиконазола, сертаконазола, амфотерицина B, гризеофульвина, ципрофлоксацина, моксифлоксацина, офлоксацина, метоксифлоксацина, пефлоксацина, норфлоксацина, спарфлоксацина, темафлаксацина, левофлоксацина, ломефлоксацина, циноксацина, клоксацилина, бензилпенициллина, фенилметоксипенициллина, эритромицина, рифампицина, рифапентина, ибупрофена, индометацина, кетопрофена, напроксена, оксапрозина, пироксикама и сулиндака.
45. Биологически активная полимерная композиция по п.44, где биологически активный агент представляет собой куркумин.
46. Биологически активная полимерная композиция по п.37, отличающаяся тем, что указанное множество полимерных наночастиц включает включенные в них или конъюгированные с ними лекарственные средства более чем одного типа.
47. Биологически активная полимерная композиция по п.46, отличающаяся тем, что указанный по меньшей мере один биологически активный агент включен в указанные полимерные мицеллы.
48. Биологически активная полимерная композиция по п.46, отличающаяся тем, что указанный по меньшей мере один биологически активный агент конъюгирован с поверхностью указанных полимерных мицелл.
49. Биологически активная полимерная композиция по п.46, включающая также по меньшей мере один конъюгированный с поверхностью фрагмент, ассоциированный с указанными полимерными наночастицами.
50. Биологически активная полимерная композиция по п.37, которая имеет форму пероральной композиции.
51. Биологически активная полимерная композиция по п.37, которая имеет форму для парентерального или местного применения.
52. Способ доставки пациенту лекарственного средства, включающий стадию введения указанному пациенту композиции, которая включает указанное лекарственное средство в жидком носителе, где указанное лекарственное средство ассоциировано с полимерными наночастицами по п.1, диспергированными в указанном жидком носителе.
53. Способ по п.52, отличающийся тем, что указанная стадия введения осуществляется в пероральном режиме.
54. Способ по п.52, отличающийся тем, что указанная стадия введения проводится по одному из способов: парентеральному или местному.
55. Способ получения полимерных композиций с наночастицами, включающий стадии:
включения одного или нескольких лекарственных средств или биологически активных агентов в полимерные наночастицы, обладающих нижней критической температурой растворения (НКТР) выше температуры тела человека (примерно 37°C) и состоящие из NIPAAM в молярной пропорции, варьирующей от 50 до 70, акриловой кислоты (АК) в молярной пропорции от 10 до 30 и по меньшей мере одного из винильных мономеров, выбранных из группы, состоящей из винилацетата, 4-винилбензойной кислоты, метилметакрилата, винилметакрилата, N-винилпирролидона, N-винилпиперидона, N-винилкапролактума, N-винилкарбазола и стирола, в молярной пропорции, варьирующей от 10 до 30; и
восстановления полимерных наночастиц после указанной стадии включения.
56. Способ по п.55, дополнительно включающий стадию поверхностной функционализации указанных полимерных наночастиц.
57. Способ по п.55, дополнительно включающий стадию диспергирования указанных полимерных наночастиц в водном растворе.
58. Способ по п.1, дополнительно включающий стадию сушки указанного раствора с получением диспергируемого сухого порошка полимеризованных мицелл, содержащих включенные в них биологически активные агенты.
59. Способ по п.58, где сушка представляет собой лиофилизацию.
60. Способ по п.1, где указанный один или более биоактивный агент представляет собой куркумин.
61. Восстанавливаемая полимерная мицелла по п.36, дополнительно содержащая куркумин.
62. Биологически активная полимерная композиция по п.37, где указанный по меньшей мере один биоактивный агент представляет собой куркумин.
63. Способ по п.52, где указанный один или более биоактивный агент представляет собой куркумин.
64. Способ по п.55, где указанный один или более биоактивный агент представляет собой куркумин.
RU2009116464/15A 2006-10-05 2007-10-05 Вододиспергируемые пероральные, парентеральные и местные композиции для плохо растворимых в воде лекарственных препаратов, включающие улучшающие их свойства полимерные наночастицы RU2492872C2 (ru)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US84968406P 2006-10-05 2006-10-05
US60/849,684 2006-10-05
US86651606P 2006-11-20 2006-11-20
US60/866,516 2006-11-20
US95676007P 2007-08-20 2007-08-20
US60/956,760 2007-08-20
PCT/US2007/080536 WO2008073558A2 (en) 2006-10-05 2007-10-05 Water-dispersible oral, parenteral, and topical formulations for poorly water soluble drugs using smart polymeric nanoparticles

Publications (2)

Publication Number Publication Date
RU2009116464A RU2009116464A (ru) 2010-11-10
RU2492872C2 true RU2492872C2 (ru) 2013-09-20

Family

ID=39512359

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009116464/15A RU2492872C2 (ru) 2006-10-05 2007-10-05 Вододиспергируемые пероральные, парентеральные и местные композиции для плохо растворимых в воде лекарственных препаратов, включающие улучшающие их свойства полимерные наночастицы

Country Status (10)

Country Link
US (2) US8313777B2 (ru)
EP (1) EP2073848B1 (ru)
JP (1) JP2010505877A (ru)
CN (1) CN101583379B (ru)
AU (1) AU2007333528B2 (ru)
BR (1) BRPI0715299A2 (ru)
CA (1) CA2665343C (ru)
MX (1) MX2009003680A (ru)
RU (1) RU2492872C2 (ru)
WO (1) WO2008073558A2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2752314C1 (ru) * 2020-07-10 2021-07-26 Общество с ограниченной ответственностью "Таргет-Инжиниринг" Способ получения наноразмерных систем олигопептид-полимерная частица на основе амфифильных сополимеров N-винилпирролидона с (ди)метакрилатами и их применение в качестве активного вещества в косметологии и медицине
RU2760274C1 (ru) * 2020-07-10 2021-11-23 Общество с ограниченной ответственностью "Таргет-Инжиниринг" Способ получения наноразмерных систем низкомолекулярных биологически активных соединений на основе амфифильных сополимеров N-винилпирролидона с (ди)метакрилатами разветвленного строения для космецевтических приложений
RU2760274C9 (ru) * 2020-07-10 2022-09-15 Общество с ограниченной ответственностью "Таргет-Инжиниринг" Способ получения наноразмерных систем низкомолекулярных биологически активных соединений на основе амфифильных сополимеров N-винилпирролидона с (ди)метакрилатами разветвленного строения для космецевтических приложений

Families Citing this family (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2008008423A (es) * 2005-12-28 2008-09-23 Dabur Pharma Ltd Polimero no toxico, no biodegradable, biocompatible, util para composiciones farmaceuticas con nanoparticulas.
US9156728B2 (en) 2006-12-14 2015-10-13 Ppg Industries Ohio, Inc. Low density and high strength fiber glass for ballistic applications
US9394196B2 (en) 2006-12-14 2016-07-19 Ppg Industries Ohio, Inc. Low density and high strength fiber glass for reinforcement applications
TWI433674B (zh) 2006-12-28 2014-04-11 Infinity Discovery Inc 環杷明(cyclopamine)類似物類
WO2009042114A2 (en) 2007-09-21 2009-04-02 The Johns Hopkins University Phenazine derivatives and uses thereof
ES2717797T3 (es) 2007-12-27 2019-06-25 Infinity Pharmaceuticals Inc Métodos para reducción estereoselectiva de derivados de 4-en-3-ona de ciclopamina
US9700525B2 (en) * 2008-08-20 2017-07-11 Board Of Supervisors Of Louisiana State University And Agricultural & Mechanical College Continuous local slow-release of therapeutics for head and neck problems and upper aerodigestive disorders
US20120003177A1 (en) * 2008-09-17 2012-01-05 Youqing Shen Curcumin-containing polymers and water-soluble curcumin derivatives as prodrugs of prodrug carriers
JP5775462B2 (ja) * 2008-11-17 2015-09-09 ライラ ファーマシューティカルズ ピーブイティ.エルティディ. 眼疾患に適用するためのクルクミノイドおよびその代謝物
US20110027374A1 (en) * 2008-12-16 2011-02-03 Maria Oksana Bachynsky Capecitabine rapidly disintegrating tablets
EP2462115B1 (en) 2009-08-05 2016-01-06 Infinity Pharmaceuticals, Inc. Enzymatic transamination of cyclopamine analogs
US20110135739A1 (en) * 2009-11-06 2011-06-09 Bennett Carter Oral Formulations of a Hedgehog Pathway Inhibitor
US20170079962A1 (en) 2009-11-11 2017-03-23 Rapamycin Holdings, Llc Oral Rapamycin Preparation and Use for Stomatitus
US8992815B2 (en) * 2010-02-10 2015-03-31 Imra America, Inc. Production of organic compound nanoparticles with high repetition rate ultrafast pulsed laser ablation in liquids
CN102167812B (zh) 2010-02-26 2016-04-20 北京科美森医药研发有限公司 聚乙二醇化环巴胺类似物及其制备方法和用途
US9393198B2 (en) * 2010-03-22 2016-07-19 Signpath Pharma Inc. Intravenous curcumin and derivatives for treatment of neurodegenerative and stress disorders
WO2011119995A2 (en) * 2010-03-26 2011-09-29 Cerulean Pharma Inc. Formulations and methods of use
EP2600901B1 (en) 2010-08-06 2019-03-27 ModernaTX, Inc. A pharmaceutical formulation comprising engineered nucleic acids and medical use thereof
US9376447B2 (en) 2010-09-14 2016-06-28 Infinity Pharmaceuticals, Inc. Transfer hydrogenation of cyclopamine analogs
BR112013007862A2 (pt) 2010-10-01 2019-09-24 Moderna Therapeutics Inc ácidos nucleicos manipulados e métodos de uso dos mesmos.
CA2821109A1 (en) * 2010-12-10 2012-06-14 The Johns Hopkins University Smart polymeric nanoparticles which overcome multidrug resistance to cancer chemotherapeutics and treatment-related systemic toxicity
US8710200B2 (en) 2011-03-31 2014-04-29 Moderna Therapeutics, Inc. Engineered nucleic acids encoding a modified erythropoietin and their expression
KR20140029468A (ko) 2011-04-29 2014-03-10 셀렉타 바이오사이언시즈, 인크. 항체 반응을 감소시키기 위한 관용원성 합성 나노운반체
US10532045B2 (en) 2013-12-18 2020-01-14 Signpath Pharma, Inc. Liposomal mitigation of drug-induced inhibition of the cardiac IKr channel
CA2836904C (en) 2011-06-03 2019-09-24 Signpath Pharma Inc. Liposomal mitigation of drug-induced long qt syndrome and potassium delayed-rectifier current
US12004868B2 (en) 2011-06-03 2024-06-11 Signpath Pharma Inc. Liposomal mitigation of drug-induced inhibition of the cardiac IKr channel
US10349884B2 (en) 2011-06-03 2019-07-16 Sighpath Pharma Inc. Liposomal mitigation of drug-induced inhibition of the cardiac ikr channel
US10449193B2 (en) 2011-06-03 2019-10-22 Signpath Pharma Inc. Protective effect of DMPC, DMPG, DMPC/DMPG, lysoPG and lysoPC against drugs that cause channelopathies
US10117881B2 (en) 2011-06-03 2018-11-06 Signpath Pharma, Inc. Protective effect of DMPC, DMPG, DMPC/DMPG, LYSOPG and LYSOPC against drugs that cause channelopathies
US10238602B2 (en) 2011-06-03 2019-03-26 Signpath Pharma, Inc. Protective effect of DMPC, DMPG, DMPC/DMPG, LysoPG and LysoPC against drugs that cause channelopathies
EA032840B8 (ru) 2011-06-22 2020-06-18 Вайоми Терапеутикс Лимитед Пролекарства на основе конъюгатов противогрибковых агентов и их применение
US9464124B2 (en) 2011-09-12 2016-10-11 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
KR102014061B1 (ko) 2011-10-03 2019-08-28 모더나 세라퓨틱스, 인코포레이티드 변형된 뉴클레오사이드, 뉴클레오타이드, 및 핵산, 및 이들의 용도
RS63244B1 (sr) 2011-12-16 2022-06-30 Modernatx Inc Kompozicije modifikovane mrna
JP2015518705A (ja) 2012-04-02 2015-07-06 モデルナ セラピューティクス インコーポレイテッドModerna Therapeutics,Inc. ヒト疾患に関連する生物製剤およびタンパク質の産生のための修飾ポリヌクレオチド
US9572897B2 (en) 2012-04-02 2017-02-21 Modernatx, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
US9283287B2 (en) 2012-04-02 2016-03-15 Moderna Therapeutics, Inc. Modified polynucleotides for the production of nuclear proteins
US9254311B2 (en) 2012-04-02 2016-02-09 Moderna Therapeutics, Inc. Modified polynucleotides for the production of proteins
US9192651B2 (en) 2012-04-02 2015-11-24 Moderna Therapeutics, Inc. Modified polynucleotides for the production of secreted proteins
JP6247685B2 (ja) * 2012-05-16 2017-12-13 メワ・シン 実質的に水不溶性の薬物の送達のための医薬組成物
EP2866814A4 (en) * 2012-07-02 2015-11-25 Univ Northeastern BIODEGRADABLE POLYMER BUFFER
CN102743336A (zh) * 2012-07-04 2012-10-24 浙江大学 姜黄素壳聚糖硬脂酸嫁接物胶束的制备方法及其应用
US9687569B2 (en) 2012-08-16 2017-06-27 University Of Washington Through Its Center For Commercialization Theranostic nanoparticle and methods for making and using the nanoparticle
WO2014036534A1 (en) 2012-08-31 2014-03-06 University Of North Texas Health Science Center Curcumin-er, a liposomal-plga sustained release nanocurcumin for minimizing qt prolongation for cancer therapy
JP6179521B2 (ja) * 2012-09-04 2017-08-16 Jnc株式会社 物質測定センサー
WO2014059295A1 (en) * 2012-10-12 2014-04-17 The Board Of Regents Of The University Of Texas System Use of mtor inhibitors to treat vascular cognitive impairment
US9597380B2 (en) 2012-11-26 2017-03-21 Modernatx, Inc. Terminally modified RNA
EP2948134B1 (en) 2013-01-24 2020-03-04 Palvella Therapeutics, Inc. Compositions for transdermal delivery of mtor inhibitors
US10258698B2 (en) 2013-03-14 2019-04-16 Modernatx, Inc. Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions
US8980864B2 (en) 2013-03-15 2015-03-17 Moderna Therapeutics, Inc. Compositions and methods of altering cholesterol levels
CA2910579C (en) * 2013-05-03 2023-09-26 Selecta Biosciences, Inc. Dosing combinations for reducing undesired humoral immune responses
IL284924B2 (en) * 2013-05-03 2023-04-01 Selecta Biosciences Inc Adjacent, local administration of tolerogenic synthetic nanocarriers to reduce type I and type IV hypersensitivity
EA201592236A1 (ru) 2013-06-04 2016-06-30 Вайом Байосайнсиз Пвт. Лтд. Частицы с нанесенным покрытием и композиции, включающие такие частицы
WO2015034925A1 (en) 2013-09-03 2015-03-12 Moderna Therapeutics, Inc. Circular polynucleotides
WO2015034928A1 (en) 2013-09-03 2015-03-12 Moderna Therapeutics, Inc. Chimeric polynucleotides
GB201317005D0 (en) * 2013-09-25 2013-11-06 Blueberry Therapeutics Ltd Composition and methods of treatment
EP3052106A4 (en) 2013-09-30 2017-07-19 ModernaTX, Inc. Polynucleotides encoding immune modulating polypeptides
CA2926218A1 (en) 2013-10-03 2015-04-09 Moderna Therapeutics, Inc. Polynucleotides encoding low density lipoprotein receptor
AU2014373683B2 (en) * 2013-12-31 2020-05-07 Rapamycin Holdings, Llc Oral rapamycin nanoparticle preparations and use
CA2953996A1 (en) * 2014-07-03 2016-01-07 Pfizer Inc. Targeted therapeutic nanoparticles and methods of making and using same
CA2955250A1 (en) 2014-07-16 2016-01-21 Moderna Therapeutics, Inc. Chimeric polynucleotides
US20170210788A1 (en) 2014-07-23 2017-07-27 Modernatx, Inc. Modified polynucleotides for the production of intrabodies
CA2957800A1 (en) 2014-09-07 2016-03-10 Selecta Biosciences, Inc. Methods and compositions for attenuating anti-viral transfer vector immune responses
WO2016043620A1 (ru) * 2014-09-17 2016-03-24 Общество С Ограниченной Ответственностью "Научно-Производственный Центр "Амифион" Амфифильные полимеры и системы доставки на их основе
WO2016196928A1 (en) 2015-06-04 2016-12-08 PellePharm, Inc. Topical formulations for delivery of hedgehog inhibitor compounds and use thereof
WO2017031261A1 (en) * 2015-08-20 2017-02-23 Mewa Singh Polyphenolic polymer to make water-insoluble molecules become water-soluble
KR101784065B1 (ko) * 2015-09-11 2017-10-11 연세대학교 산학협력단 천연 항균 입자, 이를 포함하는 조성물 및 이의 제조방법
ES2969082T3 (es) 2015-09-17 2024-05-16 Modernatx Inc Compuestos y composiciones para la administración intracelular de agentes terapéuticos
SI3718565T1 (sl) 2015-10-22 2022-08-31 Modernatx, Inc. Cepiva za respiratorni virus
ES2924407T3 (es) 2015-12-10 2022-10-06 Modernatx Inc Composiciones y procedimientos para el suministro de agentes terapéuticos
CN105505962B (zh) * 2015-12-21 2018-08-31 中山大学附属第一医院 一种功能化纳米配合物基因导入材料及其制备方法和应用
PL3394030T3 (pl) 2015-12-22 2022-04-11 Modernatx, Inc. Związki i kompozycje do wewnątrzkomórkowego dostarczania środków
WO2017112943A1 (en) 2015-12-23 2017-06-29 Modernatx, Inc. Methods of using ox40 ligand encoding polynucleotides
WO2017120612A1 (en) 2016-01-10 2017-07-13 Modernatx, Inc. Therapeutic mrnas encoding anti ctla-4 antibodies
WO2017156183A1 (en) 2016-03-08 2017-09-14 Los Gatos Pharmaceuticals, Inc. Camptothecin derivatives and uses thereof
EP3426301A4 (en) 2016-03-08 2019-11-06 Los Gatos Pharmaceuticals, Inc. VERBUNDNANOPARTICLES AND USES THEREOF
US11491114B2 (en) 2016-10-12 2022-11-08 Curioralrx, Llc Formulations for enteric delivery of therapeutic agents
WO2018089540A1 (en) 2016-11-08 2018-05-17 Modernatx, Inc. Stabilized formulations of lipid nanoparticles
CN110520097B (zh) 2017-01-06 2023-10-27 帕尔维拉治疗股份有限公司 Mtor抑制剂的无水组合物及其使用方法
MX2019010757A (es) 2017-03-11 2020-01-20 Selecta Biosciences Inc Métodos y composiciones relacionados con el tratamiento combinado con antiinflamatorios y nanoportadores sintéticos que comprenden un inmunosupresor.
LT3596041T (lt) 2017-03-15 2023-01-25 Modernatx, Inc. Terapinių medžiagų, skirtų intraląsteliniam tiekimui, junginys ir sudėtys
EP3596042B1 (en) 2017-03-15 2022-01-12 Modernatx, Inc. Crystal forms of amino lipids
AU2018234828A1 (en) 2017-03-15 2019-09-19 Modernatx, Inc. Lipid nanoparticle formulation
ES2952779T3 (es) 2017-05-18 2023-11-06 Modernatx Inc ARN mensajero modificado que comprende elementos de ARN funcionales
WO2018213731A1 (en) 2017-05-18 2018-11-22 Modernatx, Inc. Polynucleotides encoding tethered interleukin-12 (il12) polypeptides and uses thereof
US20200268666A1 (en) 2017-06-14 2020-08-27 Modernatx, Inc. Polynucleotides encoding coagulation factor viii
US12077501B2 (en) 2017-06-14 2024-09-03 Modernatx, Inc. Compounds and compositions for intracellular delivery of agents
EP3638215A4 (en) 2017-06-15 2021-03-24 Modernatx, Inc. RNA FORMULATIONS
WO2019046809A1 (en) 2017-08-31 2019-03-07 Modernatx, Inc. METHODS OF MANUFACTURING LIPID NANOPARTICLES
WO2019048645A1 (en) 2017-09-08 2019-03-14 Mina Therapeutics Limited STABILIZED COMPOSITIONS OF SMALL ACTIVATOR RNA (PARNA) FROM CEBPA AND METHODS OF USE
US20220265856A1 (en) 2017-11-22 2022-08-25 Modernatx, Inc. Polynucleotides encoding propionyl-coa carboxylase alpha and beta subunits for the treatment of propionic acidemia
JP7423521B2 (ja) 2017-11-22 2024-01-29 モダーナティエックス・インコーポレイテッド フェニルケトン尿症の治療用のフェニルアラニンヒドロキシラーゼをコードするポリヌクレオチド
EP3714048A1 (en) 2017-11-22 2020-09-30 Modernatx, Inc. Polynucleotides encoding ornithine transcarbamylase for the treatment of urea cycle disorders
WO2019136241A1 (en) 2018-01-05 2019-07-11 Modernatx, Inc. Polynucleotides encoding anti-chikungunya virus antibodies
EP4242307A3 (en) 2018-04-12 2023-12-27 MiNA Therapeutics Limited Sirt1-sarna compositions and methods of use
WO2019226650A1 (en) 2018-05-23 2019-11-28 Modernatx, Inc. Delivery of dna
US11000513B2 (en) 2018-07-02 2021-05-11 Palvella Therapeutics, Inc. Anhydrous compositions of mTOR inhibitors and methods of use
US20220184185A1 (en) 2018-07-25 2022-06-16 Modernatx, Inc. Mrna based enzyme replacement therapy combined with a pharmacological chaperone for the treatment of lysosomal storage disorders
WO2020033791A1 (en) 2018-08-09 2020-02-13 Verseau Therapeutics, Inc. Oligonucleotide compositions for targeting ccr2 and csf1r and uses thereof
EP3846776A1 (en) 2018-09-02 2021-07-14 ModernaTX, Inc. Polynucleotides encoding very long-chain acyl-coa dehydrogenase for the treatment of very long-chain acyl-coa dehydrogenase deficiency
US20230009009A1 (en) 2018-09-13 2023-01-12 Modernatx, Inc. Polynucleotides encoding glucose-6-phosphatase for the treatment of glycogen storage disease
US20220243182A1 (en) 2018-09-13 2022-08-04 Modernatx, Inc. Polynucleotides encoding branched-chain alpha-ketoacid dehydrogenase complex e1-alpha, e1-beta, and e2 subunits for the treatment of maple syrup urine disease
WO2020056239A1 (en) 2018-09-14 2020-03-19 Modernatx, Inc. Polynucleotides encoding uridine diphosphate glycosyltransferase 1 family, polypeptide a1 for the treatment of crigler-najjar syndrome
EP3852732A1 (en) 2018-09-19 2021-07-28 ModernaTX, Inc. Peg lipids and uses thereof
CA3113651A1 (en) 2018-09-20 2020-03-26 Modernatx, Inc. Preparation of lipid nanoparticles and methods of administration thereof
US20220152225A1 (en) 2018-09-27 2022-05-19 Modernatx, Inc. Polynucleotides encoding arginase 1 for the treatment of arginase deficiency
US20220211740A1 (en) 2019-04-12 2022-07-07 Mina Therapeutics Limited Sirt1-sarna compositions and methods of use
JP2022532078A (ja) 2019-05-08 2022-07-13 アストラゼネカ アクチボラグ 皮膚及び創傷のための組成物並びにその使用の方法
CN110302188B (zh) * 2019-05-10 2021-12-10 郑州大学 一种抗阿尔茨海默症的疏水缔合聚合物的药物组合物的制备方法
CN110585141A (zh) * 2019-09-19 2019-12-20 湖北科益药业股份有限公司 一种稳定的更昔洛韦冻干粉针剂
EP4031524A1 (en) 2019-09-19 2022-07-27 ModernaTX, Inc. Branched tail lipid compounds and compositions for intracellular delivery of therapeutic agents
JP2023527875A (ja) 2020-06-01 2023-06-30 モダーナティエックス・インコーポレイテッド フェニルアラニンヒドロキシラーゼバリアント及びその使用
IL302625A (en) 2020-11-13 2023-07-01 Modernatx Inc Polynucleotides encoding cystic fibrosis transmembrane conductance regulator for the treatment of cystic fibrosis
US11524023B2 (en) 2021-02-19 2022-12-13 Modernatx, Inc. Lipid nanoparticle compositions and methods of formulating the same
US20240207444A1 (en) 2021-03-24 2024-06-27 Modernatx, Inc. Lipid nanoparticles containing polynucleotides encoding phenylalanine hydroxylase and uses thereof
WO2022204371A1 (en) 2021-03-24 2022-09-29 Modernatx, Inc. Lipid nanoparticles containing polynucleotides encoding glucose-6-phosphatase and uses thereof
US20240226025A1 (en) 2021-03-24 2024-07-11 Modernatx, Inc. Polynucleotides encoding methylmalonyl-coa mutase for the treatment of methylmalonic acidemia
US20240189449A1 (en) 2021-03-24 2024-06-13 Modernatx, Inc. Lipid nanoparticles and polynucleotides encoding ornithine transcarbamylase for the treatment of ornithine transcarbamylase deficiency
US20240216288A1 (en) 2021-03-24 2024-07-04 Modernatx, Inc. Lipid nanoparticles containing polynucleotides encoding propionyl-coa carboxylase alpha and beta subunits and uses thereof
EP4314292A1 (en) 2021-03-26 2024-02-07 MiNA Therapeutics Limited Tmem173 sarna compositions and methods of use
JP2024521148A (ja) * 2021-05-24 2024-05-28 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 熱可逆性ポリマー及びその使用方法
EP4355882A2 (en) 2021-06-15 2024-04-24 Modernatx, Inc. Engineered polynucleotides for cell-type or microenvironment-specific expression
WO2022271776A1 (en) 2021-06-22 2022-12-29 Modernatx, Inc. Polynucleotides encoding uridine diphosphate glycosyltransferase 1 family, polypeptide a1 for the treatment of crigler-najjar syndrome
WO2023056044A1 (en) 2021-10-01 2023-04-06 Modernatx, Inc. Polynucleotides encoding relaxin for the treatment of fibrosis and/or cardiovascular disease
CN114081990B (zh) * 2021-11-17 2022-07-01 江苏省中医药研究院 一种中药复合温敏凝胶栓塞剂及其制备方法和应用
WO2023099884A1 (en) 2021-12-01 2023-06-08 Mina Therapeutics Limited Pax6 sarna compositions and methods of use
WO2023161350A1 (en) 2022-02-24 2023-08-31 Io Biotech Aps Nucleotide delivery of cancer therapy
WO2023170435A1 (en) 2022-03-07 2023-09-14 Mina Therapeutics Limited Il10 sarna compositions and methods of use
EP4499153A2 (en) 2022-03-25 2025-02-05 ModernaTX, Inc. Polynucleotides encoding fanconi anemia, complementation group proteins for the treatment of fanconi anemia
WO2024026254A1 (en) 2022-07-26 2024-02-01 Modernatx, Inc. Engineered polynucleotides for temporal control of expression
WO2024134199A1 (en) 2022-12-22 2024-06-27 Mina Therapeutics Limited Chemically modified sarna compositions and methods of use
WO2024197033A1 (en) 2023-03-21 2024-09-26 Modernatx, Inc. Polynucleotides encoding relaxin for the treatment of heart failure
WO2024229321A1 (en) 2023-05-03 2024-11-07 Modernatx, Inc. Polynucleotides encoding cystic fibrosis transmembrane conductance regulator for the treatment of cystic fibrosis

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2172326C2 (ru) * 1996-02-21 2001-08-20 Дайити Фармасьютикал Ко., Лтд. Носители в виде частиц и содержащие их фармацевтические композиции
US6322817B1 (en) * 1999-02-17 2001-11-27 Dabur Research Foundation Formulations of paclitaxel, its derivatives or its analogs entrapped into nanoparticles of polymeric micelles, process for preparing same and the use thereof
US6579519B2 (en) * 2000-09-18 2003-06-17 Registrar, University Of Delhi Sustained release and long residing ophthalmic formulation and the process of preparing the same
RU2308943C2 (ru) * 2000-06-29 2007-10-27 Лабофарм, Инк. Композиции полимерных мицелл

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993024476A1 (en) * 1992-06-04 1993-12-09 Clover Consolidated, Limited Water-soluble polymeric carriers for drug delivery
JPH08133990A (ja) * 1994-11-10 1996-05-28 Nippon Oil & Fats Co Ltd 反応性マイクロスフェアー
ATE347886T1 (de) 1999-09-23 2007-01-15 Dabur Pharma Ltd Arzneizubereitungen enthaltend paclitaxel eingeschlossen in nanopartikeln von polymerischen mizellen
US20050158271A1 (en) * 2000-10-11 2005-07-21 Lee Sang C. Pharmaceutical applications of hydrotropic polymer micelles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2172326C2 (ru) * 1996-02-21 2001-08-20 Дайити Фармасьютикал Ко., Лтд. Носители в виде частиц и содержащие их фармацевтические композиции
US6322817B1 (en) * 1999-02-17 2001-11-27 Dabur Research Foundation Formulations of paclitaxel, its derivatives or its analogs entrapped into nanoparticles of polymeric micelles, process for preparing same and the use thereof
RU2308943C2 (ru) * 2000-06-29 2007-10-27 Лабофарм, Инк. Композиции полимерных мицелл
US6579519B2 (en) * 2000-09-18 2003-06-17 Registrar, University Of Delhi Sustained release and long residing ophthalmic formulation and the process of preparing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUPTA et al. KETOROLAC ENTRAPPED IN POLYMERIC MICELLS: PREPARATION, CHARACTERISATION AND OCULAR ANTI-INFLAMATORY STUDIES// INTERNATIONAL JOURNAL OF PHARMACEUTICS 209 (2000) 1-14. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2752314C1 (ru) * 2020-07-10 2021-07-26 Общество с ограниченной ответственностью "Таргет-Инжиниринг" Способ получения наноразмерных систем олигопептид-полимерная частица на основе амфифильных сополимеров N-винилпирролидона с (ди)метакрилатами и их применение в качестве активного вещества в косметологии и медицине
RU2760274C1 (ru) * 2020-07-10 2021-11-23 Общество с ограниченной ответственностью "Таргет-Инжиниринг" Способ получения наноразмерных систем низкомолекулярных биологически активных соединений на основе амфифильных сополимеров N-винилпирролидона с (ди)метакрилатами разветвленного строения для космецевтических приложений
RU2760274C9 (ru) * 2020-07-10 2022-09-15 Общество с ограниченной ответственностью "Таргет-Инжиниринг" Способ получения наноразмерных систем низкомолекулярных биологически активных соединений на основе амфифильных сополимеров N-винилпирролидона с (ди)метакрилатами разветвленного строения для космецевтических приложений

Also Published As

Publication number Publication date
BRPI0715299A2 (pt) 2013-07-23
CA2665343A1 (en) 2008-06-19
CN101583379B (zh) 2013-04-03
EP2073848A2 (en) 2009-07-01
WO2008073558A2 (en) 2008-06-19
EP2073848A4 (en) 2011-06-29
JP2010505877A (ja) 2010-02-25
CA2665343C (en) 2014-12-16
US20130115165A1 (en) 2013-05-09
EP2073848B1 (en) 2013-08-28
AU2007333528B2 (en) 2013-10-17
CN101583379A (zh) 2009-11-18
RU2009116464A (ru) 2010-11-10
AU2007333528A1 (en) 2008-06-19
US20080107749A1 (en) 2008-05-08
US8715741B2 (en) 2014-05-06
WO2008073558A3 (en) 2008-11-06
MX2009003680A (es) 2009-07-17
US8313777B2 (en) 2012-11-20

Similar Documents

Publication Publication Date Title
RU2492872C2 (ru) Вододиспергируемые пероральные, парентеральные и местные композиции для плохо растворимых в воде лекарственных препаратов, включающие улучшающие их свойства полимерные наночастицы
CA2564982C (en) Pegylated nanoparticles
Liao et al. A bio-responsive 6-mercaptopurine/doxorubicin based “Click Chemistry” polymeric prodrug for cancer therapy
Gao et al. All-active antitumor micelles via triggered lipid peroxidation
Ke et al. Length effect of stimuli-responsive block copolymer prodrug filomicelles on drug delivery efficiency
CA2913328C (en) Process for preparing stealth nanoparticles
Ke et al. Effective encapsulation of curcumin in nanoparticles enabled by hydrogen bonding using flash nanocomplexation
US12083185B2 (en) Small polymeric carriers for delivery of agents
JP2020076061A (ja) 薬物送達用の自己集積ブラシブロックコポリマーナノ粒子
US20130330412A1 (en) Smart polymeric nanoparticles which overcome multidrug resistance to cancer therapeutics and treatment-related systemic toxicity
Bordat et al. The crucial role of macromolecular engineering, drug encapsulation and dilution on the thermoresponsiveness of UCST diblock copolymer nanoparticles used for hyperthermia
Ding et al. Hepatoma-targeting and pH-sensitive nanocarriers based on a novel D-galactopyranose copolymer for efficient drug delivery
Sahu et al. Nanogels: The Emerging Carrier in Drug Delivery System
US20250057975A1 (en) Small polymeric carriers for delivery of agents
Wang et al. Preparation, Characterization, and In Vitro/In Vivo Evaluation of 3-O-β-D-Galactosylated Resveratrol-Loaded Polydopamine Nanoparticles
Luss et al. Toxicity Evaluation and Control Release of Curcumin-Loaded Amphiphilic Poly-n-vinylpyrrolidone Nanoparticles for the Treatment of Malignant Tumors: In Vitro and In Vivo Models
Beyazit Stimuli-Responsive Systems and Applications
CN114177136A (zh) 一种可注射用的两亲性嵌段共聚物纳米载药胶束
BR112021003121A2 (pt) nanopartículas

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20151006