[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

RU2457776C2 - Система, устройство, способ, машиночитаемый носитель и применение для визуализации ткани in vivo в анатомической структуре - Google Patents

Система, устройство, способ, машиночитаемый носитель и применение для визуализации ткани in vivo в анатомической структуре Download PDF

Info

Publication number
RU2457776C2
RU2457776C2 RU2009123459/14A RU2009123459A RU2457776C2 RU 2457776 C2 RU2457776 C2 RU 2457776C2 RU 2009123459/14 A RU2009123459/14 A RU 2009123459/14A RU 2009123459 A RU2009123459 A RU 2009123459A RU 2457776 C2 RU2457776 C2 RU 2457776C2
Authority
RU
Russia
Prior art keywords
electromagnetic radiation
probe
tissue
acoustic wave
ultrasonic acoustic
Prior art date
Application number
RU2009123459/14A
Other languages
English (en)
Other versions
RU2009123459A (ru
Inventor
Левинус П. БАККЕР (NL)
Левинус П. БАККЕР
БЕК Михал К. ВАН (NL)
БЕК Михал К. ВАН
ДЕР МАРК Мартинус Б. ВАН (NL)
ДЕР МАРК Мартинус Б. ВАН
ДЕН ХАМ Рене ВАН (NL)
ДЕН ХАМ Рене ВАН
Бернардус Х.В. ХЕНДРИКС (NL)
Бернардус Х.В. ХЕНДРИКС
Ральф ХОФФМАНН (NL)
Ральф ХОФФМАНН
ДЕР ВАРТ Нейс К. ВАН (NL)
ДЕР ВАРТ Нейс К. ВАН
ДЕР ВОРТ Марьолейн ВАН (NL)
ДЕР ВОРТ Марьолейн ВАН
Original Assignee
Конинклейке Филипс Электроникс Н.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Конинклейке Филипс Электроникс Н.В. filed Critical Конинклейке Филипс Электроникс Н.В.
Publication of RU2009123459A publication Critical patent/RU2009123459A/ru
Application granted granted Critical
Publication of RU2457776C2 publication Critical patent/RU2457776C2/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0095Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4416Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to combined acquisition of different diagnostic modalities, e.g. combination of ultrasound and X-ray acquisitions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/0035Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for acquisition of images from more than one imaging mode, e.g. combining MRI and optical tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • A61B5/0086Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters using infrared radiation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Acoustics & Sound (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Surgical Instruments (AREA)

Abstract

Изобретение относится к медицинской технике, а именно к способам и устройствам медицинской визуализации. Система для визуализации ткани простаты in vivo содержит первый блок, соединенный с источником электромагнитного излучения для испускания импульсного электромагнитного излучения в анатомическую структуру и генерации от нее первой ультразвуковой акустической волны, источник ультразвука для испускания второй ультразвуковой акустической волны в анатомическую структуру, блок обнаружения для приема первой и второй ультразвуковых акустических волн, блок восстановления изображения для восстановления первого и второго наборов визуальных данных ткани простаты, трансуретральный зонд и трансректальный зонд. Причем либо трансуретральный зонд, либо трансректальный зонд соединен с источником электромагнитного излучения, а другой содержит блок обнаружения, или трансректальный зонд соединен с источником электромагнитного излучения и содержит блок обнаружения. Способ визуализации ткани простаты заключается в использовании системы. Использование изобретения позволяет снизить дискомфорт пациента и минимизировать инфекции. 2 н. и 16 з.п. ф-лы, 6 ил.

Description

ОБЛАСТЬ ИЗОБРЕТЕНИЯ
Это изобретение в основном принадлежит к области медицинской визуализации. Более конкретно изобретение относится к визуализации тканей различных типов in vivo и управлению биопсией ткани с использованием медицинской визуализации.
ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ
Рак предстательной железы является наиболее частым раком среди мужчин, за исключением рака кожи. Американское раковое общество, АРО, приблизительно подсчитало, что примерно 232090 новых случаев рака предстательной железы будет диагностировано в Соединенных Штатах и 30350 мужчин умрут от этого заболевания в 2005 г. АРО считает, что мужчина в США имеет шанс развития рака предстательной железы за свою жизнь, равный 1 из 6.
Существует несколько тестов, которые доступны для обнаружения рака предстательной железы, например анализ крови на простатоспецифичный антиген (PSA), цифровое исследование прямой кишки (DRE), трансректальное УЗИ (TRUS) и центральная пункционная биопсия. PSA, DRE и TRUS обладают ограниченной чувствительностью и/или специфичностью к патологическим изменениям и в основном используются для оценки риска обладания раком предстательной железы, в зависимости от размера и формы и т.д. Диагностика рака предстательной железы обычно выполняется с использованием биопсии, в которой маленький образец ткани простаты удаляется и исследуется под микроскопом. Основным способом для получения биоптата простаты является центральная пункционная биопсия с использованием TRUS для управления. Биопсия требуется для диагностики и определения стадии рака предстательной железы. Если биоптат взят из опухоли, патолог может диагностировать рак с очень высокой точностью. Однако проблема состоит в том, чтобы взять биоптат из правильного объема ткани. В данный момент TRUS используется в качестве способа визуализации для изображения желаемой ткани. Системы TRUS также могут использоваться для направления биопсии из желаемого объема ткани. В некоторых случаях возможно распознать патологические изменения с использованием TRUS, однако во многих случаях патологические изменения не видны, и в этих случаях TRUS может использоваться только для определения положения и размера простаты. Так как положение патологического изменения не известно, множественные биоптаты, обычно между 6 и 13, забираются случайным образом, в попытке столкнуться, по меньшей мере, с одним из присутствующих опухолевых патологических изменений. Очевидно, что эта процедура приводит к множественным ложноотрицательным результатам.
EP 1559363 A2 раскрывает систему, объединяющую технологии оптической визуализации с технологиями анатомической визуализации (например, MR, ультразвук). Систему можно использовать для визуального управления, которое может включать управление биопсией. Недостатком системы является то, что представленная технология оптической визуализации, т.е. флуоресцентная визуализация, имеет там только весьма ограниченную глубину проникновения. Таким образом, патологические изменения, расположенные глубже от поверхности исследуемой ткани, могут быть не определены с использованием ЕР 1559363 А2.
Таким образом, будут полезны улучшенные система, способ, машиночитаемый носитель и применение.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Целью настоящего изобретения является предоставление улучшенной системы и способа, обеспечивающих управление биопсией патологических изменений. Таким образом, настоящее изобретение предпочтительно стремится смягчить, облегчить или устранить один или несколько установленных выше недостатков в данной области и неудобств по отдельности или в любом сочетании и решает, по меньшей мере, вышеупомянутые проблемы с помощью предоставления системы, способа и машиночитаемого носителя согласно прилагающейся формуле изобретения.
По одному аспекту изобретения предоставлена система для визуализации ткани in vivo в анатомической структуре. Система содержит первый блок, соединенный с, по меньшей мере, одним источником электромагнитного излучения для испускания импульсного электромагнитного излучения внутрь анатомической структуры, посредством чего первая ультразвуковая акустическая волна генерируется от ткани, система дополнительно содержит, по меньшей мере, один источник ультразвука для испускания второй ультразвуковой акустической волны внутрь анатомической структуры, по меньшей мере, один блок обнаружения для приема первой ультразвуковой акустической волны и второй ультразвуковой акустической волны, блок восстановления изображения для восстановления первого набора визуальных данных ткани, основанного на принятой первой ультразвуковой акустической волне, и второго набора визуальных данных ткани, основанного на принятой второй ультразвуковой акустической волне.
Согласно другому аспекту изобретения предоставлен способ визуализации ткани в анатомической структуре. Способ включает в себя этапы, на которых испускают электромагнитное излучение внутрь анатомической структуры из, по меньшей мере, одного источника электромагнитного излучения, генерируя первую ультразвуковую акустическую волну от ткани, принимают первую ультразвуковую акустическую волну, восстанавливают первый набор визуальных данных ткани, основанный на принятой первой ультразвуковой акустической волне, испускают вторую ультразвуковую акустическую волну внутрь анатомической структуры, принимают вторую ультразвуковую акустическую волну и восстанавливают второй набор визуальных данных ткани, основанный на принятой второй ультразвуковой акустической волне.
Согласно дополнительному аспекту изобретения предоставлен машиночитаемый носитель, обладающий реализованной в нем компьютерной программой для обработки с помощью компьютера для визуализации ткани в анатомической структуре. Компьютерная программа содержит сегмент кода первого испускания для испускания электромагнитного излучения внутрь анатомической структуры из, по меньшей мере, одного источника электромагнитного излучения, посредством чего первая ультразвуковая акустическая волна генерируется от ткани, сегмент кода первого приема для приема первой ультразвуковой акустической волны, сегмент кода первого восстановления для восстановления первого набора визуальных данных ткани, основанного на принятой первой ультразвуковой акустической волне, сегмент кода второго испускания для испускания второй ультразвуковой акустической волны внутрь анатомической структуры, сегмент кода второго приема для приема второй ультразвуковой акустической волны, сегмент кода второго восстановления для восстановления второго набора визуальных данных ткани, основанного на принятой второй ультразвуковой акустической волне.
Согласно еще одному аспекту изобретения использование системы согласно любому из пунктов формулы изобретения 1-13 предоставлено для определения местоположения и диагностики патологического изменения в ткани в анатомической структуре in vivo.
Согласно другому аспекту изобретения использование системы согласно любому из пунктов формулы изобретения 1-13 предоставлено для управления биопсией патологического изменения в ткани в анатомической структуре in vivo.
Варианты осуществления настоящего изобретения принадлежат к использованию фотоакустической визуализации для создания набора визуальных данных для обнаружения подозрительной ткани простаты. Согласно некоторым вариантам осуществления систему можно использовать для управления биопсией, таким образом, снижая количество ложноотрицательных результатов, так как местоположение желаемой ткани становится известно.
В некоторых вариантах осуществления настоящее изобретение использует фотоакустическую функциональность в трансректальном блоке для того, чтобы проводить различия между патологическими изменениями и здоровой тканью. Это средство добавляет средство для освещения ткани простаты с помощью импульсного электромагнитного излучения, например с использованием оптоволокна и импульсного лазера.
КРАТКОЕ ОПИСАНИЕ РИСУНКОВ
Эти и другие аспекты, особенности и преимущества, которые допускаются изобретением, будут разъяснены и ясны из следующего описания вариантов осуществления настоящего изобретения, ссылки будут даны на прилагаемые чертежи, на которых:
Фиг. 1 представляет собой скелетную схему системы согласно варианту осуществления;
Фиг. 2 представляет собой график, показывающий различия в спектре поглощения для здоровой и раковой ткани;
Фиг. 3 представляет собой вид в поперечном сечении системы согласно варианту осуществления;
Фиг. 4 представляет собой вид в поперечном сечении системы согласно другому варианту осуществления;
Фиг. 5 представляет собой скелетную схему способа согласно варианту осуществления; и
Фиг. 6 представляет собой скелетную схему машиночитаемого носителя согласно варианту осуществления.
ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
Некоторые варианты осуществления настоящего изобретения будут описаны в больших подробностях ниже со ссылками на прилагаемые чертежи для того, чтобы специалисты в данной области были способны осуществить изобретение. Однако изобретение может быть воплощено во многих различных формах и не должно истолковываться в качестве ограничивающегося вариантами осуществления, приведенными здесь. Скорее эти варианты осуществления предоставлены с тем, чтобы это раскрытие было полным и исчерпывающим и полностью передавало объем изобретения специалистам в данной области. Варианты осуществления не ограничивают это изобретение, но изобретение ограничено только приложенной формулой изобретения. Кроме того, терминология, используемая в подробном описании конкретных вариантов осуществления, иллюстрированных в прилагаемых чертежах, не предназначена для ограничения изобретения. Следующее описание сосредоточено на вариантах осуществления настоящего изобретения, применимых к системе визуализации и, в частности, к системе визуализации для визуализации желаемой ткани in vivo и для управления биопсией ткани.
Настоящее изобретение использует фотоакустическую визуализацию для изображения ткани in vivo, например, простаты. При использовании фотоакустической визуализации оптические свойства ткани могут быть определены в ближнем инфракрасном диапазоне. Фотоакустическая визуализация чувствительна к поглощению, например, водой, липидами, гемоглобином (Hb) и оксигемоглобином (HbO2). Больная ткань отличается от нормальной ткани концентрацией этих субстанций. Так как больная ткань, например малигнизированная ткань, может иметь более высокое относительное содержание воды, чем нормальная ткань, настоящее изобретение соответствует некоторым вариантам осуществления, способным различать здоровую и больную ткань.
Настоящее изобретение обеспечивает варианты осуществления для создания набора визуальных данных, изображающих содержание воды, липидов, Hb и HbO2 в ткани in vivo. Так как оптические свойства ткани различны для малигнизированной и здоровой ткани, созданный набор визуальных данных будет содержать информацию, которую можно использовать для нахождения отличий между малигнизированной и здоровой тканью. Фотоакустическая визуализация является неинвазивной технологией медицинской визуализации, основанной на фотоакустическом эффекте, который можно использовать для визуализации внутренней структуры и функции мягких тканей, таких как простата, и других возможных применений, включая визуализацию молочной железы для диагностики и скрининга рака, оценки сосудистых поражений и визуализация кожных аномальностей, таких как меланома и сосудистые патологические изменения. Технология основывается на освещении исследуемой мягкой ткани предпочтительно наносекундными импульсами лазерного света с низкой энергией. При ближних инфракрасных длинах волн, благодаря относительной оптической прозрачности ткани электромагнитное излучение проникает глубоко, например на несколько см. Также оно сильно рассеивается. Это приводит к относительно большому объему ткани, «погруженному» в диффузное электромагнитное излучение. В ходе процесса оптического поглощения и термоупругого расширения, т.е. нагревания ткани, широкополосные (~30 МГц) ультразвуковые акустические волны возбуждаются или генерируются на всем протяжении освещенного объема и распространяются наружу. Здесь, как и в обычном эхоимпульсом ультразвуке, они могут быть обнаружены с использованием массива датчиков ультразвука или акустических приемников и пространственно разложены для предоставления трехмерного изображения внутренней структуры ткани.
Преимущество фотоакустической визуализации над всеми другими способами визуализации основано на сильном оптическом контрасте различных типов тканей, предлагающем перспективу в определении анатомических особенностей, которые неразличимы при использовании других радиологических способов, таких как ультразвуковая визуализация или рентгеновская визуализация. По сравнению с другими обычными способами визуализации, такими как MRI, фотоакустическая визуализация является более дешевым способом визуализации. Например, гемоглобин и его различные состояния обеспечивают сильный оптический контраст в ближней ИК-области спектра, и видимые длины волн делают технологию хорошо применимой для визуализации кровеносных сосудов, - при сравнении контраст обыкновенных ультразвуковых изображений стремится ограничиться посредством относительно плохой эхогенности, т.е. способности создавать эхо, обозначающее возвращение сигнала в ультразвуковых обследованиях кровеносных сосудов. В дополнение к прямой визуализации кровеносных сосудов, высокий контраст, предлагаемый гемоглобином, предоставляет возможность косвенно обнаруживать аномальности, такие как раковые патологические изменения, которые сопровождаются характерными изменениями в окружающей сосудистой сети посредством ангиогенеза. Дополнительные преимущества технологии состоят в том, что, являясь неионизирующей технологией, она избегает факторов опасности, связанных с рентгеновской визуализацией, и имеет возможность быть сконфигурированной в виде относительно недорогого портативного прибора для прикроватного использования или целей скрининга.
Система, способ и машиночитаемый носитель согласно некоторым вариантам осуществления изобретения обеспечивают, по меньшей мере, одно из повышенного разрешения визуализации, повышенного обнаружения желаемой ткани, глубины проникновения визуализации, гибкости, эффективности издержек/затрат и меньшей нагрузки на пораженные субъекты.
В варианте осуществления, согласно фиг. 1, предоставлена система 10 для визуализации ткани в анатомической структуре in vivo. Система содержит, по меньшей мере, один источник 11 электромагнитного излучения для испускания электромагнитного излучения, падающего на анатомическую структуру. Так как электромагнитное излучение распространяется через анатомическую структуру, оно поглощается тканью из-за оптических характеристик ткани. Это приводит к термоупругому расширению ткани, которое будет приводить к тому, что широкополосные ультразвуковые акустические волны будут возбуждаться на всем протяжении освещенной ткани и будут распространяться наружу из ткани. Различные ткани обладают различными оптическими характеристиками, и, таким образом, электромагнитное излучение рассеивается и поглощается по-разному, в зависимости от типа ткани. Система дополнительно содержит, по меньшей мере, один блок 12 обнаружения для приема ультразвуковых акустических волн. Кроме того, система содержит блок 13 восстановления изображения для восстановления набора визуальных данных ткани, основанных на принятых ультразвуковых акустических волнах с помощью датчика. Полученный набор визуальных данных будет содержать информацию о тканевом содержании воды, жиров и (окси)гемоглобина в различных местах ткани, и, так как различные типы ткани содержат различные концентрации этих субстанций, тип ткани и местоположение типа ткани могут быть вычислены исходя из набора визуальных данных. Таким образом, систему можно использовать для нахождения отличий между различными типами тканей in vivo. Тип ткани может быть охарактеризован как здоровая и больная ткань, например здоровые клетки простаты и злокачественные клетки простаты соответственно. Таким образом, преимущество этого варианта осуществления состоит в том, что больная ткань, например патологические изменения, может быть безошибочно обнаружена. Кроме того, этот вариант осуществления предоставляет способ обнаружения подозрительной ткани, которая может быть определена, будучи расположенной более чем на 1 мм вглубь под поверхностью ткани.
Фиг. 2 [из R.R. Alfano, et al., US 2005/0240107Al] показывает различия в спектре поглощения между нормальной, т.е. здоровой, и раковой тканью простаты. Различия ясно видны. Местоположение опухоли может быть определено при использовании единственной или многих длин волн в участках, где присутствуют ясные различия между здоровой и раковой тканью (например, при 400-1000 нм).
ВОССТАНОВЛЕНИЕ ИЗОБРАЖЕНИЯ
В варианте осуществления блок восстановления изображения использует технологию визуализации, содержащую, например, проецирование на светопропускающий экран, в котором обнаруженные зависящие от времени фотоакустические сигналы пространственно разложены посредством использования скорости звука и спроецированы на светопропускающий экран через полусферические поверхности для получения трехмерного изображения начального распределения давления.
В варианте осуществления восстановление изображения использует алгоритм восстановления изображения для получения результирующего набора визуальных данных ткани. Блок восстановления изображения может являться любым блоком, обычно используемым для выполнения связанных задач, например аппаратным обеспечением, таким как процессор с памятью. Процессор может быть любым из множества процессоров, например процессором Intel или AMD, CPU, микропроцессором, микроконтроллером программируемого интеллектного компьютера (PIC), цифровым сигнальным процессором (DSP) и т.д. Однако объем изобретения не ограничивается этими конкретными процессорами. Память может быть любой памятью, способной хранить информацию, такой как оперативное запоминающее устройство (RAM), например Double Density RAM (DDR, DDR2), оперативное запоминающее устройство с обычной плотностью (SDRAM), статическое оперативное запоминающее устройство (SRAM), динамическое оперативное запоминающее устройство (DRAM), оперативное запоминающее устройство видеоизображений (VRAM) и т.д. Память также может быть флэш-памятью, такой как USB, Compact Flash, SmartMedia, MMC memory, MemoryStick, SD Card, MiniSD, MicroSD, xD Card, TransFlash и MicroDrive memory и т.д. Однако объем изобретения не ограничивается этими конкретными видами памяти.
В варианте осуществления система встроена в медицинскую рабочую станцию или медицинскую систему, такую как система компьютерной томографии (CT), система магнитно-резонансной визуализации (MRI) или система ультразвуковой визуализации (US).
БЛОК ОБНАРУЖЕНИЯ
В варианте осуществления блок обнаружения представляет собой датчик ультразвука, содержащий, по меньшей мере, один пьезоэлектрический элемент для превращения обнаруженной ультразвуковой акустической волны в электрический сигнал. Другие примеры блоков обнаружения включают в качестве неограничивающих примеров технологию емкостных микромашинных ультразвуковых преобразователей (cMUT) и пьезоэлектрические микромашинные ультразвуковые преобразователи(pMUT).
В другом варианте осуществления блок обнаружения содержит один или несколько массивов датчиков, например прямоугольных массивов, содержащих несколько элементов.
Другой вариант осуществления представляет собой одномерный массив с механическим сканированием в перпендикулярном направлении.
В дополнительном варианте осуществления блок обнаружения содержит комбинацию оптических датчиков и ультразвуковых датчиков. Оптические датчики, такие как монохромные микросхемы и цветные микросхемы приборов с зарядовой связью ПЗС или микросхемы на комплементарных металло-оксидных полупроводниках КМОП, можно использовать для анализа электромагнитного излучения, которое было рассеяно в ткани и затем распространяется по направлению к оптическим датчикам. Монохромные оптические датчики не обладают важной способностью анализировать отдельные длины волн принятого электромагнитного излучения. Если для спектрального анализа электромагнитного излучения желательны дополнительные оптические компоненты, такие как линзы, решетки или призмы можно использовать для обеспечения рефракции принятого электромагнитного излучения перед попаданием на микросхему датчика для того, чтобы быть способным определить спектр длин волн принятого электромагнитного излучения и, таким образом, предоставить эту информацию в блок восстановления изображения.
В другом варианте осуществления источник электромагнитного излучения испускает электромагнитное излучение на нескольких длинах волн последовательно, и блок обнаружения обнаруживает падающее электромагнитное излучение по отдельности для каждой использованной длины волны.
ИСТОЧНИК ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ
В варианте осуществления источник электромагнитного излучения испускает электромагнитное излучение на одной длине волны, т.е. источник электромагнитного излучения имеет узкий спектр длин волн, такой как у твердотельных лазеров, например Nd:YAG лазеры (1064 нм), полупроводниковые лазеры, например коммерческие лазерные диоды (375-1800 нм) и Ti: сапфировые лазеры.
В варианте осуществления источник электромагнитного излучения представляет собой твердотельный лазер.
В варианте осуществления источник электромагнитного излучения представляет собой полупроводниковый лазер.
В варианте осуществления источник электромагнитного излучения испускает электромагнитное излучение, содержащее длины волн в ближнем инфракрасном спектре.
В других вариантах осуществления источник электромагнитного излучения может представлять собой импульсные светоизлучающие диоды.
В варианте осуществления альтернативно источники электромагнитного излучения испускают электромагнитное излучение, которое возбуждает электроны в атомах ткани до более высокого энергетического состояния. Когда электроны возвращаются к более низкому энергетическому состоянию, избыток энергии будет в форме флуоресцентного света. Таким образом, если блок обнаружения содержит оптический датчик, пригодный для приема флуоресцентного света, его можно использовать во флуоресцентном способе. В этом случае фильтры используются для блокирования возбуждающего света. Обнаруженный флуоресцентный свет может являться автофлуоресценцией из ткани или флуоресценцией из экзогенного контрастного средства. Обнаруженный флуоресцентный сигнал зависит от концентрации и распределения флуорофоров и от рассеивающих и поглощающих свойств ткани. Экзогенное контрастное средство может быть полезным при использовании в фотоакустической визуализации, когда оно значительно меняет абсорбцию патологического изменения по отношению к здоровой ткани.
БЛОК ЗОНДА
В варианте осуществления, согласно фиг. 3, система дополнительно содержит блок 31 зонда, в котором содержатся все источники 32 электромагнитного излучения и датчики 33 системы. Таким образом, блок 31 зонда содержит один или несколько источников 32 электромагнитного излучения и один или несколько датчиков 33, которые расположены в блоке зонда.
В варианте осуществления блок зонда представляет собой трансректальный зонд. При использовании трансректальный зонд размещают в прямой кишке субъекта, и он испускает электромагнитное излучение в близлежащие ткани, приблизительно до 10 см в диаметре.
В варианте осуществления источник электромагнитного излучения, такой как короткоимпульсный лазер, расположен удаленно от блока зонда и соединен с блоком зонда через проводник электромагнитного излучения, такой как оптоволокно(а).
В варианте осуществления блок зонда используется для обнаружения подозрительной ткани простаты. В варианте осуществления блок зонда дополнительно содержит источник ультразвука для испускания ультразвуковых акустических волн в исследуемую ткань для того, чтобы визуализировать геометрию и местоположение ткани. Блок обнаружения, по меньшей мере, содержащий один датчик ультразвука, в этом варианте осуществления может быть использован как для обнаружения ультразвука, исходящего от источника ультразвука и ультразвуковых акустических волн, создаваемых фотоакустическим эффектом благодаря электромагнитному излучению из источника электромагнитного излучения. Тогда как фотоакустическая визуализация в ближнем инфракрасном диапазоне длин волн является чувствительной в основном к содержанию воды, липидов, Hb и HbO2, использование источника ультразвука предоставляет топографические детали, такие как граница простаты, стенки прямой кишки и игла для биопсии. Преимущество этого варианта осуществления состоит в том, что блок зонда можно использовать для обнаружения больной ткани с использованием источника электромагнитного излучения, датчика ультразвука и блока восстановления изображения, и затем его можно использовать для управления биопсией больной ткани, используя источник электромагнитного излучения, источник ультразвука, датчик ультразвука и блок восстановления изображения. В варианте осуществления только один источник электромагнитного излучения или один источник ультразвука активен в каждый момент времени. Это значит, что блок восстановления изображения будет раздельно обрабатывать принятую ультразвуковую информацию, исходящую от источника электромагнитного излучения и источника ультразвука. Этот вариант осуществления дает блоку восстановления изображения возможность раздельно вычислять наборы визуальных данных для двух различных источников. Преимущество этого варианта осуществления состоит в том, что один и тот же блок обнаружения можно использовать для обнаружения ультразвука для обнаружения различных типов тканей и для визуализации ткани, используя постоянную ультразвуковую визуализацию с использованием источника ультразвука.
В практическом воплощении сначала активен источник электромагнитного излучения, и принятая ультразвуковая информация посредством датчика ультразвука будет обрабатываться блоком восстановления изображения, результатом чего будет первый набор визуальных данных, включая местоположение больной ткани, основанное на фотоакустическом эффекте. Когда местоположение больной ткани определено, источник электромагнитного излучения будет деактивизирован, и источник ультразвука будет активизирован. Используя датчик ультразвука, принятая ультразвуковая информация затем обрабатывается блоком восстановления изображения, что приводит ко второму набору визуальных данных, содержащих контуры исследуемой ткани.
Для восстановления изображения положение между источником электромагнитного излучения и блоком обнаружения относительно друг друга должно быть известно. Это представляет собой особую проблему, если используется комбинация из двух блоков зонда. Ультразвуковой блок можно использовать для определения положения и ориентации блока зонда или блоков зондов относительно друг друга.
Если ультразвуковой блок встроен в трансректальный зонд, трансуретральный зонд будет ясно виден.
В варианте осуществления блок восстановления изображения использует первый и второй наборы визуальных данных для установления соотношения их систем координат для создания третьего набора визуальных данных, содержащих информацию как из наборов визуальных данных относительно местоположения желаемой ткани из первого набора визуальных данных, так и контуры ткани второго набора визуальных данных. До тех пор пока источник ультразвука активен, блок восстановления изображения будет непрерывно создавать новые вторые наборы визуальных данных, устанавливая местоположение больной ткани по отношению к новому второму набору визуальных данных, образующих новые третьи наборы данных.
В варианте осуществления комбинация использования источника ультразвука и источника электромагнитного излучения будет улучшать образующийся набор визуальных данных из блока восстановления изображения, за счет наложения обоих наборов визуальных данных или за счет использования анатомической информации, полученной с помощью УЗИ для восстановления изображения оптического набора визуальных данных.
В варианте осуществления блок зонда дополнительно содержит блок для биопсии, который может быть введен в ткань для взятия биоптата подозрительной части ткани. Блок для биопсии принимает информацию от блока восстановления изображения относительно точного местоположения интересующего типа ткани, например больной ткани. Этот вариант осуществления имеет преимущество, состоящее в том, что биопсия может быть выполнена в ходе непрерывной визуализации ткани. Это устраняет проблемы с изменением позиционирования между специальной визуализацией и специальным инструментом для биопсии. Пользователь, наблюдающий за непрерывно создаваемыми третьими наборами визуальных данных, которые, например, отображаются на дисплее, может направлять иглу для биопсии, пока источник ультразвука активизирован. Преимущество этого варианта осуществления состоит в том, что количество ложноотрицательных результатов будет радикально уменьшено, так как пользователь знает местоположение больной ткани.
В варианте осуществления блок зонда представляет собой трансуретральный зонд, который может быть введен в уретру и при использовании может быть расположен близко к предстательной железе. При использовании электромагнитное излучение распространяется через простату, так что ультразвуковой сигнал из задней части простаты, т.е. уретральной части, сильнее, но должен дополнительно пройти через ткань.
В варианте осуществления блок зонда представляет собой эндоскоп, пригодный для уретрального, ректального или орального введения и применений.
При использовании, в варианте осуществления блок зонда последовательно меняет положение между каждым восстановлением изображения для того, чтобы визуализировать простату под несколькими различными углами. Созданные наборы визуальных данных с помощью блока восстановления изображения могут быть объединены для того, чтобы дать расширенную информацию о визуализированной ткани. Блок восстановления изображения может выполнять это объединение с использованием общеизвестной в области анализа изображений технологии сегментации.
В варианте осуществления блок зонда может быть объединен с гелем, который усиливает оптический контакт между блоком зонда и окружающей тканью. Гель может представлять собой ультразвуковой гель с рассеивающими частицами. В этом варианте осуществления источник электромагнитного излучения расположен на блоке зонда, способном испускать импульсное электромагнитное излучение.
В варианте осуществления, согласно фиг. 4, система содержит два блока зондов; например один трансуретральный зонд 41 и один трансректальный зонд 42. Источник электромагнитного излучения расположен на трансуретральном зонде и используется для освещения простаты импульсным электромагнитным излучением. Трансректальный зонд содержит датчик ультразвука для приема генерируемых ультразвуковых акустических волн, соответствующих фотоакустическому эффекту с помощью испущенного импульсного электромагнитного излучения из трансуретрального зонда. Трансректальный зонд соединен с блоком восстановления изображения, который создает набор визуальных данных исследуемой ткани на основании принятых ультразвуковых акустических волн, как описано выше.
В варианте осуществления трансректальный зонд содержит один или несколько источников электромагнитного излучения. При использовании трансуретральный зонд размещают в уретре по близости к простате. Трансуретральный зонд содержит один или несколько блоков обнаружения для приема ультразвуковых акустических волн, генерируемых электромагнитным излучением из трансректального зонда с помощью фотоакустического эффекта. При использовании трансректальный зонд помещают в прямую кишку по близости к простате.
В некоторых вариантах осуществления два блока зондов размещены таким образом, что простата расположена между блоками зондов. Более конкретно, блоки зондов расположены так, чтобы испущенное из трансректального зонда электромагнитное излучение распространялось через простату, и блок(и) обнаружения трансуретрального зонда расположены так, чтобы принимать генерируемые ультразвуковые акустические волны.
В варианте осуществления блок зонда представляет собой зонд, размещаемый в мочевом пузыре. Зонд, имеет форму зонта, который может быть раскрыт внутри мочевого пузыря. Мочевой пузырь может содержать источники электромагнитного излучения и/или датчики. При использовании зонтик касается дна мочевого пузыря, чтобы быть как можно ближе к области простаты.
В другом варианте осуществления система включает в себя зонд в форме седла. Зонд в форме седла имеет форму седла, и при использовании касается области гениталий, и содержит источник(и) электромагнитного излучения и/или датчик(и).
В варианте осуществления комбинация трансректального, трансуретрального и размещаемого в мочевом пузыре зонда используется для визуализации предстательной железы, где каждый блок зонда может содержать ноль, один или несколько источников электромагнитного излучения и ноль, один или несколько блоков обнаружения.
В варианте осуществления, по меньшей мере, один из блоков зондов содержит, по меньшей мере, один источник электромагнитного излучения, и, по меньшей мере, один из блоков зондов содержит, по меньшей мере, один блок обнаружения.
В другом варианте осуществления блок зонда содержит оптоволокно, где источник электромагнитного излучения расположен ex vivo.
Систему согласно некоторым вариантам осуществления изобретения можно использовать для определения местоположения и диагностики патологических изменений в человеческом теле in vivo. В некоторых приложениях, когда обнаружено точное положение патологического изменения, биопсия может быть взята из патологического изменения, например, с использованием ультразвуковой технологии для направления иглы для биопсии. Использование системы радикально снижает отрицательные образцы биопсии по сравнению с используемой в настоящее время техникой «слепого отбора образцов». Это уменьшает дискомфорт пациента и сводит к минимуму инфекции, так как количество биоптатов снижено. Затем биопсия может быть исследована для определения серьезности патологического изменения. После исследования биопсии может быть выполнено лечение области патологического изменения для лечения пациента. В других применениях лечение может быть выполнено без необходимости делать биопсию. Лечение больной ткани может быть выполнено с использованием лучевой терапии, химиотерапии и т.д.
В варианте осуществления систему можно использовать в сочетании с оперативным вмешательством для определения местоположения, диагностики и лечения рака предстательной железы.
В варианте осуществления, согласно фиг. 5, предоставлен способ 50 для визуализации ткани в анатомической структуре. Способ включает в себя испускание 51 электромагнитного излучения внутрь анатомической структуры, по меньшей мере, из одного источника электромагнитного излучения, электромагнитное излучение поглощается анатомической структурой, возбуждая в ткани первую ультразвуковую акустическую волну благодаря термоупругому расширению, прием 52 первой ультразвуковой акустической волны, по меньшей мере, с помощью одного блока обнаружения и восстановление 53 первого набора визуальных данных ткани, основанного на принятой первой ультразвуковой акустической волне.
В варианте осуществления способ дополнительно содержит испускание 54 второй ультразвуковой акустической волны внутрь анатомической структуры, прием 55 второй ультразвуковой акустической волны, по меньшей мере, с помощью одного блока обнаружения и восстановление 56 второго набора визуальных данных ткани, основанного на принятой второй ультразвуковой акустической волне.
В варианте осуществления использование способа предоставлено для установления местоположения и диагностирования патологического изменения в человеческом теле in vivo.
В варианте осуществления, согласно Фиг. 6, предоставлен машиночитаемый носитель 60, обладающий встроенной в него компьютерной программой для обработки с помощью компьютера для визуализации ткани в анатомической структуре. Компьютерная программа содержит сегмент 61 кода первого испускания для испускания электромагнитного излучения внутрь анатомической структуры, по меньшей мере, из одного источника электромагнитного излучения, электромагнитное излучение поглощается в анатомической структуре, генерируя первую ультразвуковую акустическую волну из ткани благодаря термоупругому расширению, сегмент 62 кода первого приема для приема первой ультразвуковой акустической волны, по меньшей мере, с помощью одного блока обнаружения и сегмент 63 кода первого восстановления для восстановления первого набора визуальных данных ткани, основанного на принятой первой ультразвуковой акустической волне.
В варианте осуществления машиночитаемый носитель дополнительно содержит сегмент 64 кода второго испускания для испускания второй ультразвуковой акустической волны внутрь анатомической структуры, сегмент 65 кода второго приема для приема второй ультразвуковой акустической волны, по меньшей мере, с помощью одного блока обнаружения и сегмент 66 кода второго восстановления для восстановления второго набора визуальных данных ткани, основанного на принятой второй ультразвуковой акустической волне.
В варианте осуществления машиночитаемый носитель содержит сегменты кода, выполненные с возможностью осуществления, при исполнении аппаратом, обладающим свойствами компьютерной обработки, всех этапов способа, определенных в некоторых вариантах осуществления.
В варианте осуществления машиночитаемый носитель содержит сегменты кода, выполненные с возможностью осуществления, при исполнении аппаратом, обладающим свойствами компьютерной обработки, всех функций системы, определенных в некоторых вариантах осуществления.
Изобретение может быть реализовано в любой пригодной форме, включая аппаратные средства, программное обеспечение, встроенное программное обеспечение или любую их комбинацию. Однако предпочтительно, чтобы изобретение было реализовано в виде компьютерного программного обеспечения, выполняемого на одном или нескольких процессорах данных и/или цифровых сигнальных процессорах. Элементы и компоненты варианта осуществления изобретения могут быть физически, функционально или логически реализованы любым пригодным образом. Конечно, функциональность может быть реализована в едином блоке, во множестве блоков или как часть других функциональных блоков. Как таковое изобретение может быть реализовано в едином блоке или может быть физически и функционально распределено между различными блоками и процессорами.
Хотя настоящее изобретение было описано выше со ссылками на конкретные варианты осуществления, это не предназначалось для ограничения конкретной формой, приведенной здесь. Скорее, изобретение ограничено только сопроводительной формулой изобретения.
В формуле изобретения термин «содержит/содержащий» не исключает наличия других элементов или этапов. Кроме того, хотя индивидуально перечислены, множество средств, элементов или этапов способа может быть реализовано, например, в едином блоке или процессоре. Дополнительно, хотя отдельные особенности могут быть включены в различные пункты формулы изобретения, возможно, они могут быть выгодно объединены, и включение в различные пункты формулы изобретения не предполагает то, что объединение особенностей не возможно и/или не выгодно. Кроме того, упоминания в единственном числе не исключают множественного числа. Использование единственного числа и слов «первый», «второй» и т.п. не препятствуют множественному числу. Ссылки в формуле изобретения предоставлены только в качестве разъясняющих примеров и нисколько не должны истолковываться как ограничивающие объем формулы изобретения.

Claims (18)

1. Система (10) для визуализации ткани простаты in vivo в анатомической структуре, содержащая;
первый блок (31, 41, 42), соединенный с, по меньшей мере, одним источником (11) электромагнитного излучения для испускания импульсного электромагнитного излучения в упомянутую анатомическую структуру, посредством чего первая ультразвуковая акустическая волна генерируется от упомянутой ткани простаты, при этом упомянутая система дополнительно содержит:
по меньшей мере, один источник (13) ультразвука для испускания второй ультразвуковой акустической волны в упомянутую анатомическую структуру,
по меньшей мере, один блок (12) обнаружения для приема упомянутой первой ультразвуковой акустической волны и упомянутой второй ультразвуковой акустической волны,
блок (14) восстановления изображения для восстановления первого набора визуальных данных упомянутой ткани простаты, основанного на упомянутой принятой первой ультразвуковой акустической волне и второго набора визуальных данных упомянутой ткани, основанного на упомянутой принятой второй ультразвуковой акустической волне,
при этом система (10) дополнительно содержит трансуретральный зонд (41) и трансректальный зонд (42), причем i), по меньшей мере, один из трансуретрального зонда (41) и трансректального зонда (42) соединен с упомянутым, по меньшей мере, одним источником (11) электромагнитного излучения, а другой из трансуретрального зонда (41) и трансректального зонда (42) содержит, по меньшей мере, один блок (12) обнаружения, или ii) трансректальный зонд (42) соединен с упомянутым, по меньшей мере, одним источником (11) электромагнитного излучения и содержит, по меньшей мере, один блок (12) обнаружения.
2. Система по п.1, в которой упомянутый блок восстановления изображения выполнен с возможностью вычисления третьего набора визуальных данных, объединяющего информацию набора визуальных данных из упомянутого первого набора визуальных данных и упомянутого второго набора визуальных данных.
3. Система по п.1 или 2, дополнительно содержащая второй блок (31, 41, 42), обладающий источником электромагнитного излучения для испускания импульсного электромагнитного излучения в упомянутую анатомическую структуру, посредством чего третья ультразвуковая акустическая волна генерируется от упомянутой ткани, при этом упомянутый блок обнаружения выполнен с возможностью приема упомянутой третьей ультразвуковой акустической волны, при этом упомянутый второй блок соединен с упомянутым блоком восстановления изображения для восстановления четвертого набора визуальных данных упомянутой ткани, основанного на упомянутой принятой третьей ультразвуковой акустической волне.
4. Система по п.3, в которой упомянутый блок обнаружения расположен на упомянутом втором блоке.
5. Система по п.1 или 2, в которой упомянутый источник ультразвука расположен на упомянутом первом блоке.
6. Система по п.1 или 2, в которой упомянутый первый блок представляет собой трансректальный блок, пригодный для введения через прямую кишку или трансуретральный блок, пригодный для введения через уретру.
7. Система по п.3, в которой упомянутый второй блок представляет собой трансуретральный блок, пригодный для введения через уретру, или трансректальный блок, пригодный для введения через прямую кишку.
8. Система по п.4, в которой упомянутый второй блок представляет собой трансуретральный блок, пригодный для введения через уретру, или трансректальный блок, пригодный для введения через прямую кишку.
9. Система по п.6, в которой упомянутый трансректальный блок и упомянутый трансуретральный блок при использовании расположены поблизости от предстательной железы.
10. Система по п.7, в которой упомянутый трансректальный блок и упомянутый трансуретральный блок при использовании расположены поблизости от предстательной железы.
11. Система по п.8, в которой упомянутый трансректальный блок и упомянутый трансуретральный блок при использовании расположены поблизости от предстательной железы.
12. Система по п.1 или 2, в которой набор визуальных данных, восстановленный блоком восстановления изображения, является двухмерным или трехмерным.
13. Система по п.1 или 2, в которой набор визуальных данных, восстановленный блоком восстановления изображения, является многомерным набором визуальных данных.
14. Система по п.1 или 2, в которой расстояние между упомянутым, по меньшей мере, одним источником электромагнитного излучения и упомянутым, по меньшей мере, одним блоком обнаружения составляет от 2 мм до 10 см.
15. Система по п.1, в которой упомянутый первый набор визуальных данных используется для направления биопсии упомянутой ткани.
16. Система по п.1 или 2, входящая в состав медицинской рабочей станции или медицинской системы.
17. Способ визуализации ткани простаты в анатомической структуре, при этом упомянутый способ заключается в том, что
испускают электромагнитное излучение в упомянутую анатомическую структуру из, по меньшей мере, одного источника электромагнитного излучения, генерируя первую ультразвуковую акустическую волну из упомянутой ткани,
принимают упомянутую первую ультразвуковую акустическую волну первым блоком обнаружения,
восстанавливают первый набор визуальных данных упомянутой ткани простаты, основанный на упомянутой принятой первой ультразвуковой акустической волне,
испускают вторую ультразвуковую акустическую волну в упомянутую анатомическую структуру из, по меньшей мере, одного источника ультразвука,
принимают упомянутую вторую ультразвуковую акустическую волну вторым блоком обнаружения, и
восстанавливают второй набор визуальных данных упомянутой ткани простаты, основанный на упомянутой принятой второй ультразвуковой акустической волне,
при этом система (10) дополнительно содержит трансуретральный зонд (41) и трансректальный зонд (42), причем i), по меньшей мере, один из трансуретрального зонда (41) и трансректального зонда (42) соединен с упомянутым, по меньшей мере, одним источником (11) электромагнитного излучения, а другой из трансуретрального зонда (41) и трансректального зонда (42) содержит, по меньшей мере, один блок (12) обнаружения, или ii) трансректальный зонд (42) соединен с упомянутым, по меньшей мере, одним источником (11) электромагнитного излучения и содержит, по меньшей мере, один блок (12) обнаружения.
18. Способ по п.17, где первый и второй блоки обнаружения образованы объединенным блоком обнаружения.
RU2009123459/14A 2006-11-21 2007-11-16 Система, устройство, способ, машиночитаемый носитель и применение для визуализации ткани in vivo в анатомической структуре RU2457776C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06124440.6 2006-11-21
EP06124440 2006-11-21

Publications (2)

Publication Number Publication Date
RU2009123459A RU2009123459A (ru) 2010-12-27
RU2457776C2 true RU2457776C2 (ru) 2012-08-10

Family

ID=39201428

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009123459/14A RU2457776C2 (ru) 2006-11-21 2007-11-16 Система, устройство, способ, машиночитаемый носитель и применение для визуализации ткани in vivo в анатомической структуре

Country Status (7)

Country Link
US (1) US20100056916A1 (ru)
EP (1) EP2086396A1 (ru)
JP (1) JP2010509977A (ru)
CN (1) CN101541230B (ru)
BR (1) BRPI0719142A8 (ru)
RU (1) RU2457776C2 (ru)
WO (1) WO2008062354A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2663649C2 (ru) * 2013-02-28 2018-08-07 Конинклейке Филипс Н.В. Сегментация крупных объектов из нескольких трехмерных видов

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9439571B2 (en) 2006-01-20 2016-09-13 Washington University Photoacoustic and thermoacoustic tomography for breast imaging
WO2009055705A2 (en) 2007-10-25 2009-04-30 Washington University In St. Louis Confocal photoacoustic microscopy with optical lateral resolution
US9528966B2 (en) 2008-10-23 2016-12-27 Washington University Reflection-mode photoacoustic tomography using a flexibly-supported cantilever beam
US9351705B2 (en) * 2009-01-09 2016-05-31 Washington University Miniaturized photoacoustic imaging apparatus including a rotatable reflector
US9335605B2 (en) 2010-01-25 2016-05-10 Washington University Iteration of optical time reversal by ultrasonic encoding in biological tissue
US9234841B2 (en) 2010-01-25 2016-01-12 Washington University Optical time reversal by ultrasonic encoding in biological tissue
EP2359745A1 (en) * 2010-02-12 2011-08-24 Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) Method and device for multi-spectral photonic imaging
JP5675142B2 (ja) * 2010-03-29 2015-02-25 キヤノン株式会社 被検体情報取得装置、被検体情報取得方法、および被検体情報取得方法を実行するためのプログラム
US9086365B2 (en) 2010-04-09 2015-07-21 Lihong Wang Quantification of optical absorption coefficients using acoustic spectra in photoacoustic tomography
US9289191B2 (en) 2011-10-12 2016-03-22 Seno Medical Instruments, Inc. System and method for acquiring optoacoustic data and producing parametric maps thereof
EP2455133A1 (en) 2010-11-18 2012-05-23 Koninklijke Philips Electronics N.V. Catheter comprising capacitive micromachined ultrasonic transducers with an adjustable focus
US8997572B2 (en) 2011-02-11 2015-04-07 Washington University Multi-focus optical-resolution photoacoustic microscopy with ultrasonic array detection
JP5683383B2 (ja) * 2011-05-24 2015-03-11 富士フイルム株式会社 光音響撮像装置およびその作動方法
JP2013056100A (ja) * 2011-09-09 2013-03-28 Canon Inc 光音響整合材
US9757092B2 (en) * 2011-11-02 2017-09-12 Seno Medical Instruments, Inc. Method for dual modality optoacoustic imaging
CA2861089C (en) * 2011-11-02 2021-01-12 Seno Medical Instruments, Inc. Dual modality imaging system for coregistered functional and anatomical mapping
US11191435B2 (en) 2013-01-22 2021-12-07 Seno Medical Instruments, Inc. Probe with optoacoustic isolator
US20130289381A1 (en) 2011-11-02 2013-10-31 Seno Medical Instruments, Inc. Dual modality imaging system for coregistered functional and anatomical mapping
US10433732B2 (en) 2011-11-02 2019-10-08 Seno Medical Instruments, Inc. Optoacoustic imaging system having handheld probe utilizing optically reflective material
CN104023635A (zh) * 2011-12-30 2014-09-03 皇家飞利浦有限公司 用于在us成像中使用pa效应进行针导航的系统和方法
EP2797508A2 (en) * 2011-12-30 2014-11-05 Koninklijke Philips N.V. System and method for needle navigation using pa effect in us imaging
CN104168836A (zh) * 2012-06-04 2014-11-26 株式会社爱德万测试 光声诊断装置、方法、程序、记录介质
WO2014063005A1 (en) 2012-10-18 2014-04-24 Washington University Transcranialphotoacoustic/thermoacoustic tomography brain imaging informed by adjunct image data
CN103393439A (zh) * 2013-08-22 2013-11-20 南京大学 一种基于光声成像技术的穿刺活检方法
WO2015077355A1 (en) 2013-11-19 2015-05-28 Washington University Systems and methods of grueneisen-relaxation photoacoustic microscopy and photoacoustic wavefront shaping
CA2981461C (en) * 2014-04-29 2023-05-09 The Board Of Regents Of The University Of Texas System Methods and systems for detecting sub-tissue anomalies
CN104720853A (zh) * 2015-04-15 2015-06-24 三爱医疗科技(深圳)有限公司 一种超声引导自动前列腺活检粒子植入系统及扎针方法
CN105167808A (zh) * 2015-09-02 2015-12-23 上海爱声生物医疗科技有限公司 一种经尿道的前列腺超声检测方法、诊断仪及换能器
US20190254624A1 (en) * 2016-06-08 2019-08-22 The United States Of America, As Represented By The Secretary, Department Of Health And Human Serv Tissue characterization with acoustic wave tomosynthesis
RU2621950C1 (ru) * 2016-07-06 2017-06-08 Государственное бюджетное учреждение здравоохранения города Москвы "Научно-исследовательский клинический институт оториноларингологии им. Л.И. Свержевского" Департамента здравоохранения города Москвы Способ интраоперационной диафаноскопии паратонзиллярного пространства
CN106510727B (zh) * 2016-12-27 2024-04-02 上海交通大学 一种用于黑色素瘤早期无标记临床实时检测装置
WO2018209046A1 (en) 2017-05-10 2018-11-15 Washington University Snapshot photoacoustic photography using an ergodic relay
EP3836831A4 (en) 2018-08-14 2022-05-18 California Institute of Technology MULTIFOCAL PHOTOACOUSTIC MICROSCOPY THROUGH AN ERGODIC RELAY
WO2020051246A1 (en) 2018-09-04 2020-03-12 California Institute Of Technology Enhanced-resolution infrared photoacoustic microscopy and spectroscopy
US11369280B2 (en) 2019-03-01 2022-06-28 California Institute Of Technology Velocity-matched ultrasonic tagging in photoacoustic flowgraphy
US11986269B2 (en) 2019-11-05 2024-05-21 California Institute Of Technology Spatiotemporal antialiasing in photoacoustic computed tomography

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5623940A (en) * 1994-08-02 1997-04-29 S.L.T. Japan Co., Ltd. Catheter apparatus with a sensor
RU2153366C1 (ru) * 1999-01-05 2000-07-27 Жаров Владимир Павлович Устройство для комплексного лечения заболеваний предстательной железы
RU2002128728A (ru) * 2000-03-28 2004-03-27 Форт Фотоникс Лимитед (Gb) Способ и система для определения параметров и картографирования поражений ткани
WO2006061829A1 (en) * 2004-12-06 2006-06-15 Glucon Inc. Photoacoustic intravascular probe
EP1700563A2 (en) * 2000-08-24 2006-09-13 Glucon Inc. Photoacoustic assay and imaging system

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754855Y2 (ja) * 1989-06-16 1995-12-18 アロカ株式会社 光音響センサ
JPH0833646A (ja) * 1994-07-26 1996-02-06 S L T Japan:Kk 情報検出用カテーテル装置
US5398690A (en) * 1994-08-03 1995-03-21 Batten; Bobby G. Slaved biopsy device, analysis apparatus, and process
EP1059878B1 (en) * 1998-03-05 2005-11-09 Gil M. Vardi Optical-acoustic imaging device
WO2001010295A1 (en) * 1999-08-06 2001-02-15 The Board Of Regents Of The University Of Texas System Optoacoustic monitoring of blood oxygenation
ATE326183T1 (de) * 2002-01-08 2006-06-15 Bio Scan Ltd Ultraschallwandlersonde
US6824516B2 (en) * 2002-03-11 2004-11-30 Medsci Technologies, Inc. System for examining, mapping, diagnosing, and treating diseases of the prostate
WO2004002319A2 (en) * 2002-06-27 2004-01-08 Uc-Care Ltd. Method and apparatus for positioning a surgical instrument
US7245789B2 (en) * 2002-10-07 2007-07-17 Vascular Imaging Corporation Systems and methods for minimally-invasive optical-acoustic imaging
US7706862B2 (en) 2003-04-17 2010-04-27 Research Foundation Of The City University Of New York Detecting human cancer through spectral optical imaging using key water absorption wavelengths
JP4406226B2 (ja) * 2003-07-02 2010-01-27 株式会社東芝 生体情報映像装置
JP2007519493A (ja) * 2004-02-02 2007-07-19 シーメンス アクチエンゲゼルシヤフト 前立腺がん、子宮頸がんおよび直腸がんイメージングのための磁気共鳴‐光学コンビネーション装置
US20060100529A1 (en) 2004-02-02 2006-05-11 Siemens Corporate Research Inc. Combined intra-rectal optical-MR and intra-rectal optical-US device for prostate-, cevix-, rectum imaging diagnostics
JP4643153B2 (ja) * 2004-02-06 2011-03-02 株式会社東芝 非侵襲生体情報映像装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5623940A (en) * 1994-08-02 1997-04-29 S.L.T. Japan Co., Ltd. Catheter apparatus with a sensor
RU2153366C1 (ru) * 1999-01-05 2000-07-27 Жаров Владимир Павлович Устройство для комплексного лечения заболеваний предстательной железы
RU2002128728A (ru) * 2000-03-28 2004-03-27 Форт Фотоникс Лимитед (Gb) Способ и система для определения параметров и картографирования поражений ткани
EP1700563A2 (en) * 2000-08-24 2006-09-13 Glucon Inc. Photoacoustic assay and imaging system
WO2006061829A1 (en) * 2004-12-06 2006-06-15 Glucon Inc. Photoacoustic intravascular probe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2663649C2 (ru) * 2013-02-28 2018-08-07 Конинклейке Филипс Н.В. Сегментация крупных объектов из нескольких трехмерных видов

Also Published As

Publication number Publication date
BRPI0719142A2 (pt) 2014-02-04
EP2086396A1 (en) 2009-08-12
RU2009123459A (ru) 2010-12-27
WO2008062354A1 (en) 2008-05-29
US20100056916A1 (en) 2010-03-04
JP2010509977A (ja) 2010-04-02
BRPI0719142A8 (pt) 2015-10-13
CN101541230A (zh) 2009-09-23
CN101541230B (zh) 2013-01-16

Similar Documents

Publication Publication Date Title
RU2457776C2 (ru) Система, устройство, способ, машиночитаемый носитель и применение для визуализации ткани in vivo в анатомической структуре
Manohar et al. Current and future trends in photoacoustic breast imaging
JP5543212B2 (ja) 前立腺癌のイメージング用システム、前立腺癌をイメージングするシステムの作動方法及びコンピュータ読取可能媒体
US8376947B2 (en) Application of image-based dynamic ultrasound spectrography (IDUS) in detection and localization of breast microcalcifcation
Ermilov et al. Laser optoacoustic imaging system for detection of breast cancer
JP5749164B2 (ja) 組織バイオマーカーの定量的多重スペクトル光音響トモグラフィ
Heijblom et al. Clinical photoacoustic breast imaging: the Twente experience
Wortsman et al. Real‐time spatial compound ultrasound imaging of skin
US20200268253A1 (en) Photoacoustic computed tomography (pact) systems and methods
JP6071260B2 (ja) 被検体情報取得装置および情報処理方法
JP2011528923A5 (ru)
Yaseen et al. Optoacoustic imaging of the prostate: development toward image-guided biopsy
JP2008522761A (ja) 規準化された蛍光又は生物発光撮像のためのシステムと方法
JP2009512500A (ja) 体内腫瘍のスクリーニングのための超高特定性装置及び方法
Polańska et al. High-Frequency Ultrasonography—Possibilities and Perspectives of the Use of 20 MHz in Teledermatology
WO2018008661A1 (ja) 制御装置、制御方法、制御システム及びプログラム
EP2720615B1 (en) Agent imaging
Pu et al. Screening prostate cancer using a portable near infrared scanning imaging unit with an optical fiber-based rectal probe
Manohar et al. Photoacoustic mammography with a flat detection geometry
WO2017124193A1 (en) Methemoglobin detection using photoacoustic imaging
Vaartjes et al. First clinical trials of the Twente Photoacoustic Mammoscope (PAM)
WO2018230409A1 (ja) 情報処理装置、情報処理方法、及びプログラム
JP6532329B2 (ja) 穿刺針およびそれを用いた被検体情報取得装置
Yang Co-registered photoacoustic and ultrasound tomographic imaging of human colorectal and ovarian cancer: light delivery, system development, and clinical study
Rai et al. Photoacoustic imaging and detection of breast cancer and cervical cancer

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181117