RU2329398C2 - Wind-energetic plant with vertical axis - Google Patents
Wind-energetic plant with vertical axis Download PDFInfo
- Publication number
- RU2329398C2 RU2329398C2 RU2006117325/06A RU2006117325A RU2329398C2 RU 2329398 C2 RU2329398 C2 RU 2329398C2 RU 2006117325/06 A RU2006117325/06 A RU 2006117325/06A RU 2006117325 A RU2006117325 A RU 2006117325A RU 2329398 C2 RU2329398 C2 RU 2329398C2
- Authority
- RU
- Russia
- Prior art keywords
- blade
- wind
- blades
- vertical axis
- shaft
- Prior art date
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/74—Wind turbines with rotation axis perpendicular to the wind direction
Landscapes
- Wind Motors (AREA)
Abstract
Description
Настоящее изобретение относится к ветроэнергетической установке с вертикальной осью и, в частности, к ветроэнергетической установке с вертикальной осью, которая позволяет сформировать ряд секций для установки вала с опорными рамами, в которой множество лопастей установлены на многочисленных уровнях на основном вертикальном валу для увеличения ветроприемной скорости, тем самым обеспечивая увеличение ветроприемной площади и эффективности вращения при низких затратах на установку и большое общее генерируемое количество электрической энергии на конкретную площадь.The present invention relates to a vertical axis wind turbine and, in particular, to a vertical axis wind turbine, which allows a series of sections for mounting a shaft with support frames to be formed in which a plurality of blades are mounted at multiple levels on a main vertical shaft to increase wind receiving speed, thereby providing an increase in the wind-receiving area and rotation efficiency at low installation costs and a large total generated amount electrically energy to a specific area.
Известная ветроэнергетическая установка с вертикальной осью для ветрогенератора, такая как, например, описанная в JP 2000-234582, содержит множество вертикальных лопастей вокруг основного вертикального вала. Но когда одна из лопастей подвергается воздействию ветра, другая подвергается воздействию турбулентности, которая уменьшает силу вращения, так что небольшой крутящий момент делает невозможным практическое использование такой ветроэнергетической установки с вертикальной осью. Ветроэнергетическая установка с вертикальной осью вращается с высокой скоростью даже при слабом ветре, но уменьшение количества лопастей приводит к использованию меньшей ветроприемной площади, в то время как увеличение количества лопастей, по-видимому, вызывает турбулентность при ветре с большой скоростью.A known vertical axis wind turbine for a wind generator, such as, for example, described in JP 2000-234582, comprises a plurality of vertical blades around a main vertical shaft. But when one of the blades is exposed to wind, the other is affected by turbulence, which reduces the rotation force, so that a small torque makes it impossible to use such a vertical-axis wind power plant. A vertical-axis wind turbine rotates at a high speed even with a weak wind, but a decrease in the number of blades leads to the use of a smaller wind-receiving area, while an increase in the number of blades seems to cause turbulence in the wind at a high speed.
Принимая во внимание недостатки, целью настоящего изобретения является создание ветроэнергетической установки с вертикальной осью, пригодной для ветрогенератора, и со значительно увеличенной ветроприемной площадью относительно установочной площади ветроэнергетической установки, что позволяет выполнять ветроэнергетическую установку с меньшими размерами и более легкой, тем самым снижая себестоимость.Taking into account the disadvantages, the aim of the present invention is to provide a wind power installation with a vertical axis, suitable for a wind generator, and with a significantly increased wind receiving area relative to the installation area of the wind power installation, which allows the wind power installation to be smaller and lighter, thereby reducing cost.
Согласно настоящему изобретению создана ветроэнергетическая установка с вертикальной осью, содержащая опорную раму; основной вертикальный вал, установленный с возможностью вращения на опорной раме; крепежный элемент, закрепленный на основном вертикальном валу; опорную консоль, прикрепленную одним концом к крепежному элементу, и проходящую по вертикали лопасть, установленную на другом конце опорной консоли, при этом лопасть имеет наклонную часть, образованную на верхнем и нижнем концах, наклоненную внутрь под углом от 30 до 45 градусов по отношению к вертикальной оси основного вала, причем ширина лопасти составляет от 45 до 55% от радиуса орбиты лопасти, когда лопасть вращается вокруг основного вертикального вала.According to the present invention, a vertical axis wind turbine is provided comprising a support frame; the main vertical shaft mounted rotatably on the support frame; a fastener mounted on a main vertical shaft; a support console attached at one end to the fastener and a vertically extending blade mounted on the other end of the support console, the blade having an inclined portion formed at the upper and lower ends, inclined inwardly at an angle of 30 to 45 degrees with respect to the vertical axis of the main shaft, and the blade width is from 45 to 55% of the radius of the orbit of the blade when the blade rotates around the main vertical shaft.
Предпочтительно, лопасть, установленная на опорной консоли, установлена вертикально во множестве уровней для образования множества лопастей, каждая из которых проходит в различных направлениях без перекрытия по вертикали таким образом, что они отстоят по существу на равные углы, если смотреть сверху.Preferably, the blade mounted on the support console is mounted vertically in a plurality of levels to form a plurality of blades, each of which extends in different directions without overlapping vertically so that they are spaced substantially at equal angles when viewed from above.
Преимущественно, лопасть расположена вертикально во множестве уровней.Advantageously, the blade is arranged vertically in a plurality of levels.
Установка может быть установлена в стальной мачте высоковольтной линии электропередачи.The installation can be installed in a steel mast of a high voltage power line.
Предпочтительно, пара лопастей установлена на основном вертикальном валу, причем одна из лопастей расположена ближе к валу и является длиннее, в то время как другая из лопастей расположена дальше от вала и является короче.Preferably, a pair of blades is mounted on a main vertical shaft, with one of the blades being closer to the shaft and being longer, while the other of the blades is located farther from the shaft and is shorter.
Указанные и другие отличительные признаки и преимущества настоящего изобретения будут лучше понятны из нижеприведенного описания вариантов осуществления настоящего изобретения, проиллюстрированных на прилагаемых чертежах, на которых:These and other distinguishing features and advantages of the present invention will be better understood from the following description of embodiments of the present invention, illustrated in the accompanying drawings, in which:
фиг.1 - вид спереди в разрезе первого варианта осуществления ветроэнергетической установки с вертикальной осью в соответствии с настоящим изобретением;figure 1 is a front view in section of a first embodiment of a vertical axis wind power plant in accordance with the present invention;
фиг.2 - вид сверху первого варианта осуществления ветроэнергетической установки с вертикальной осью в соответствии с настоящим изобретением;figure 2 is a top view of a first embodiment of a vertical axis wind power plant in accordance with the present invention;
фиг.3 - комбинированный вид сверху и спереди, показывающий лопасть в соответствии с настоящим изобретением;figure 3 is a combined top and front view showing a blade in accordance with the present invention;
фиг.4 - вид спереди в разрезе второго варианта осуществления ветроэнергетической установки с вертикальной осью в соответствии с настоящим изобретением;4 is a front view in section of a second embodiment of a vertical axis wind power plant in accordance with the present invention;
фиг.5 - вид сверху второго варианта осуществления ветроэнергетической установки с вертикальной осью в соответствии с настоящим изобретением;5 is a top view of a second embodiment of a vertical axis wind power plant in accordance with the present invention;
фиг.6 - вид сверху, показывающий форму лопасти ветроэнергетической установки с вертикальной осью;6 is a top view showing the shape of the blade of a wind turbine with a vertical axis;
фиг.7 - вид спереди в разрезе третьего варианта осуществления ветроэнергетической установки с вертикальной осью в соответствии с настоящим изобретением;7 is a front view in section of a third embodiment of a vertical axis wind turbine in accordance with the present invention;
фиг.8 - вид спереди в разрезе четвертого варианта осуществления ветроэнергетической установки с вертикальной осью в соответствии с настоящим изобретением;Fig. 8 is a front cross-sectional view of a fourth embodiment of a vertical axis wind turbine in accordance with the present invention;
фиг.9 - вид сверху пятого варианта осуществления ветроэнергетической установки с вертикальной осью в соответствии с настоящим изобретением;Fig.9 is a top view of a fifth embodiment of a vertical axis wind turbine in accordance with the present invention;
фиг.10 - вид спереди в разрезе шестого варианта осуществления ветроэнергетической установки с вертикальной осью в соответствии с настоящим изобретением;10 is a front cross-sectional view of a sixth embodiment of a vertical axis wind turbine in accordance with the present invention;
фиг.11 - вид сверху седьмого варианта осуществления ветроэнергетической установки с вертикальной осью в соответствии с настоящим изобретением; и11 is a top view of a seventh embodiment of a vertical axis wind turbine in accordance with the present invention; and
фиг.12 - вид спереди в разрезе восьмого варианта осуществления ветроэнергетической установки с вертикальной осью в соответствии с настоящим изобретением.12 is a front cross-sectional view of an eighth embodiment of a vertical axis wind power plant in accordance with the present invention.
Варианты осуществления настоящего изобретения будут описаны со ссылкой на прилагаемые чертежи.Embodiments of the present invention will be described with reference to the accompanying drawings.
На фиг.1 показан вид спереди в разрезе первого варианта осуществления ветроэнергетической установки с вертикальной осью, а на фиг.2 показан вид сверху лопастей ветроэнергетической установки с вертикальной осью. В опорной раме 4 промежуточные крепежные консоли и диагональные распорки не показаны. Опорная рама 4 закреплена на бетонном фундаменте "В".Figure 1 shows a front sectional view of a first embodiment of a vertical axis wind turbine, and figure 2 shows a top view of the blades of a vertical axis wind turbine. In the
Как показано на фиг.1, ветроэнергетическая установка 1 с вертикальной осью имеет секцию 4а для установки вала в прямоугольной опорной раме 4, содержащей множество опор 2 и крепежных консолей 3.As shown in figure 1, the
Вертикальный вал 5 секции 4а для установки вала расположен вертикально и поддерживается с возможностью вращения верхним и нижним подшипниками 6. Опора 2 содержит трубку, L-образный элемент, Н-образный элемент и U-образный элемент. При этом может быть присоединено множество коротких элементов.The
Основание 7 на фиг.1 содержит коробку, в которой подшипник (не показан) поддерживает нижний конец основного вертикального вала 5. В основании 7 генератор (не показан) может быть соединен с основным вертикальным валом 5 через передающее устройство, чтобы вся опорная рама 4 играла роль ветрогенератора.The
Согласно фиг.1 основной вертикальный вал 5 имеет высоту, составляющую, например, 7 м, и его наружная поверхность закрыта усиливающим элементом 5а, за исключением окрестности подшипников. Усиливающий элемент 5а изготавливается из волокнита, алюминия или их комбинации.According to figure 1, the main
В усиливающем элементе 5а крепежные элементы 8 закрыты для повышения устойчивости к атмосферному воздействию опорных консолей 9a-9d. Соединение форм усиливающих элементов 5а заполняется волокнитовой смолой и отверждается для того, чтобы формы можно было соединить.In the reinforcing
Множество крепежных элементов 8 закреплено на основном вертикальном валу 5. Крепежный элемент 8 является кольцевым и скользящим на основном вертикальном валу 5. Крепежный элемент 8 может состоять из двух половинок, которые прижимают к валу 5 и закрепляют винтами. Крепежные элементы 8 могут использоваться в качестве маховиков для сохранения инерции вращения ветроэнергетической установки.A plurality of
Пара верхних и нижних крепежных элементов 8 расположена на одинаковом расстоянии в качестве четырех узлов, как показано на фиг.1. На каждой одной паре крепежных элементов 8 верхняя и нижняя опорные консоли 9 расположены параллельно в вертикальном направлении и закреплены на крепежных элементах 8 с помощью винтов. Вертикальное расстояние между верхними и нижними опорными консолями 9 определяется высотой лопасти 10. Если три опорные консоли 9 отстоят друг от друга по вертикали, то три крепежных элемента 8 отстоят друг от друга по вертикали в виде одного узла.A pair of upper and
Направления опорных консолей отличаются друг от друга в каждом узле. Как показано на фиг.2, самая верхняя опорная консоль 9а проходит вперед, в то время как опорная консоль 9b второго уровня проходит под прямыми к ней углами.The directions of the support consoles differ from each other in each node. As shown in FIG. 2, the
Опорная консоль 9с третьего уровня проходит далее под прямыми углами, в то время как четвертая опорная консоль 9d проходит далее под прямыми от нее углами. Направление вращения может осуществляться по часовой стрелке или против часовой стрелки.The
Общие углы от самой верхней опорной консоли 9а к самой нижней опорной консоли 9d составляют 360 градусов, и как показано на фиг.2, каждая из опорных консолей 9a-9d находятся на одинаковом расстоянии под прямыми углами.The total angles from the
На фиг.1 на наружных торцевых поверхностях каждого узла опорных консолей 9a-9d вертикальная лопасть 10 закреплена посредством внутренней поверхности, расположенной напротив основного вертикального вала 5. Опорные консоли 9a-9d прикрепляются к лопастям 10 посредством винтов, причем соединение или крепление волокнитом зависит от размера и веса лопасти 10.In figure 1, on the outer end surfaces of each node of the
Опорные консоли 9 имеют достаточную жесткость, чтобы поддерживать лопасти 10 и формы, на которые ветровое сопротивление не оказывает влияния. Опорные консоли 9a-9d изготавливаются, например, из волокнитовых пластин.The
Например, лопасть имеет высоту, составляющую 100-180 см, и толщину, составляющую 4-6 см. Длина пояса фермы изменяется в зависимости от радиуса орбиты и количества лопастей. Длина пояса фермы одной лопасти определяется в пределах диапазона 50-65% от радиуса.For example, a blade has a height of 100-180 cm and a thickness of 4-6 cm. The length of the truss belt varies depending on the radius of the orbit and the number of blades. The length of the belt of the truss of one blade is determined within the range of 50-65% of the radius.
Верхняя и нижняя торцевые поверхности лопасти 10 наклонены для образования наклонных частей 10а. Если угол наклонной части 10а больше 45 градусов, то, вероятно, возникает турбулентность воздуха, тогда как если он слишком малый, скорость восстановления энергии ветра уменьшается. Таким образом, подходящим углом является угол, составляющий 30-45 градусов. Если наклонная часть 10а является слишком длинной, то, вероятно, она становится прочной и, предпочтительно, может составлять менее 10% от длины лопасти.The upper and lower end surfaces of the
При вращении лопасти 10 воздух вращается с боковой поверхностью лопасти 10 благодаря вязкости текучей среды. В результате, ветер, который проникает в траекторию вращения лопасти 10, проходит в вертикальном направлении и имеет меньшее сопротивление на поверхности лопасти. Когда наклонные части 10а образованы внутрь на верхней и нижней торцевых поверхностях лопасти 10, поток воздуха, который стремится проходить внутрь и вниз, гасится наклонными частями 10a для увеличения давления воздуха, таким образом толкая лопасть 10 в направлении вращения. При этом эффективность вращения лопасти 10, имеющей наклонные части 10а, увеличивается на 10-40% по сравнению с той, которая не имеет наклонные части, как описано далее.As the
В лопасти 10 в соответствии с настоящим изобретением длина пояса фермы или ширина являются очень большими. Поскольку наклонные части 10а образованы на верхней и нижней торцевых поверхностях лопасти 10, ясно, что лопасть 10 достигает идеального количества вращения по сравнению с простой прямой вертикальной лопастью, несмотря на большую длину пояса фермы.In the
На фиг.3 показан схематический вид, включающий вид сверху, обозначенный сплошными линиями, и вид спереди, обозначенный воображаемыми линиями.3 is a schematic view including a plan view indicated by solid lines and a front view indicated by imaginary lines.
Наружная поверхность лопасти 10 содержит кривую поверхность вдоль траектории "Т" вращения. Таким образом, во время вращения ветроэнергетической установки 1 с вертикальной осью, наружная поверхность лопасти 10 перемещается вдоль кривой поверхности вращения для уменьшения потери сопротивления ветра в радиальной части лопасти.The outer surface of the
Выступ 10b образован на внутренней поверхности лопасти 10. Таким образом, во время вращения задний торец внутренней поверхности лопасти 10 вращается снаружи траектории "Та" вращения выступа 10b, и соответственно ветер, который проходит вдоль внутренней поверхности лопасти 10, проходит назад на наружную сторону траектории "Та" вращения выступа 10b.The
Таким образом, когда встречный ветер сталкивается с передней поверхностью лопасти 10 (см. фиг.3), он толкает задний торец внутренней поверхность лопасти 10.Thus, when the headwind collides with the front surface of the blade 10 (see figure 3), it pushes the rear end of the inner surface of the
Так как выступ 10b образован на внутренней поверхности лопасти 10, то скорость ветра, который проходит вдоль наружной поверхности лопасти 10, выше скорости ветра, который проходит вдоль внутренней поверхности. Ветер с более высокой скоростью делает воздух более разреженным для образования отрицательного давления или разрежения, так что лопасть 10 прижимается внутрь и вперед с наружной стороны для создания противодействия, которое обеспечивает самовращающееся усилие.Since the
Как показано на фиг.3, ветер, который сталкивается с внутренней поверхностью вращающейся лопасти 10 с левой передней стороны и проходит вертикально, сталкивается с наклонной частью 10а лопасти 10. Так как траектория "Tb" вращения находится с внутренней стороны траектории "Та" вращения выступа 10b, то поток ветра, который проходит назад над выступом 10b, не распространяется вверх и вниз, а проходит назад при большой скорости, в то время как на него оказывается давление со стороны верхней и нижней наклонных частей 10а и создается высокое давление, таким образом, толкая заднюю сторону внутренней поверхности лопасти 10 для образования силы вращения.As shown in FIG. 3, a wind that collides with the inner surface of the
На виде сбоку с фиг.3 стрелка "А", которая направлена на левую боковую поверхность наклонной части 10а, отталкивается в направлении стрелки "а". На виде сверху с фиг.3 ветер, обозначенный стрелкой "В", отталкивается в направлении стрелки "b". Отталкивающийся ветер влияет на силу вращения лопасти в качестве обратного действия.In the side view of Fig. 3, the arrow "A", which is directed to the left side surface of the
Как показано на фиг.3, длина пояса фермы лопасти 10 составляет до 50% от радиуса орбиты. Однако наружная поверхность лопасти 10 находится на круглой поверхности вдоль траектории "Т" вращения. Таким образом, несмотря на выступ 10b на внутренней поверхности лопасть 10 имеет толщину около 7% от радиуса вращения. Чем тоньше лопасть, тем меньше сопротивление вращения.As shown in FIG. 3, the length of the truss belt of the
В ветроэнергетической установке 1 с вертикальной осью, в том виде, как она сконструирована выше, лопасть 10 имеет длину, составляющую 1 м. Но четыре уровня одиночной лопасти расположены вокруг основного вертикального вала 5 с высотой, составляющей 7 м, так что четырехлопастная ветроэнергетическая установка с вертикальной осью имеет широкую ветроприемную площадь и обеспечивает большой крутящий момент при вращении.In a
На каждом уровне лопасть 10 является единичной, чтобы избежать сопротивления ветра на противоположной стороне того же самого уровня и увеличить эффективность вращения. Несмотря на ветер, который мгновенно меняет направление, лопасть 10 на каждом уровне меняет направление под прямыми углами для обеспечения плавного вращения вала с постоянной энергией ветра подобно четырехцилиндровому двигателю автомобиля и достижения мощного крутящего момента.At each level, the
Единичная лопасть 10 расположена на единственном основном вертикальном валу 5 на каждом из множества уровней при фиксированных углах для обеспечения устойчивого равновесия при вращении основного вертикального вала.A
В многоуровневых лопастях вокруг единственного основного вертикального вала 5 коэффициент мощности не равен величине, умноженной на количество уровней, а больше его, что подтверждено. Подъемная сила четырехуровневых лопастей в четыре раза больше подъемной силы единичной лопасти, активная нагрузка на лопасть 10 уменьшается до единицы, поделенной на количество уровней для увеличения эффективности вращения и увеличения скорости вращения лопасти 10, таким образом, увеличивая коэффициент мощности.In multi-level blades around a single main
В первом варианте осуществления изобретения лопасти 10 расположены на четырех уровнях, но три основных вертикальных вала 5 могут быть соединены вертикально для образования двенадцати уровней лопастей 10.In the first embodiment, the
Путем укорачивания основного вертикального вала 5 лопасти 10 могут быть расположены на трех или шести уровнях. Лопасть 10 может быть длиннее или короче.By shortening the main
На фиг.4 показан вид спереди в вертикальном разрезе второго варианта осуществления ветроэнергетической установки с вертикальной осью в соответствии с настоящим изобретением, а на фиг.5 показан вид сверху. Одни и те же ссылочные позиции используются для одних и тех же элементов, как указано выше, и их описание опущено. Промежуточные крепежные консоли или диагональные распорки не включены в опорную раму с фиг.4 и 5.Figure 4 shows a front view in vertical section of a second embodiment of a vertical axis wind turbine in accordance with the present invention, and Figure 5 shows a top view. The same reference numbers are used for the same elements as described above, and their description is omitted. Intermediate mounting brackets or diagonal struts are not included in the support frame of FIGS. 4 and 5.
Как показано на фиг.4 основной вертикальный вал 5 поддерживается множеством промежуточных подшипников 66, каждый из которых закреплен с помощью крепежной консоли 3 между опорами 2. Таким образом, основной вертикальный вал 5 может сопротивляться изгибу целиком, делая основной металлический вертикальный вал тоньше и легче, до тех пор, пока он выдерживает сдвигающую нагрузку.As shown in FIG. 4, the main
Согласно фиг.4 основной вертикальный вал 5 расположен между двумя лопастями 10. Если радиус орбиты лопасти 10 составляет 1 м, то, предпочтительно, длина пояса фермы лопасти 10 может составлять от 40 до 55% от радиуса.According to figure 4, the main
Опорные консоли 9a-9d расположены на одной и той же орбите. При вращении две лопасти 10 на одном уровне имеют устойчивое равновесие для повышения равновесия вращения для всей ветроэнергетической установки 1.Support consoles 9a-9d are located in the same orbit. During rotation, the two
Как показано на фиг.5, самые верхние опорные консоли 9а расположены на каждой стороне вала 5. Опорная консоль 9b на втором уровне сдвигается под углом 72 градуса в направлении вращения, как показано стрелкой "А". Опорная консоль 9а на третьем уровне далее сдвигается на 72 градуса. Опорные консоли на четвертом и пятом уровнях 9d, 9e сдвигаются на 72 градуса в направлении вращения.As shown in FIG. 5, the
Таким образом, опорные консоли 9а-9е расположены в направлении вращения через 36 градусов в последовательности 9а, 9d, 9b, 9e, 9с, 9а, 9d, 9с, как показано на фиг.5.Thus, the
Во втором варианте осуществления две лопасти расположены на пяти уровнях и общее количество лопастей равно десяти для увеличения ветроприемной площади, что обуславливает более мощный крутящий момент. В частности, ветроприемная площадь пяти уровней ветроэнергетической установки 1 больше в пять раз, чем ветроприемная площадь одноуровневой ветроэнергетической установки, и генерирование энергии ветра увеличивается пропорционально площади лопасти 10, умноженной на скорость ветра и возведенной в куб.In the second embodiment, the two blades are located at five levels and the total number of blades is equal to ten to increase the wind-receiving area, which leads to a more powerful torque. In particular, the wind-receiving area of the five levels of the
На фиг.6 показан вид сверху двух лопастей ветроэнергетической установки с вертикальной осью. Одни и те же ссылочные позиции используются для одних и тех же частей и элементов, и их описание опущено.Figure 6 shows a top view of two blades of a wind turbine with a vertical axis. The same reference numbers are used for the same parts and elements, and their description is omitted.
Ветроэнергетическая установка 1 с вертикальной осью изготовлена для испытаний в аэродинамической трубе, и радиус орбиты лопастей 10 составляет 40 см, высота - 80 см и длина пояса фермы - 20 см.
Наружная поверхность лопасти 10 перемещается вдоль орбиты вращения "Т". Выступ 10b образован на внутренней поверхности лопасти 10, а наклонные части 10а образованы на верхней и нижней торцевых поверхностях лопасти 10.The outer surface of the
Испытания в аэродинамической трубе выполняются на основании характеристики вращения ветроэнергетической установки 1.Tests in a wind tunnel are carried out on the basis of the rotation characteristics of the
Дата: 26 июля 2004 г., облачно, 32-34°СDate: July 26, 2004, cloudy, 32-34 ° C
Устройство аэродинамической трубы, принадлежащее институту технологии г.АсикагаWind tunnel device owned by the Institute of Technology of the city of Asikaga
Открытый тип, отверстие для вдувания: 1,04 м × 1,04 м, аэродинамическая труба с переменной скоростью ветраOpen type, injection hole: 1.04 m × 1.04 m, wind tunnel with variable wind speed
Измерение скорости ветра: манометр типа Betz и трубка питоWind speed measurement: Betz pressure gauge and pitot tube
Скорость испытываемого ветра: 4, 6, 8, 10, 12, 14 м/сTest wind speed: 4, 6, 8, 10, 12, 14 m / s
Прямая лопасть: 13, 16, 20, 23 см в качестве длины пояса фермыStraight blade: 13, 16, 20, 23 cm as truss belt length
Лопасть типа Bellshion: только 20 см в качестве длины пояса фермыBellshion type blade: only 20 cm as truss belt length
Испытание крутящего момента: устройство типа инверторного двигателя, принадлежащего аспирантскому курсу Усияма института технологии г.Асикага.Torque test: an inverter-type motor device belonging to the graduate course of the Usiyama Institute of Technology in Asikaga.
При испытаниях в аэродинамической трубе прямой лопасти, не имеющей наклонных частей, получены следующие результаты эффективности "Ср" ветроэнергетической установки.When testing in a wind tunnel of a straight blade that does not have inclined parts, the following results of the "Ср" efficiency of a wind power installation are obtained.
На основании результатов испытаний лопасть с длиной пояса фермы 23 см является превосходной при эффективности Ср ветроэнергетической установки, когда скорость ветра является высокой и составляет 14 м/с, но неудовлетворительной, когда скорость ветра является низкой и составляет 4 м/с.Based on the test results, a blade with a truss belt length of 23 cm is excellent for the Cp efficiency of a wind turbine when the wind speed is high at 14 m / s, but unsatisfactory when the wind speed is low at 4 m / s.
Напротив, лопасть с длиной пояса фермы 20 см или 50% от радиуса орбиты обеспечивает эффективность ветроэнергетической установки 0,17, несмотря на низкую скорость ветра 4 м/с, которая является значительно лучшей по сравнению с другими.On the contrary, a blade with a truss belt length of 20 cm or 50% of the orbit radius ensures the efficiency of the 0.17 wind power plant, despite the low wind speed of 4 m / s, which is significantly better than others.
На лопастях типа Bellshion, имеющих наклонные части на верхней и нижней торцевых поверхностях и длину пояса фермы 20 см, были проведены испытания в аэродинамической трубе, и результаты приведены внизу.On blades of the Bellshion type, having inclined parts on the upper and lower end surfaces and a truss belt length of 20 cm, wind tunnel tests were carried out and the results are shown below.
На основании результатов испытаний в аэродинамической трубе, сравнивая лопасть 10 в соответствии с настоящим изобретением с обычной прямой лопастью, лопасть 10 в соответствии с настоящим изобретением имеет длину пояса фермы, составляющую 20 см и соответствующую 50% от радиуса орбиты, но обеспечивает свыше 0,25 эффективности "Ср" ветроэнергетической установки при низкой скорости ветра 4 м/с по сравнению с эффективностью ветроэнергетической установки 0,17 прямой лопасти, имеющей длину пояса фермы, составляющую 20 см, при скорости ветра 4 м/с, которая обеспечивает хорошую эффективность.Based on the results of tests in a wind tunnel, comparing the
В частности, в случае одной и той же длины пояса фермы лопасть 10 в соответствии с настоящим изобретением достигает эффективность выше на 47% при низкой скорости ветра 4 м/с и на 14% при высокой скорости ветра 14 м/с, чем прямые лопасти.In particular, in the case of the same length of the truss belt, the
Численные значения испытаний показывают, что ветроэнергетическая установка 1 с вертикальной осью отличается незначительно по эффективности вращения от площади с низкой скоростью ветра до площади с высокой скоростью ветра и постоянно.The numerical values of the tests show that the
В частности, ветрогенератор является невыгодным, если ветер со скоростью более чем 4 м/с, не дует в течение более 2000 часов в год. В каждом районе, где много дней в году, во время которых ветер с высокой скоростью не дует, ветроэнергетическая установка 1 с вертикальной осью, имеющая Ср=0,25 при скорости ветра 4 м/с в данном изобретении подходит для генерации энергии ветра.In particular, a wind generator is disadvantageous if the wind with a speed of more than 4 m / s does not blow for more than 2000 hours per year. In each area where there are many days of the year, during which the wind does not blow at high speed, the
При испытаниях в аэродинамической трубе становится ясно, что эффективность ветроэнергетической установки "Ср" особенно низкая на площади с низкой скоростью, является ли длина пояса фермы лопасти 10 короче или длиннее, чем ширина, соответствующая 50% от радиуса орбиты. Таким образом, подтверждено, что длина пояса фермы лопасти 10 в двух лопастях, предпочтительно, может изменяться в пределах от 45% до 55%. Однако в зависимости от размера, количества, средней скорости ветра в конкретном месте и т.д. длина пояса фермы может составлять от 40 до 60% радиуса орбиты.When tested in a wind tunnel, it becomes clear that the efficiency of the Cp wind power plant is especially low in the area with low speed, whether the length of the belt truss of the
На фиг.7 показан вид спереди в вертикальном разрезе третьего варианта осуществления ветроэнергетической установки с вертикальной осью в соответствии с настоящим изобретением. Одни и те же ссылочные позиции относятся к одним и тем же элементам, также как в указанных вариантах осуществления, и их описание опущено. Промежуточные крепежные консоли и диагональные распорки не показаны в опорной раме 4 с фиг.7.7 shows a front view in vertical section of a third embodiment of a vertical axis wind turbine in accordance with the present invention. The same reference numerals refer to the same elements, as in the indicated embodiments, and their description is omitted. Intermediate mounting brackets and diagonal struts are not shown in the supporting
В ветроэнергетической установке 1 с вертикальной осью в третьем варианте осуществления изобретения стальная мачта для высоковольтной линии "L" электропередачи используется в том виде, как она существует. Электричество, генерируемое силовым генератором (не показан) в основании 7, накапливается в электросборнике 11, преобразуется трансформатором 12 и аккумулируется по линии электропередачи "L". Таким образом, экономятся капиталовложения, и обеспечивается генерация электроэнергии в отдаленных районах и аккумулирование электроэнергии. Как показано, радиус орбиты лопасти 10 изменяется в зависимости от каждого из вертикальных уровней.In the vertical
На фиг.8 показан вид спереди в вертикальном разрезе четвертого варианта осуществления ветроэнергетической установки с вертикальной осью в соответствии с настоящим изобретением. Одни и те же ссылочные позиции относятся к одним и тем же элементам, также как в указанных вариантах осуществления, и их описание опущено. Промежуточные крепежные консоли и диагональные распорки не показаны в опорной раме с фиг.8. Электроколлектор, трансформатор, автоматическое устройство управления, датчик скорости вращения или тормозное устройство не показаны.FIG. 8 is a front elevational view of a fourth embodiment of a vertical axis wind turbine in accordance with the present invention. The same reference numerals refer to the same elements, as in the indicated embodiments, and their description is omitted. Intermediate mounting brackets and diagonal struts are not shown in the support frame of FIG. An electric collector, a transformer, an automatic control device, a rotational speed sensor or a brake device are not shown.
В четвертом варианте осуществления множество секций для установки вала расположено горизонтально в опорной раме 4 и основной вертикальный вал 5 расположен в каждой из секций 4а для установки вала, так что множество основных вертикальных валов 5 расположено в единственной опорной раме 4. На фиг.8 показаны две секции, но может быть расположено непрерывно десять или двенадцать секций в горизонтальном направлении.In the fourth embodiment, the plurality of shaft mounting sections are arranged horizontally in the
Множество секций 4а для установки вала образовано в единственной опорной раме 4, и основной вертикальный вал 5 расположен в каждой из секций 4а для установки вала. Множество лопастей 10 установлено на каждой из основных вертикальных валов 5, хотя соседние лопасти 10 отличаются направлением для обеспечения равномерного прохождения потока ветра, тем самым уменьшая взаимодействие потока воздуха, вызванного смежными лопастями при вращении.A plurality of
Основные вертикальные валы 5 в четвертом варианте осуществления, сконструированные таким образом, обеспечивают работу всей опорной рамы 4 в качестве силового генератора. В результате, каждый из основных вертикальных валов 5 обеспечивает вращение генератора (не показан) в основании 7 и генерирование электроэнергии, которая накапливается для реализации высокообъемного генератора с помощью единственной опорной рамы 4.The main
Лопасти 10 в данном варианте осуществления могут содержать две лопасти с фиг.4. Как показано на фиг.4, основной вертикальный вал 5 может поддерживаться промежуточными подшипниками 66.The
Секции 4а для установки вала непрерывно расположены рядом, и количество уровней лопастей 10 может изменяться и составлять, например, пять, четыре, три и пять уровней. Это подходит, когда установка осуществляется на неровных площадках.The
На фиг.9 показан вид сверху пятого варианта осуществления ветроэнергетической установки с вертикальной осью в соответствии с настоящим изобретением. Одни и те же ссылочные позиции относятся к одним и тем же элементам, также как в указанных вариантах осуществления, и их описание опущено. Промежуточные крепежные консоли и диагональные распорки не показаны в опорной раме 4 с фиг.9.Figure 9 shows a top view of a fifth embodiment of a vertical axis wind turbine in accordance with the present invention. The same reference numerals refer to the same elements, as in the indicated embodiments, and their description is omitted. Intermediate mounting brackets and diagonal struts are not shown in the supporting
Ветроэнергетическая установка 1 с вертикальной осью в пятом варианте осуществления содержит опорную раму Y-образной формы. Показано двенадцать секций 4а для установки вала, но могут быть непрерывными десять или пятьдесят секций в одном направлении. В зависимости от формы поверхности, количество секций 4а увеличивают в длину в одном направлении, но уменьшают в другом направлении. Кроме того, в одном направлении секции 4а для установки вала можно перемещать взад и вперед.The vertical
На фиг.10 показан вид спереди в вертикальном разрезе шестого варианта осуществления ветроэнергетической установки с вертикальной осью. Одни и те же ссылочные позиции относятся к одним и тем же элементам, и их описание опущено. В опорной раме с фиг.10 промежуточные крепежные консоли и диагональные распорки не показаны.10 is a front elevational view of a sixth embodiment of a vertical axis wind turbine. The same reference numerals refer to the same elements, and their description is omitted. In the support frame of FIG. 10, intermediate mounting brackets and diagonal struts are not shown.
В шестом варианте осуществления опорные консоли 9 для лопастей 10 отличаются друг от друга по длине, а также предусмотрены удаленная лопасть 10А и ближняя лопасть 10В. Отношение более длинной опорной консоли 9А к более короткой консоли 9В составляет 2:1 как максимум. На фиг.10 удаленные лопасти 10А и ближние лопасти 10В расположены на двух уровнях, и более длинные и более короткие опорные консоли 9А, 9В расположены прямо. В случае четырех уровней более длинные и более короткие опорные консоли 9А, 9В отстоят друг от друга под прямыми углами.In a sixth embodiment, the
Как показано на фиг.10, удаленная лопасть 10А короче, в то время как ближняя лопасть 10 В длиннее. Отношение более короткой опорной консоли 9В к более длинной опорной консоли 9А составляет 1:2. Более длинная опорная консоль 9А имеет длину, равную 100 см, а более короткая опорная консоль 9В имеет длину, равную 50 см. Удаленная лопасть 10А имеет длину, равную 100 см, а ближняя лопасть 10 В имеет длину, равную 200 см, так что ветроприемные площади являются одинаковыми.As shown in FIG. 10, the
Удаленная лопасть 10А и ближняя лопасть 10В не проходят через одну и ту же траекторию вращения при вращении и вряд ли подвергаются воздействию турбулентности при вращении. Эти варианты осуществления являются большими по ветроприемной площади, чем единичная лопасть одного уровня, поэтому наличие преимущества единичной лопасти усиливается за счет наличия преимущества двух лопастей.The
На фиг.11 показан вид сверху седьмого варианта осуществления ветроэнергетической установки с вертикальной осью в соответствии с настоящим изобретением. Одни и те же ссылочные позиции относятся к одним и тем же элементам, и их описание опущено. В опорной раме 4 с фиг.11 промежуточные крепежные консоли и диагональные распорки не показаны.11 shows a top view of a seventh embodiment of a vertical axis wind turbine in accordance with the present invention. The same reference numerals refer to the same elements, and their description is omitted. In the supporting
В седьмом варианте осуществления более длинная опорная консоль 9А расположена поперек более короткой опорной консоли 9В, и две удаленные лопасти 10А и две ближние лопасти 10В установлены на более длинной опорной консоли 9А и более короткой опорной консоли 9В соответственно. На фиг.11 опорная консоль 9А для удаленных лопастей 10А установлена на верхней поверхности крепежного элемента 8, в то время как опорная консоль 9В для двух ближних лопастей 10В установлена на нижней поверхности крепежного элемента 8. Однако более длинная и более короткая опорные консоли 9А и 9В обе могут быть установлены на верхней поверхности крепежного элемента 8. Лопасти 10 могут быть расположены на единственном основном вертикальном валу 5 на множестве уровней аналогично другим вариантам осуществления изобретения.In the seventh embodiment, the
На фиг.12 показан вид спереди в вертикальном разрезе восьмого варианта осуществления ветроэнергетической установки с вертикальной осью в соответствии с настоящим изобретением. Одни и те же ссылочные позиции относятся к одним и тем же элементам, также как в указанных вариантах осуществления, и их описание опущено. На фиг.12 промежуточные крепежные консоли и диагональные распорки не показаны.12 is a front elevational view of an eighth embodiment of a vertical axis wind turbine in accordance with the present invention. The same reference numerals refer to the same elements, as in the indicated embodiments, and their description is omitted. 12, intermediate mounting brackets and diagonal struts are not shown.
В восьмом варианте осуществления три лопасти расположены на четырех уровнях. Длина пояса фермы лопасти 10, предпочтительно, составляет 40-45% от радиуса орбиты, которая меньше, чем длина пояса фермы двух лопастей. Лопасти 10 отклоняются от лопастей на следующем уровне на 30 или 60 градусов. Силовой генератор 13 расположен на каждом уровне для генерирования электроэнергии при вращении основного вертикального вала 5 через передающее устройство 14. Автоматическое сцепляющее устройство или автоматический переключатель нагрузки (не показаны) расположены в каждом из генераторов 13. Предусмотрены подшипник, устройство передачи, датчик скорости вращения, автоматическое устройство управления, автоматический тормоз и двигатель для обеспечения вращения (не показан).In the eighth embodiment, the three blades are located at four levels. The length of the truss belt of the
Датчик скорости вращения регистрирует скорость вращения основного вертикального вала 5 для управления соответствующим оборудованием с помощью автоматического устройства управления на основании зарегистрированного значении. Скорость ветра менее 4 м/с приводит в действие автоматическое сцепляющее устройство для размыкания и замыкания на каждом уровне конкретной скорости ветра. Таким образом, автоматическое сцепляющее устройство размыкается в четырех генераторах 13 для обеспечения количества генераторов 13 от одного до трех, в которые не передается сила вращения основного вертикального вала 5, таким образом, осуществляя вращение основного вертикального вала с нагрузкой, соответствующей низкой скорости ветра, для осуществления генерирования электроэнергии, пригодной при низкой скорости ветра.The rotational speed sensor detects the rotational speed of the main
При запуске при низкой скорости ветра только один из генераторов 13, соединенный с основной вертикальной осью 5, включается, и соединенные генераторы 13 начинают включаться один за другим при увеличении скорости ветра. Следовательно, может быть установлен только один генератор, который по объему генерирования электроэнергии уступает другим.When starting at low wind speed, only one of the
Во время безветрия двигатель для обеспечения вращения (не показан) приводится в действие автоматическим устройством управления для обеспечения пускового усилия для ветроэнергетической установки 1 с вертикальной осью. Во время тайфуна приводится в действие автоматический тормоз. Автоматическим тормозом может быть электрическое устройство нагрузки, а не механическое устройство. Автоматическим устройством переключения нагрузки может быть размыкающее/замыкающее переключающее устройство, состоящее из множества батарей и электромагнитной катушки. Например, если скорость тайфуна превысит заданную скорость ветра, то переключатель разомкнется с помощью автоматического устройства управления на основании зарегистрированной величины в анемометре и станет нагрузкой, которая предотвращает генерирование электроэнергии при данной скорости, так что ветроэнергетическая установка перестает работать.During idleness, an engine for providing rotation (not shown) is driven by an automatic control device to provide starting force for a
Относительно управления автоматическим переключателем нагрузки в генераторе 13 в данном варианте осуществления, может быть применен другой вариант осуществления.Regarding the control of the automatic load switch in the
Силовой генератор соединяется с основным вертикальным валом ветроэнергетической установки для образования ветрогенератора. В частности, опорная рама выполняется из легких опор для прохождения в горизонтальном направлении, таким образом увеличивая высоту, предотвращая потерю устойчивости и создавая ветрогенератор большого объема, состоящего из ряда небольших ветроэнергетических установок.The power generator is connected to the main vertical shaft of the wind power plant to form a wind generator. In particular, the support frame is made of light supports for passing in the horizontal direction, thereby increasing the height, preventing loss of stability and creating a large volume wind generator, consisting of a number of small wind power plants.
Вышеуказанное относится только к вариантам осуществления настоящего изобретения. Специалистами в данной области техники могут быть осуществлены различные модификации и изменения, не выходя из объема настоящего изобретения, определенного в формуле изобретения.The foregoing applies only to embodiments of the present invention. Various modifications and changes may be made by those skilled in the art without departing from the scope of the present invention defined in the claims.
Claims (9)
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003362284A JP4546715B2 (en) | 2003-10-22 | 2003-10-22 | Vertical axis windmill |
JP2003-362284 | 2003-10-22 | ||
JP2003-412043 | 2003-12-10 | ||
JP2003412043A JP2005171852A (en) | 2003-12-10 | 2003-12-10 | Vertical axis windmill and its rotor and blade |
JP2003-433854 | 2003-12-26 | ||
JP2004-016436 | 2004-01-26 | ||
JP2004016436A JP4625259B2 (en) | 2004-01-26 | 2004-01-26 | Vertical axis windmill |
JP2004-194381 | 2004-06-30 | ||
JP2004-305014 | 2004-10-20 | ||
JP2004305014A JP4907073B2 (en) | 2004-10-20 | 2004-10-20 | Vertical axis windmill |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2006117325A RU2006117325A (en) | 2007-11-27 |
RU2329398C2 true RU2329398C2 (en) | 2008-07-20 |
Family
ID=38960013
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2006117325/06A RU2329398C2 (en) | 2003-10-22 | 2004-10-21 | Wind-energetic plant with vertical axis |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2329398C2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2488020C2 (en) * | 2010-06-04 | 2013-07-20 | Федеральное государственное унитарное предприятие "Государственный космический научно-производственный центр им. М.В. Хруничева" | Wind-powered engine mockup for adjustment of wind-powered engine for specified wind conditions |
RU2572151C1 (en) * | 2014-10-15 | 2015-12-27 | Александр Владимирович Губанов | Pair-wind rotary power generator |
RU2572356C1 (en) * | 2014-11-18 | 2016-01-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ставропольский государственный аграрный университет" | Rotor-type windmill with circular airflow concentrator |
RU2689650C1 (en) * | 2018-04-17 | 2019-05-28 | Гафтдин Газдалиевич Газдалиев | Wind-hydraulic plant |
RU2727108C1 (en) * | 2019-08-12 | 2020-07-20 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Владимирский Государственный Университет имени Александра Григорьевича и Николая Григорьевича Столетовых" (ВлГУ) | Rotary wind generator |
RU2770771C2 (en) * | 2020-08-19 | 2022-04-21 | Гафтдин Газдалиевич Газдалиев | Hydraulic wind power plant |
-
2004
- 2004-10-21 RU RU2006117325/06A patent/RU2329398C2/en active
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2488020C2 (en) * | 2010-06-04 | 2013-07-20 | Федеральное государственное унитарное предприятие "Государственный космический научно-производственный центр им. М.В. Хруничева" | Wind-powered engine mockup for adjustment of wind-powered engine for specified wind conditions |
RU2572151C1 (en) * | 2014-10-15 | 2015-12-27 | Александр Владимирович Губанов | Pair-wind rotary power generator |
RU2572356C1 (en) * | 2014-11-18 | 2016-01-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ставропольский государственный аграрный университет" | Rotor-type windmill with circular airflow concentrator |
RU2689650C1 (en) * | 2018-04-17 | 2019-05-28 | Гафтдин Газдалиевич Газдалиев | Wind-hydraulic plant |
RU2727108C1 (en) * | 2019-08-12 | 2020-07-20 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Владимирский Государственный Университет имени Александра Григорьевича и Николая Григорьевича Столетовых" (ВлГУ) | Rotary wind generator |
RU2770771C2 (en) * | 2020-08-19 | 2022-04-21 | Гафтдин Газдалиевич Газдалиев | Hydraulic wind power plant |
Also Published As
Publication number | Publication date |
---|---|
RU2006117325A (en) | 2007-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2543399C (en) | Vertical axis windmill | |
US8167533B2 (en) | Wind energy system | |
US10253755B2 (en) | Wind energy conversion devices | |
US8157501B2 (en) | Vertical axis sail-type windmill power transfer device | |
US7484363B2 (en) | Wind energy harnessing apparatuses, systems, methods, and improvements | |
US7315093B2 (en) | Wind turbine system for buildings | |
US20090169354A1 (en) | Apparatus for Use of Flow Energy | |
US9404474B2 (en) | System and method for efficient wind power generation | |
US7802967B2 (en) | Vertical axis self-breaking wind turbine | |
US8810057B2 (en) | Wind energy systems and methods of use | |
US8851839B2 (en) | Wide blade multiple generator wind turbine | |
US20030025334A1 (en) | Fluid-powered energy conversion device | |
WO2006119648A1 (en) | Helical wind turbine | |
US20090045634A1 (en) | Linear wind-powered electric generator | |
CN101943127A (en) | Wind collecting vertical type wind power generating system | |
US20120070293A1 (en) | Wind turbine apparatus, wind turbine system and methods of making and using the same | |
US20120020788A1 (en) | Wind energy system | |
RU2329398C2 (en) | Wind-energetic plant with vertical axis | |
US20240068369A1 (en) | Fluid turbine | |
CN210239906U (en) | Vertical axis wind power energy-saving generator | |
US9217421B1 (en) | Modified drag based wind turbine design with sails | |
US11898537B2 (en) | Wind generator | |
CN113982832B (en) | Distributed micro-grid system | |
US20240280081A1 (en) | Energymaster - a floating hybrid tidal/wave/wind harvesting system | |
EA046037B1 (en) | WIND GENERATOR |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
HK4A | Changes in a published invention | ||
PC4A | Invention patent assignment |
Effective date: 20100210 |