[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

RU2328753C2 - Устройство и способ для оценки уровня заряженности батареи с использованием нейронной сети - Google Patents

Устройство и способ для оценки уровня заряженности батареи с использованием нейронной сети Download PDF

Info

Publication number
RU2328753C2
RU2328753C2 RU2006119641/28A RU2006119641A RU2328753C2 RU 2328753 C2 RU2328753 C2 RU 2328753C2 RU 2006119641/28 A RU2006119641/28 A RU 2006119641/28A RU 2006119641 A RU2006119641 A RU 2006119641A RU 2328753 C2 RU2328753 C2 RU 2328753C2
Authority
RU
Russia
Prior art keywords
battery
neural network
algorithm
voltage
value
Prior art date
Application number
RU2006119641/28A
Other languages
English (en)
Other versions
RU2006119641A (ru
Inventor
Ил ЧО (KR)
Ил ЧО
Original Assignee
Эл Джи Кем, Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эл Джи Кем, Лтд. filed Critical Эл Джи Кем, Лтд.
Publication of RU2006119641A publication Critical patent/RU2006119641A/ru
Application granted granted Critical
Publication of RU2328753C2 publication Critical patent/RU2328753C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/46Control modes by self learning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/48Control modes by fuzzy logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

Изобретение относится к измерительной технике. Сущность: устройство содержит воспринимающую секцию, нейронную сеть и компаратор. Воспринимающая секция служит для измерения силы тока, напряжения и температуры на элементе батареи. Нейронная сеть выполняет алгоритм нейронной сети для вычисления состояния заряда (СЗ) батареи посредством обработки данных силы тока, напряжения и температуры, переданных ей из воспринимающей секции, и данных о моменте времени, когда были измерены сила тока, напряжение и температура, согласно функции, имеющей заранее определенный весовой коэффициент. При этом заранее определенный весовой коэффициент обновляется посредством обучающего алгоритма, что вынуждает вычисленное СЗ батареи в результате обучения отслеживать заранее определенное целевое значение. Компаратор сравнивает выходное значение нейронной сети с заранее определенным целевым значением и побуждает нейронную сеть выполнять алгоритм обучения, если разность между вычисленным значением СЗ батареи и заранее определенным целевым значением находится вне заранее определенного допуска. Технический результат: обеспечение динамической оценки СЗ в разных условиях, повышение точности. 2 н. и 10 з.п. ф-лы, 4 ил.

Description

Область техники
Данное изобретение в целом имеет отношение к устройству и способу для оценки уровня заряженности батареи, и более конкретно - к устройству и способу для оценки состояния заряда (СЗ) батареи, представляющего собой нелинейную характеристику, с использованием нейронной сети.
Уровень техники
Обычно состояние заряда (СЗ) батареи представляет собой нелинейную характеристику, поэтому трудно точно измерить СЗ батареи. Таким образом, значение СЗ батареи не измеряется, а оценивается. В частности, СЗ батарей, используемых для гибридных электрических транспортных средств или электрических транспортных средств, имеющих высокие значения расхода емкости, может представлять собой сильно нелинейную характеристику, поэтому почти невозможно точно определить СЗ таких батарей.
Традиционно для оценки СЗ батареи использовались схема подсчета ампер-часов, схема измерения напряжения разомкнутой цепи или схема измерения полного сопротивления батареи.
Во-первых, схема подсчета ампер-часов оценивает СЗ батареи путем определения текущей емкости батареи. В этом случае значение оценки СЗ батареи может зависеть от состояния датчика, используемого для определения текущей емкости батареи. Таким образом, значение оценки СЗ батареи может изменяться в зависимости от степени точности и ошибки датчика.
Схема измерения напряжения разомкнутой цепи оценивает СЗ батареи на основе напряжения разомкнутой цепи батареи. В этом случае, однако, СЗ батареи может быть оценено только в нерабочем состоянии батареи. Кроме того, схема измерения напряжения разомкнутой цепи находится под влиянием внешней среды, например, внешней температуры.
Схема измерения полного сопротивления батареи оценивает СЗ батареи на основе значения полного сопротивления батареи. Однако, схема измерения полного сопротивления батареи находится под значительным влиянием внешней температуры, поэтому надежность для значения оценки СЗ батареи может понизиться.
Поэтому необходимо обеспечить способ для точной оценки СЗ батареи при минимизации ошибки его оценки независимо от внешней температуры.
Краткое описание чертежей
Фиг.1 - блочное представление, схематично иллюстрирующее устройство для оценки СЗ батареи в соответствии с предпочтительным вариантом воплощения данного изобретения.
Фиг.2 - представление, показывающее структуру динамической многомерной вейвлет-нейронной сети, используемой для данного изобретения.
Фиг.3 - блок-схема, последовательно иллюстрирующая этапы обучения при использовании нейронной сети в соответствии с предпочтительным вариантом воплощения данного изобретения.
Фиг.4 - блок-схема, последовательно иллюстрирующая этапы для вывода СЗ батареи с помощью использования алгоритма окончательной оценки, полученного посредством этапов обучения, показанных на фиг.3.
Раскрытие изобретения
Данное изобретение посвящено устройству и способу для оценки СЗ батареи, которые существенно устраняют одну или более проблем из-за ограничений и недостатков предшествующего уровня техники. Задачей данного изобретения является обеспечение устройства и способа для точной оценки СЗ батареи с использованием нейронной сети.
Другой целью данного изобретения является обеспечение устройства и способа, способных к динамической оценке СЗ батареи при использовании минимума данных в различных окружающих средах, в том числе при различных температурах и расходах емкости.
Для решения этих задач и достижения других преимуществ в соответствии с целью изобретения, как воплощено и подробно описано здесь, предоставляется устройство для оценки состояния заряда (СЗ) батареи, устройство содержит: воспринимающую секцию для измерения силы тока, напряжения и температуры на элементе батареи; нейронную сеть, выполняющую алгоритм нейронной сети и алгоритм обучения, основанные на данных силы тока, напряжения и температуры, переданных в нее из воспринимающей секции, и данных о текущем времени, таким образом выводящую СЗ батареи, оцененное посредством окончательного алгоритма обучения; и компаратор для сравнения выходного значения нейронной сети с заранее определенным целевым значением и вынуждения нейронной сети итерационно выполнять алгоритм обучения, если разность между выходным значением нейронной сети и заранее определенным целевым значением находится вне заранее определенного допуска, и обновлять алгоритм обучения, чтобы сформировать окончательный алгоритм обучения.
В соответствии с предпочтительным вариантом воплощения данного изобретения заранее определенное целевое значение может быть "истинным" СЗ батареи. Однако, трудно точно вычислить заранее определенное целевое значение, поэтому опорное значение, полученное посредством выполнения эксперимента при определенных условиях, используется в качестве целевого значения. Например, опорное значение получается на основе значения, полученного вычитанием данных ампер-часов зарядного/разрядного устройства из номинальной емкости батареи или значения напряжения разомкнутой цепи батареи, соответственно или математически компенсируя друг друга.
Хотя данное изобретение описано применительно к нейронной сети в виде алгоритма динамической многомерной вейвлет-нейронной сети, возможно также использовать алгоритм динамической вейвлет-нейронной сети или алгоритм статической вейвлет-нейронной сети. Кроме того, хотя данное изобретение описано применительно к алгоритму обучения с обратным распространением, также возможно использовать схему фильтра Кальмана, генетический алгоритм (GA) или нечеткий алгоритм обучения. Чтобы достигнуть вышеупомянутые цели данного изобретения, в соответствии с другим аспектом данного изобретения предлагается способ для оценки состояния заряда (СЗ) батареи с использованием нейронной сети, способ содержит следующие этапы: (a) выполнение алгоритма обучения, основанного на данных силы тока, напряжения и температуры, измеренных на батарее, и данных текущего времени; и (b), вывод СЗ батареи, оцененного посредством окончательного алгоритма обучения, сформированного путем выполнения алгоритма обучения.
В соответствии с предпочтительным вариантом воплощения данного изобретения этап (a) включает в себя подэтапы измерения силы тока, напряжения и температуры на батарее, выполнение алгоритма нейронной сети с использованием данных силы тока, напряжения и температуры, измеренных на батарее, и данных текущего времени в качестве данных обучения, проверку того, находится ли разность между выходным значением, полученным посредством алгоритма нейронной сети, и заранее определенным целевым значением в пределах заранее определенного допуска, и итерационное выполнение алгоритма обучения, если разность находится вне заранее определенного допуска, таким образом, обновляя алгоритм обучения, чтобы сформировать окончательный алгоритм обучения.
В соответствии с предпочтительным вариантом воплощения данного изобретения этап (b) включает в себя подэтапы измерения силы тока, напряжения и температуры на батарее и вывод СЗ батареи путем оценки СЗ батареи с помощью окончательного алгоритма обучения, полученного посредством этапа (a), на основе данных силы тока, напряжения и температуры, измеренных на батарее, и данных текущего времени.
Дополнительные преимущества, цели и признаки изобретения частично сформулированы в последующем описании и частично станут очевидными для специалистов в области техники после ознакомления с нижеследующим описанием или могут быть изучены при применении изобретения на практике. Цели и другие преимущества изобретения могут быть осуществлены и достигнуты структурой, подробно показанной в письменном описании и пунктах формулы изобретения, а также в приложенных чертежах.
Вариант осуществления изобретения
Ниже приводятся подробные ссылки на предпочтительный вариант воплощения данного изобретения, примеры которого иллюстрированы в сопроводительных чертежах. Везде, где возможно, используются одни и те же номера ссылок по всем чертежам, чтобы обратиться к одним и тем же или подобным деталям.
В дальнейшем подробно разъяснен предпочтительный вариант воплощения данного изобретения со ссылкой на сопроводительные чертежи.
Фиг.1 является блочным представлением, схематически иллюстрирующим устройство 100 для оценки СЗ батареи в соответствии с предпочтительным вариантом воплощения данного изобретения.
Согласно фиг.1 устройство 100 для оценки СЗ батареи с использованием нейронной сети включает в себя модуль 12 измерения силы тока для измерения силы тока (i) на элементе 10 батареи, модуль 14 измерения напряжения для измерения напряжения (V) на элементе 10 батареи, модуль 16 измерения температуры для измерения температуры (T) на элементе 10 батареи, нейронную сеть 20 для выполнения алгоритма нейронной сети и алгоритма обучения с использованием данных обучения, включающих в себя силу тока (i), напряжение (V) и температуру (T), измеренные вышеупомянутыми измерительными модулями 12, 14 и 16, и время (K), и для вывода оценочного СЗ на основе формулы окончательного алгоритма обучения, сформированного выполнением алгоритма нейронной сети и алгоритма обучения, зарядное/разрядное устройство 30 для подачи тока зарядки/разрядки на элемент 10 батареи и компаратор 40, который сравнивает выходной СЗ (go) батареи, полученный посредством вывода из нейронной сети 20, с целевым СЗ (gT), проверяет, находится ли разность между выходным СЗ (go) и целевым СЗ (gT) в пределах заранее определенного допуска, и побуждает нейронную сеть 20 итерационно выполнять алгоритм обучения, если разность находится вне заранее определенного допуска, и, таким образом, обновлять алгоритм обучения, чтобы сформировать окончательный алгоритм обучения.
Предпочтительно целевой СЗ (gT) получается посредством выполнения эксперимента при определенных условиях. Например, целевой СЗ (gT) получается путем вычитания данных (gr) ампер-часов зарядного/разрядного устройства 30 из номинальной емкости (gN) батареи, то есть, gT=gN-gr. Это имеет место потому, что идеальное целевое СЗ может быть получено путем вычитания данных ампер-часов, соответствующих емкости, которая уже использована в батарее, из номинальной емкости батареи, если ошибка находится в пределах приемлемого допуска. В качестве альтернативы целевое СЗ (gT) получается на основе значения напряжения разомкнутой цепи батареи. Предпочтительно, чтобы значение схемы расчета ампер-часов и значения схемы измерения напряжения разомкнутой цепи математически компенсировали друг друга.
Фиг.2 является представлением, показывающим структуру нейронной сети, используемой для данного изобретения.
В соответствии с предпочтительным вариантом воплощения данного изобретения нейронная сеть включает в себя динамическую многомерную вейвлет-нейронную сеть.
Согласно фиг.2 динамическая многомерная вейвлет-нейронная сеть включает в себя входную область, скрытый уровень и уровень вывода.
Чтобы применить алгоритм оценки СЗ батареи к динамической многомерной вейвлет-нейронной сети, произвольная функция
Figure 00000002
может быть разложена следующим образом на основе теории вейвлетов.
Уравнение 1
Figure 00000003
Здесь
Figure 00000004
- коэффициент базисной функции
Figure 00000005
для разложения произвольной функции
Figure 00000006
. Кроме того,
Figure 00000007
и
Figure 00000008
- параметры растяжения и смещения для базисной функции
Figure 00000005
соответственно.
Кроме того, функция
Figure 00000009
приближения для произвольной функции
Figure 00000006
представляется в виде Уравнения 2.
Уравнение 2
Figure 00000010
Уравнение 2 может быть применено к динамической многомерной вейвлет-нейронной сети, которая показана на фиг.2, следующим образом.
На фиг.2, хd(k) является вектором входных данных, введенным в динамическую многомерную вейвлет-нейронную сеть. В соответствии с данным вариантом воплощения, хd(k) является вектором, содержащим входные данные, состоящие из силы тока, напряжения и температуры, введенным в динамическую многомерную вейвлет-нейронную сеть в течение заранее определенного промежутка времени (k). Таким образом, хd(k)=(i, v, T, k). Кроме того, god(k)) является выходным значением, которое оценивается посредством динамической многомерной вейвлет-нейронной сети на основе входных данных. god(k)) представляется в виде Уравнения 3.
Уравнение 3
Figure 00000011
Figure 00000012
Здесь
Figure 00000013
и
Figure 00000014
представляют собой промежуточные весовые коэффициенты, которые обновляются в каждый момент времени (k) на основе алгоритма обучения с обратным распространением (ОР) так, чтобы произвольная функция была приблизительно отождествлена нелинейной функцией.
Если разность между выходным значением go и целевым значением gT, определенная компаратором 40 динамической многомерной вейвлет-нейронной сети, не существует в пределах заранее определенного допуска (например, 3%), последующий алгоритм обучения с обратным распространением итерационно выполняется посредством нейронной сети 20.
Перед изложением алгоритма обучения с обратным распространением следует отметить, что функция ошибки определена согласно Уравнению 4.
Уравнение 4
Figure 00000015
Здесь
Figure 00000016
- желаемое выходное значение, то есть целевое значение, и
Figure 00000017
- фактическое выходное значение нейронной сети 20. Заменой в Уравнении 4
Figure 00000018
получается градиент ошибки, как представлено в Уравнении 5.
Уравнение 5
Figure 00000019
Также градиент ошибки коэффициентов
Figure 00000013
,
Figure 00000014
получается, как представлено в Уравнении 6.
Уравнение 6
Figure 00000020
(1)
Figure 00000021
(2)
Figure 00000022
Figure 00000023
(3)
Поэтому окончательное обновление для промежуточного коэффициента выполняется следующим образом:
Уравнение 7
Figure 00000024
, здесь
Figure 00000025
- скорость обучения.
Таким образом, нейронная сеть 20 итерационно передает новое выходное значение go, которое вновь сформировано на основе обновленных значений
Figure 00000013
,
Figure 00000014
и
Figure 00000026
, компаратору 40, итерационно выполняя алгоритм обучения с обратным распространением. Кроме того, такая процедура итерационно выполняется, пока разность между выходным значением go и целевым значением gT не определена в пределах заранее определенного допуска.
Когда разность между выходным значением go и целевым значением gT определена в пределах заранее определенного допуска, алгоритм обучения с использованием нейронной сети завершается, и предполагаемый СЗ выводится с использованием окончательной формулы алгоритма оценки (то есть, Уравнения 3), полученного посредством алгоритма обучения.
Далее описан способ оценки СЗ батареи со ссылкой на фиг.3 и 4.
Способ оценки СЗ батареи в соответствии с данным изобретением содержит этап обучения с использованием нейронной сети, то есть этап получения окончательного алгоритма оценки путем выполнения алгоритма нейронной сети и алгоритма обучения и этап вывода СЗ батареи с использованием окончательного алгоритма оценки.
Фиг.3 является блок-схемой, последовательно иллюстрирующей этапы обучения с использованием нейронной сети в соответствии с предпочтительным вариантом воплощения данного изобретения.
Согласно фиг.3 сила тока (i), напряжение (v) и температура (T) измеряются на элементе 10 батареи (этап 10). Затем выполняется алгоритм динамической многомерной вейвлет-нейронной сети с использованием измеренных силы тока (i), напряжения (v) и температуры (T) и данных их времени (k) как вектора входных данных, то есть, хd(k)=(i, v, T, k). В результате может быть получено выходное значение go (этап 12).
После этого выходное значение go сравнивается с целевым значением gT и проверяется, находится ли разность между выходным значением go и целевым gT в пределах заранее определенного предела ошибки 3% (этап 14). Хотя заранее определенный допустимый предел ошибки принимается равным 3% в данном варианте воплощения, в случае необходимости заранее определенный предел ошибки может быть изменен. СЗ батареи может быть оценено точно, по мере того как допустимый предел ошибки уменьшается. Напротив, СЗ батареи может быть оценено неточно, по мере того как допустимый предел ошибки увеличивается.
Если на этапе 14 определено, что разность превышает заранее определенный допустимый предел ошибки, выполняется алгоритм обучения с обратным распространением, таким образом получая обновленное выходное значение go (этап 16). Затем процедура возвращается к этапу 14.
Между тем, если на этапе 14 определено, что разность равна или меньше, чем заранее определенный допустимый предел ошибки, алгоритм обучения нейронной сети завершается (этап 18). В результате с помощью алгоритма обучения может быть получена окончательная формула алгоритма оценки (то есть, Уравнение 3).
Фиг.4 является блок-схемой, иллюстрирующей процедуру вывода СЗ батареи с использованием окончательного алгоритма оценки, полученного с помощью этапов обучения, которые показаны на фиг.3.
Согласно фиг.4 сила тока (i), напряжение (v) и температура (T) измеряются на элементе 10 батареи (этап 20). Затем выводится СЗ батареи с использованием окончательного алгоритма оценки, полученного алгоритмом обучения, который показан на фиг.3, с использованием измеренных силы тока (i), напряжения (v) и температуры (T) и данных их времени (k) как вектора входных данных, то есть, хd(k)=(i, v, T, k) (этап 22).
Промышленная применимость
Хотя данное изобретение было описано относительно нейронной сети в виде динамической многомерной вейвлет-нейронной сети, данное изобретение не ограничивается исключительно ею. Таким образом, данное изобретение применимо для нейронной сети с прогнозированием событий, рекуррентной нейронной сети, вейвлет-нейронной сети и т.д.
Кроме того, хотя данное изобретение использует алгоритм обучения с обратным распространением, данное изобретение не ограничивается исключительно им. Например, данное изобретение может использовать традиционную схему фильтра Кальмана, генетический алгоритм и нечеткий алгоритм обучения.
Как описано выше, данное изобретение может динамически оценивать СЗ батареи с помощью алгоритма нейронной сети и алгоритм обучения. В частности, СЗ батареи может быть точно оценено даже при различных внешних условиях, в том числе при различных температурах и расходах емкости. Данное изобретение эффективно в применении в области гибридных электрических транспортных средств, в которых СЗ батареи должно оцениваться точно.
Предшествующие варианты воплощения являются лишь иллюстративными и не должны рассматриваться как ограничение данного изобретения. Данные идеи могут быть с легкостью применены к другим типам устройств. Подразумевается, что описание данного изобретения является иллюстративным и не ограничивает объем формулы изобретения. Для специалистов в области техники будут очевидны многие альтернативы модификации и разновидности.

Claims (12)

1. Устройство для оценки состояния заряда (СЗ) батареи, содержащее воспринимающую секцию для измерения силы тока, напряжения и температуры на элементе батареи; нейронную сеть, выполняющую алгоритм нейронной сети для вычисления СЗ батареи посредством обработки данных силы тока, напряжения и температуры, переданных ей из воспринимающей секции, и данных о моменте времени, когда были измерены сила тока, напряжение и температура, согласно функции, имеющей заранее определенный весовой коэффициент, при этом заранее определенный весовой коэффициент обновляется посредством обучающего алгоритма, что вынуждает вычисленное СЗ батареи в результате обучения отслеживать заранее определенное целевое значение; компаратор для сравнения выходного значения нейронной сети с упомянутым заранее определенным целевым значением и побуждения нейронной сети выполнять алгоритм обучения, если разность между вычисленным значением СЗ батареи и заранее определенным целевым значением находится вне заранее определенного допуска.
2. Устройство по п.1, в котором заранее определенное целевое значение является опорным значением, полученным посредством выполнения эксперимента при определенных условиях.
3. Устройство по п.2, в котором опорное значение получено на основе значения вычитания данных ампер-часов зарядного/разрядного устройства из номинальной емкости батареи или значения напряжения разомкнутой цепи батареи, соответственно, или математической компенсации друг друга.
4. Устройство по п.1, в котором нейронная сеть включает в себя алгоритм динамической вейвлет-нейронной сети или алгоритм статической вейвлет-нейронной сети.
5. Устройство по п.4, в котором нейронная сеть включает в себя алгоритм динамической многомерной вейвлет-нейронной сети.
6. Устройство по п.1, в котором алгоритм обучения включает в себя алгоритм обучения с обратным распространением, схему фильтра Кальмана, генетический алгоритм или нечеткий алгоритм обучения.
7. Способ для оценки состояния заряда (СЗ) батареи с использованием нейронной сети, способ содержит следующие этапы:
выполнение алгоритма обучения нейронной сети, включающего измерение силы тока, напряжения и температуры батареи;
вычисление СЗ батареи в соответствии с алгоритмом нейронной сети, определенным функцией с заранее определенным весовым коэффициентом, посредством обработки данных измерения силы тока, напряжения и температуры и данных о моменте времени, когда измеряются сила тока, напряжение и температура,
сравнение посредством компаратора вычисленного СЗ батареи с заранее определенным целевым значением и побуждение выполнения алгоритма обучения нейронной сети, при котором происходит обновление весового коэффициента так, что вычисленное СЗ батареи вынуждено изменяться в результате обучения, чтобы отслеживать заранее определенное целевое значение, если разность между вычисленным СЗ батареи и упомянутым целевым значением находится вне заранее определенного допуска, и
вывод СЗ батареи, полученного с помощью окончательного алгоритма оценки, полученного на этапе выполнения алгоритма обучения нейронной сети на основе данных силы тока, напряжения и температуры, измеренных на батарее, и данных текущего времени.
8. Способ по п.7, в котором заранее определенное целевое значение является опорным значением, полученным посредством выполнения эксперимента при определенных условиях.
9. Способ по п.8, в котором опорное значение получено на основе значения вычитания данных ампер-часов зарядного/разрядного устройства из номинальной емкости батареи или значения напряжения разомкнутой цепи батареи, соответственно, или математической компенсации друг друга.
10. Способ по п.7, в котором нейронная сеть включает в себя алгоритм динамической вейвлет-нейронной сети или алгоритм статической вейвлет-нейронной сети.
11. Способ по п.10, в котором вейвлет-нейронная сеть включает в себя алгоритм динамической многомерной вейвлет-нейронной сети.
12. Способ по п.7, в котором алгоритм обучения включает в себя алгоритм обучения с обратным распространением, схему фильтра Кальмана, генетический алгоритм или нечеткий алгоритм обучения.
RU2006119641/28A 2003-12-18 2004-12-17 Устройство и способ для оценки уровня заряженности батареи с использованием нейронной сети RU2328753C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20030092880 2003-12-18
KR10-2003-0092880 2003-12-18

Publications (2)

Publication Number Publication Date
RU2006119641A RU2006119641A (ru) 2007-12-27
RU2328753C2 true RU2328753C2 (ru) 2008-07-10

Family

ID=36809350

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006119641/28A RU2328753C2 (ru) 2003-12-18 2004-12-17 Устройство и способ для оценки уровня заряженности батареи с использованием нейронной сети

Country Status (11)

Country Link
US (1) US7583059B2 (ru)
EP (1) EP1702219B1 (ru)
JP (1) JP4331210B2 (ru)
KR (1) KR100651573B1 (ru)
CN (1) CN100570388C (ru)
AT (1) ATE556327T1 (ru)
BR (1) BRPI0416424B8 (ru)
CA (1) CA2550072C (ru)
RU (1) RU2328753C2 (ru)
TW (1) TWI260808B (ru)
WO (1) WO2005059579A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2491566C1 (ru) * 2010-02-18 2013-08-27 Ниссан Мотор Ко., Лтд. Устройство оценки состояния батареи и способ оценки состояния батареи
US8909490B2 (en) 2010-02-18 2014-12-09 Nissan Motor Co., Ltd. Battery state estimation device and battery state estimation method
US10732224B2 (en) 2010-04-22 2020-08-04 Enerdel, Inc. Monitoring battery state of charge

Families Citing this family (139)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7321220B2 (en) * 2003-11-20 2008-01-22 Lg Chem, Ltd. Method for calculating power capability of battery packs using advanced cell model predictive techniques
US8103485B2 (en) * 2004-11-11 2012-01-24 Lg Chem, Ltd. State and parameter estimation for an electrochemical cell
EP1691209B1 (en) * 2005-02-14 2008-10-01 Denso Corporation Method and apparatus for detecting charged state of secondary battery based on neural network calculation
KR100842678B1 (ko) * 2005-03-17 2008-06-30 주식회사 엘지화학 동적 패턴에 대한 배터리 잔존량 추정법의 비교 참조값구성 방법
JP4623448B2 (ja) * 2005-04-20 2011-02-02 株式会社デンソー 二次電池の残存容量演算方法
KR100793616B1 (ko) * 2005-06-13 2008-01-10 주식회사 엘지화학 배터리 잔존량 추정 장치 및 방법
US7723957B2 (en) * 2005-11-30 2010-05-25 Lg Chem, Ltd. System, method, and article of manufacture for determining an estimated battery parameter vector
FR2897161B1 (fr) * 2006-02-09 2008-07-11 Peugeot Citroen Automobiles Sa Systeme de recalage de l'information d'etat de charge d'une batterie de vehicule automobile
KR100901252B1 (ko) * 2006-08-02 2009-06-08 주식회사 엘지화학 슬라이딩 모드 관측기를 이용한 2차 전지 soc 예측방법 및 장치
DE602007006339D1 (de) * 2006-10-30 2010-06-17 Koninkl Philips Electronics Nv Vorrichtung und verfahren zur bestimmung des ladestatus einer nicht äquilibrierten batterie
GB2444511B (en) * 2006-12-06 2008-10-22 Iti Scotland Ltd Battery Management System
CN101622547B (zh) * 2007-02-08 2014-07-30 松下电动车辆能源股份有限公司 用于检测蓄电装置的异常的装置和方法
JP2008232758A (ja) * 2007-03-19 2008-10-02 Nippon Soken Inc 二次電池の内部状態検出装置及びニューラルネット式状態量推定装置
CN101067645B (zh) * 2007-04-20 2010-11-24 杭州高特电子设备有限公司 一种阀控式铅酸蓄电池性能分析方法
CN101067644B (zh) * 2007-04-20 2010-05-26 杭州高特电子设备有限公司 蓄电池性能分析专家诊断方法
CN101359036B (zh) * 2007-07-31 2010-11-17 比亚迪股份有限公司 电池荷电状态的测定方法
KR100911316B1 (ko) * 2007-08-23 2009-08-11 주식회사 엘지화학 배터리의 장기 특성 예측 시스템 및 방법
KR100936892B1 (ko) * 2007-09-13 2010-01-14 주식회사 엘지화학 배터리의 장기 특성 예측 시스템 및 방법
US8628872B2 (en) * 2008-01-18 2014-01-14 Lg Chem, Ltd. Battery cell assembly and method for assembling the battery cell assembly
US7994755B2 (en) * 2008-01-30 2011-08-09 Lg Chem, Ltd. System, method, and article of manufacture for determining an estimated battery cell module state
US8486552B2 (en) * 2008-06-30 2013-07-16 Lg Chem, Ltd. Battery module having cooling manifold with ported screws and method for cooling the battery module
US8426050B2 (en) * 2008-06-30 2013-04-23 Lg Chem, Ltd. Battery module having cooling manifold and method for cooling battery module
US7883793B2 (en) * 2008-06-30 2011-02-08 Lg Chem, Ltd. Battery module having battery cell assemblies with alignment-coupling features
US8067111B2 (en) * 2008-06-30 2011-11-29 Lg Chem, Ltd. Battery module having battery cell assembly with heat exchanger
US9759495B2 (en) * 2008-06-30 2017-09-12 Lg Chem, Ltd. Battery cell assembly having heat exchanger with serpentine flow path
US9140501B2 (en) * 2008-06-30 2015-09-22 Lg Chem, Ltd. Battery module having a rubber cooling manifold
US8202645B2 (en) 2008-10-06 2012-06-19 Lg Chem, Ltd. Battery cell assembly and method for assembling the battery cell assembly
FR2942087B1 (fr) 2009-02-12 2011-02-18 Peugeot Citroen Automobiles Sa Dispositif et procede de gestion du niveau de charge electrique lors de la mise en charge d'une source de stockage electrochimique embarquee dans un vehicule
US9337456B2 (en) * 2009-04-20 2016-05-10 Lg Chem, Ltd. Frame member, frame assembly and battery cell assembly made therefrom and methods of making the same
US8852778B2 (en) * 2009-04-30 2014-10-07 Lg Chem, Ltd. Battery systems, battery modules, and method for cooling a battery module
US8663828B2 (en) * 2009-04-30 2014-03-04 Lg Chem, Ltd. Battery systems, battery module, and method for cooling the battery module
US8403030B2 (en) * 2009-04-30 2013-03-26 Lg Chem, Ltd. Cooling manifold
US8663829B2 (en) 2009-04-30 2014-03-04 Lg Chem, Ltd. Battery systems, battery modules, and method for cooling a battery module
US20120059766A1 (en) * 2009-05-11 2012-03-08 Mahindra Reva Electric Vehicles Pvt. Ltd. Method and System for Revenue Generation Using Energy System
US8703318B2 (en) * 2009-07-29 2014-04-22 Lg Chem, Ltd. Battery module and method for cooling the battery module
US8399118B2 (en) * 2009-07-29 2013-03-19 Lg Chem, Ltd. Battery module and method for cooling the battery module
BR112012003621A2 (pt) * 2009-08-21 2017-08-08 Mahindra Reva Electric Vehicles Pvt Ltd determinacao e uso de energia de reserva em sistemas de energia armazenada
US8399119B2 (en) * 2009-08-28 2013-03-19 Lg Chem, Ltd. Battery module and method for cooling the battery module
WO2011118080A1 (ja) 2010-03-23 2011-09-29 古河電気工業株式会社 電池内部状態推定装置および電池内部状態推定方法
US8319479B2 (en) * 2010-03-23 2012-11-27 Ememory Technology Inc. Method of estimating battery recharge time and related device
US20110234167A1 (en) * 2010-03-24 2011-09-29 Chin-Hsing Kao Method of Predicting Remaining Capacity and Run-time of a Battery Device
US8341449B2 (en) 2010-04-16 2012-12-25 Lg Chem, Ltd. Battery management system and method for transferring data within the battery management system
US9147916B2 (en) 2010-04-17 2015-09-29 Lg Chem, Ltd. Battery cell assemblies
TWI395965B (zh) * 2010-06-04 2013-05-11 Nat Univ Chin Yi Technology 燃料電池故障預測系統及其建立方法
US8758922B2 (en) 2010-08-23 2014-06-24 Lg Chem, Ltd. Battery system and manifold assembly with two manifold members removably coupled together
US8353315B2 (en) 2010-08-23 2013-01-15 Lg Chem, Ltd. End cap
US8469404B2 (en) 2010-08-23 2013-06-25 Lg Chem, Ltd. Connecting assembly
US8920956B2 (en) 2010-08-23 2014-12-30 Lg Chem, Ltd. Battery system and manifold assembly having a manifold member and a connecting fitting
US9005799B2 (en) 2010-08-25 2015-04-14 Lg Chem, Ltd. Battery module and methods for bonding cell terminals of battery cells together
US8662153B2 (en) 2010-10-04 2014-03-04 Lg Chem, Ltd. Battery cell assembly, heat exchanger, and method for manufacturing the heat exchanger
US9015093B1 (en) 2010-10-26 2015-04-21 Michael Lamport Commons Intelligent control with hierarchical stacked neural networks
US8775341B1 (en) 2010-10-26 2014-07-08 Michael Lamport Commons Intelligent control with hierarchical stacked neural networks
US8288031B1 (en) 2011-03-28 2012-10-16 Lg Chem, Ltd. Battery disconnect unit and method of assembling the battery disconnect unit
JP5695464B2 (ja) * 2011-03-28 2015-04-08 株式会社東芝 充放電判定装置及び充放電判定プログラム
CN102226834B (zh) * 2011-03-31 2013-02-20 杭州高特电子设备有限公司 基于模糊分类技术的蓄电池容量判断方法
US8449998B2 (en) 2011-04-25 2013-05-28 Lg Chem, Ltd. Battery system and method for increasing an operational life of a battery cell
US9178192B2 (en) 2011-05-13 2015-11-03 Lg Chem, Ltd. Battery module and method for manufacturing the battery module
KR20120134415A (ko) * 2011-06-02 2012-12-12 에스케이이노베이션 주식회사 Ess의 배터리 수명 예측 시스템 및 그 방법
US8993136B2 (en) 2011-06-30 2015-03-31 Lg Chem, Ltd. Heating system for a battery module and method of heating the battery module
US8974928B2 (en) 2011-06-30 2015-03-10 Lg Chem, Ltd. Heating system for a battery module and method of heating the battery module
US8859119B2 (en) 2011-06-30 2014-10-14 Lg Chem, Ltd. Heating system for a battery module and method of heating the battery module
US8974929B2 (en) 2011-06-30 2015-03-10 Lg Chem, Ltd. Heating system for a battery module and method of heating the battery module
US9496544B2 (en) 2011-07-28 2016-11-15 Lg Chem. Ltd. Battery modules having interconnect members with vibration dampening portions
WO2013031559A1 (ja) * 2011-08-30 2013-03-07 三洋電機株式会社 バッテリシステム、電動車両、移動体、電力貯蔵装置および電源装置
CN102364353B (zh) * 2011-11-14 2013-10-16 北京理工大学 一种基于热效应的二次电池一致性评估方法
US9316699B2 (en) 2012-04-05 2016-04-19 Samsung Sdi Co., Ltd. System for predicting lifetime of battery
TWI460453B (zh) * 2012-09-28 2014-11-11 Metal Ind Res & Dev Ct 以兩個相互垂直的分量相加合成的電池殘電量估測系統及其估測方法
KR101547006B1 (ko) * 2012-10-26 2015-08-24 주식회사 엘지화학 배터리 잔존 용량 추정 장치 및 방법
US8981857B2 (en) 2012-11-15 2015-03-17 Freescale Semiconductor, Inc. Temperature dependent timer circuit
CN103018673B (zh) * 2012-11-19 2015-01-21 北京航空航天大学 一种基于改进型动态小波神经网络的航天Ni-Cd蓄电池寿命预测方法
AT512003A3 (de) * 2013-01-23 2014-05-15 Avl List Gmbh Verfahren zur Ermittlung eines regelungstechnischen Beobachters für den SoC
KR20140099372A (ko) * 2013-02-01 2014-08-12 삼성에스디아이 주식회사 배터리의 soc 추정 방법 및 이를 이용하는 배터리 관리 시스템
US20140244193A1 (en) * 2013-02-24 2014-08-28 Fairchild Semiconductor Corporation Battery state of charge tracking, equivalent circuit selection and benchmarking
CN103176139B (zh) * 2013-03-08 2015-07-29 桂林电子科技大学 动力电池非光滑迟滞特性补偿的电荷状态估算方法及系统
US20140278169A1 (en) * 2013-03-12 2014-09-18 Samsung Sdi Co., Ltd. Apparatus for predicting state of health of battery pack by using discrete wavelet transform
TWI491801B (zh) * 2013-03-18 2015-07-11 Nat Univ Chin Yi Technology 風力發電故障預測系統及其方法
FR3010532B1 (fr) * 2013-09-11 2017-06-09 Commissariat Energie Atomique Procede, dispositif et systeme d'estimation de l'etat de charge d'une batterie
US10950421B2 (en) * 2014-04-21 2021-03-16 Lam Research Corporation Using modeling for identifying a location of a fault in an RF transmission system for a plasma system
KR20150121920A (ko) * 2014-04-22 2015-10-30 현대모비스 주식회사 차량용 배터리 센서 및 상기 센서를 이용한 계절 판단 방법
KR102241683B1 (ko) * 2014-07-30 2021-04-19 삼성전자주식회사 배터리의 상태를 추정하는 방법 및 장치
CN104375091A (zh) * 2014-11-18 2015-02-25 柳州市金旭节能科技有限公司 电动汽车动力蓄电池组监测方法
CN104569838B (zh) * 2014-12-23 2017-11-21 深圳市科陆电子科技股份有限公司 基于远程监控的集装箱储能设备核心部件的评价方法
CN104849671B (zh) * 2015-05-22 2017-07-11 大连理工大学 一种基于组合神经网络的电池组容量检测系统
KR102527334B1 (ko) 2015-11-24 2023-05-02 삼성전자주식회사 배터리 관리 장치 및 방법
CN105528637B (zh) * 2015-11-26 2018-06-22 江南大学 基于线性内插型模糊神经网络的诊断方法
CN105911476B (zh) * 2016-04-13 2018-08-28 华北电力大学 一种基于数据挖掘的电池储能系统soc预测方法
CN106501721A (zh) * 2016-06-03 2017-03-15 湘潭大学 一种基于生物进化的锂电池soc估算方法
CN106443453A (zh) * 2016-07-04 2017-02-22 陈逸涵 一种基于bp神经网络的锂电池soc估算方法
CN106324517A (zh) * 2016-08-29 2017-01-11 丹阳亿豪电子科技有限公司 一种新能源汽车电池性能预测方法
US10997490B2 (en) * 2017-02-24 2021-05-04 International Business Machines Corporation Battery-based neural network weights
CN107037373B (zh) * 2017-05-03 2019-03-29 广西大学 基于神经网络的蓄电池剩余电量预测方法
US11594770B2 (en) * 2017-05-03 2023-02-28 Semiconductor Energy Laboratory Co., Ltd. Neural network, power storage system, vehicle, and electronic device
US11691518B2 (en) 2017-07-21 2023-07-04 Quantumscape Battery, Inc. Predictive model for estimating battery states
CN107436411B (zh) * 2017-07-28 2019-06-14 南京航空航天大学 基于分数阶神经网络和双容积卡尔曼的电池soh在线估计方法
US11870042B2 (en) 2017-09-06 2024-01-09 Semiconductor Energy Laboratory Co., Ltd. Power storage system, vehicle, electronic device, and semiconductor device
KR101965832B1 (ko) * 2017-11-27 2019-04-05 (주) 페스코 배터리 soc 추정 시스템 및 이를 이용한 배터리 soc 추정방법
CN108414937A (zh) * 2017-12-08 2018-08-17 国网北京市电力公司 充电电池荷电状态确定方法及装置
KR102043626B1 (ko) * 2017-12-27 2019-12-02 주식회사 비앤에이치코리아 복수의 성형수술경험자의 비포 앤 애프터 이미지에 대한 빅데이터를 분석하여 성형수술을 희망하는 고객에게 가상의 성형이미지를 제공하는 딥러닝 기반 가상성형장치
KR101992051B1 (ko) * 2018-03-19 2019-06-21 충북대학교 산학협력단 배터리 잔량 예측 방법 및 배터리 잔량 예측 시스템
CN108573545B (zh) * 2018-04-24 2019-10-08 中南大学 一种冰雪环境无人驾驶车辆电源模型预测方法与系统
JP7337781B2 (ja) * 2018-04-27 2023-09-04 株式会社半導体エネルギー研究所 蓄電装置の充電状態推定システム
US10983167B2 (en) * 2018-06-14 2021-04-20 Huayuan Semiconductor (Shenzhen) Limited Company Method and device for gauging an electronic apparatus
CN109001640B (zh) * 2018-06-29 2021-08-20 深圳市科列技术股份有限公司 一种动力电池的数据处理方法和装置
CN109031147B (zh) * 2018-08-21 2020-12-01 湖南兴业绿色电力科技有限公司 一种磷酸铁锂电池组的soc估算方法
CN109633450B (zh) * 2018-11-23 2021-05-14 成都大超科技有限公司 一种基于神经网络的锂电池充电检测系统
US11119494B2 (en) 2019-01-07 2021-09-14 Wing Aviation Llc Using machine learning techniques to estimate available energy for vehicles
DE112019006731T5 (de) * 2019-01-24 2021-11-18 Sony Semiconductor Solutions Corporation Spannungssteuerungsvorrichtung
KR102722271B1 (ko) * 2019-02-07 2024-10-24 주식회사 엘지에너지솔루션 배터리 관리 장치, 배터리 관리 방법 및 배터리팩
CN110007235A (zh) * 2019-03-24 2019-07-12 天津大学青岛海洋技术研究院 一种电动汽车蓄电池soc在线预测方法
DE102019107935A1 (de) * 2019-03-27 2020-10-01 Volkswagen Aktiengesellschaft Verfahren zur Bestimmung eines Zustands einer wiederaufladbaren Batterie eines Fahrzeuges
KR20200117794A (ko) 2019-04-05 2020-10-14 주식회사 엘지화학 배터리 관리 장치 및 방법
CN110048477B (zh) * 2019-04-19 2023-05-26 浙江大学宁波理工学院 一种基于神经元控制的快速充电器及控制方法
IT201900006987A1 (ru) * 2019-05-17 2019-05-17
KR102652117B1 (ko) 2019-07-10 2024-03-27 삼성전자주식회사 이미지 보정 방법 및 이미지 보정 시스템
CN110658459B (zh) * 2019-09-12 2021-10-15 北京航空航天大学 基于双向循环神经网络的锂离子电池荷电状态估计方法
EP3812779B1 (en) 2019-10-23 2022-09-28 Novum engineerING GmbH Analyzing electrical impedance measurements of an electrochemical battery
EP3812783A1 (en) 2019-10-23 2021-04-28 Novum engineerING GmbH Estimating a battery state from electrical impedance measurements using convolutional neural network means
EP3812780B1 (en) 2019-10-23 2022-09-28 Novum engineerING GmbH Estimating a battery state from gradients of electrical impedance measurements
EP3812782B1 (en) 2019-10-23 2022-09-14 Novum engineerING GmbH Estimating a temperature of an electrochemical battery
EP3812781B1 (en) 2019-10-23 2022-11-30 Novum engineerING GmbH Estimating a battery state of an electrochemical battery
CN110673039B (zh) * 2019-11-11 2022-02-08 安徽优旦科技有限公司 一种基于大数据的磷酸铁锂电池soc充电在线校正方法
US20210173012A1 (en) * 2019-12-04 2021-06-10 Robert Bosch Gmbh Method and system for estimation of open circuit voltage of a battery cell
KR102439041B1 (ko) 2020-08-14 2022-09-02 주식회사 한국파워셀 신경망 기반의 배터리 셀 불량 및 화재 사전 진단 방법 및 장치
CN112234673B (zh) * 2020-09-30 2022-04-22 长安大学 一种适用于均衡电路的电池能量均衡方法
CN112379272B (zh) * 2020-11-16 2021-09-21 北京理工大学 一种基于人工智能的锂离子电池系统soc估计方法
DE102020130732A1 (de) 2020-11-20 2022-05-25 Audi Aktiengesellschaft Verfahren zum Ermitteln eines Werts eines Parameters einer Batteriezelle, Steuereinrichtung und Kraftfahrzeug
KR102575963B1 (ko) * 2020-11-30 2023-09-07 동국대학교 산학협력단 셀 밸런싱 신경망 모델을 이용한 리튬 이온 배터리 팩 제어방법 및 그 제어장치
US12042628B2 (en) * 2020-12-30 2024-07-23 Baxter International Inc. System and method for generating battery alarms in infusion devices
KR20220112997A (ko) 2021-02-05 2022-08-12 경북대학교 산학협력단 신경망을 이용한 리튬배터리 팩의 각 셀에 대한 실시간 충전상태 추정장치
WO2022248532A1 (en) * 2021-05-25 2022-12-01 Danmarks Tekniske Universitet Data-driven and temperature-cycles based remaining useful life estimation of an electronic device
CN113552490B (zh) * 2021-06-29 2022-04-01 广东工业大学 一种基于休息恢复效应的可重构电池组soc估计方法
CN113258154B (zh) * 2021-07-16 2021-10-15 苏州浪潮智能科技有限公司 一种电池充电方法、装置、设备及介质
CN114280490B (zh) * 2021-09-08 2024-02-09 国网湖北省电力有限公司荆门供电公司 一种锂离子电池荷电状态估计方法及系统
CN113919222B (zh) * 2021-10-09 2024-07-23 北京理工大学 一种电池组的内部温度在线计算方法
US11694560B1 (en) 2021-12-28 2023-07-04 Beta Air, Llc Computing device and method for predicting battery temperature in an electric aircraft
CN114725578A (zh) * 2022-04-29 2022-07-08 苏州市职业大学 一种基于新能源汽车的锂电池温控装置系统
CN115659790B (zh) * 2022-10-13 2024-02-06 厦门宇电自动化科技有限公司 一种动力电池包的温度实时检测方法
CN117289141A (zh) * 2023-11-22 2023-12-26 深圳市麦迪瑞科技有限公司 基于人工智能的电动自行车充电状态监测方法
CN117991109B (zh) * 2024-04-07 2024-07-30 宁德时代新能源科技股份有限公司 模型训练及充电状态的确定方法、装置、设备和存储介质

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2740554A1 (fr) 1995-10-31 1997-04-30 Philips Electronique Lab Systeme de controle de la phase de decharge des cycles de charge-decharge d'une batterie rechargeable, et dispositif hote muni d'une batterie intelligente
JP3520886B2 (ja) 1996-03-08 2004-04-19 サンケン電気株式会社 二次電池の状態判定方法
US6064180A (en) * 1996-10-29 2000-05-16 General Motors Corporation Method and apparatus for determining battery state-of-charge using neural network architecture
JPH1132442A (ja) 1997-07-10 1999-02-02 Matsushita Electric Ind Co Ltd 蓄電池残容量推定方法及び蓄電池残容量推定システム
WO1999061929A1 (en) * 1998-05-28 1999-12-02 Toyota Jidosha Kabushiki Kaisha Means for estimating charged state of battery and method for estimating degraded state of battery
EP1206826B1 (en) 1999-05-05 2009-02-25 Midtronics, Inc. Energy management system for automotive vehicle
JP2002228730A (ja) 2001-02-06 2002-08-14 Shikoku Electric Power Co Inc 二次電池の残存電力量の推定装置
US20030184307A1 (en) * 2002-02-19 2003-10-02 Kozlowski James D. Model-based predictive diagnostic tool for primary and secondary batteries
JP4038788B2 (ja) 2002-02-22 2008-01-30 アクソンデータマシン株式会社 バッテリの残存容量判定方法と、その装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2491566C1 (ru) * 2010-02-18 2013-08-27 Ниссан Мотор Ко., Лтд. Устройство оценки состояния батареи и способ оценки состояния батареи
US8909490B2 (en) 2010-02-18 2014-12-09 Nissan Motor Co., Ltd. Battery state estimation device and battery state estimation method
US10732224B2 (en) 2010-04-22 2020-08-04 Enerdel, Inc. Monitoring battery state of charge

Also Published As

Publication number Publication date
WO2005059579A1 (en) 2005-06-30
ATE556327T1 (de) 2012-05-15
US7583059B2 (en) 2009-09-01
CA2550072A1 (en) 2005-06-30
RU2006119641A (ru) 2007-12-27
BRPI0416424B1 (pt) 2017-06-20
EP1702219B1 (en) 2012-05-02
EP1702219A1 (en) 2006-09-20
JP2007518973A (ja) 2007-07-12
BRPI0416424A (pt) 2007-01-16
BRPI0416424B8 (pt) 2023-01-17
TW200531326A (en) 2005-09-16
CN1890574A (zh) 2007-01-03
US20050194936A1 (en) 2005-09-08
KR100651573B1 (ko) 2006-11-29
EP1702219A4 (en) 2010-06-09
TWI260808B (en) 2006-08-21
CA2550072C (en) 2011-04-19
JP4331210B2 (ja) 2009-09-16
CN100570388C (zh) 2009-12-16
KR20050061386A (ko) 2005-06-22

Similar Documents

Publication Publication Date Title
RU2328753C2 (ru) Устройство и способ для оценки уровня заряженности батареи с использованием нейронной сети
JP5058814B2 (ja) バッテリーの状態及びパラメーターの推定システム及び方法
Li et al. Enhanced online model identification and state of charge estimation for lithium-ion battery under noise corrupted measurements by bias compensation recursive least squares
US6534954B1 (en) Method and apparatus for a battery state of charge estimator
US10353007B2 (en) Rechargeable battery parameter estimation apparatus and rechargeable battery parameter estimation method for calculating first and second coefficients which are partial derivatives of an estimated value of the battery state-of-charge
RU2361333C2 (ru) Оценка состояния и параметров гальванического элемента
CA2333619C (en) Means for estimating charged state of battery and method for estimating degraded state of battery
US6388450B2 (en) Method for determining the state of charge of storage batteries
US20090048793A1 (en) State and parameter estimator having integral and differential components for electrical energy accumulators
US20150369875A1 (en) Battery state estimating device
CN105866504B (zh) 一种基于卡尔曼滤波的光纤电流互感器温度补偿方法
US11143705B2 (en) Method and device for detecting battery cell states and battery cell parameters
KR100878123B1 (ko) 배터리 상태 및 파라미터 추정 시스템 및 방법
CN109828215A (zh) 一种提升电池单体soc估算精度的方法和系统
JP5259190B2 (ja) ジョイントバッテリー状態とパラメーター推定システム及び方法
JP2020106317A (ja) リチウム一次電池の内部抵抗同定方法、放電深度推定装置、及び放電深度推定方法
JP2006220617A (ja) 車両用蓄電装置の内部状態検出方式
KR100916510B1 (ko) 조인트 배터리 상태와 파라미터 추정 시스템 및 방법
Atukalp et al. Analytical Kalman Filter Tuning Method for Battery State of Charge Estimation: Validation for Grid Battery Energy Storage
KR20240125612A (ko) 이차 전지의 갈바닉 셀의 임피던스를 모델 기반으로 추정하는 방법 및 이의 용도와 배터리 셀 모니터링 장치 및 차량
CN114460479A (zh) 一种电池荷电状态检测方法、装置及介质
Kumari et al. SoC Estimation of Li-ion Battery using Extended Kalman Filter
CN117932909A (zh) 一种应用于储能系统的soc算法及soc系统
KR20230130238A (ko) 배터리 상태 추정 방법
JP2021136227A (ja) バッテリ管理装置