RU2328753C2 - Устройство и способ для оценки уровня заряженности батареи с использованием нейронной сети - Google Patents
Устройство и способ для оценки уровня заряженности батареи с использованием нейронной сети Download PDFInfo
- Publication number
- RU2328753C2 RU2328753C2 RU2006119641/28A RU2006119641A RU2328753C2 RU 2328753 C2 RU2328753 C2 RU 2328753C2 RU 2006119641/28 A RU2006119641/28 A RU 2006119641/28A RU 2006119641 A RU2006119641 A RU 2006119641A RU 2328753 C2 RU2328753 C2 RU 2328753C2
- Authority
- RU
- Russia
- Prior art keywords
- battery
- neural network
- algorithm
- voltage
- value
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/40—Control modes
- B60L2260/44—Control modes by parameter estimation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/40—Control modes
- B60L2260/46—Control modes by self learning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/40—Control modes
- B60L2260/48—Control modes by fuzzy logic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2200/00—Safety devices for primary or secondary batteries
- H01M2200/10—Temperature sensitive devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Secondary Cells (AREA)
Abstract
Изобретение относится к измерительной технике. Сущность: устройство содержит воспринимающую секцию, нейронную сеть и компаратор. Воспринимающая секция служит для измерения силы тока, напряжения и температуры на элементе батареи. Нейронная сеть выполняет алгоритм нейронной сети для вычисления состояния заряда (СЗ) батареи посредством обработки данных силы тока, напряжения и температуры, переданных ей из воспринимающей секции, и данных о моменте времени, когда были измерены сила тока, напряжение и температура, согласно функции, имеющей заранее определенный весовой коэффициент. При этом заранее определенный весовой коэффициент обновляется посредством обучающего алгоритма, что вынуждает вычисленное СЗ батареи в результате обучения отслеживать заранее определенное целевое значение. Компаратор сравнивает выходное значение нейронной сети с заранее определенным целевым значением и побуждает нейронную сеть выполнять алгоритм обучения, если разность между вычисленным значением СЗ батареи и заранее определенным целевым значением находится вне заранее определенного допуска. Технический результат: обеспечение динамической оценки СЗ в разных условиях, повышение точности. 2 н. и 10 з.п. ф-лы, 4 ил.
Description
Область техники
Данное изобретение в целом имеет отношение к устройству и способу для оценки уровня заряженности батареи, и более конкретно - к устройству и способу для оценки состояния заряда (СЗ) батареи, представляющего собой нелинейную характеристику, с использованием нейронной сети.
Уровень техники
Обычно состояние заряда (СЗ) батареи представляет собой нелинейную характеристику, поэтому трудно точно измерить СЗ батареи. Таким образом, значение СЗ батареи не измеряется, а оценивается. В частности, СЗ батарей, используемых для гибридных электрических транспортных средств или электрических транспортных средств, имеющих высокие значения расхода емкости, может представлять собой сильно нелинейную характеристику, поэтому почти невозможно точно определить СЗ таких батарей.
Традиционно для оценки СЗ батареи использовались схема подсчета ампер-часов, схема измерения напряжения разомкнутой цепи или схема измерения полного сопротивления батареи.
Во-первых, схема подсчета ампер-часов оценивает СЗ батареи путем определения текущей емкости батареи. В этом случае значение оценки СЗ батареи может зависеть от состояния датчика, используемого для определения текущей емкости батареи. Таким образом, значение оценки СЗ батареи может изменяться в зависимости от степени точности и ошибки датчика.
Схема измерения напряжения разомкнутой цепи оценивает СЗ батареи на основе напряжения разомкнутой цепи батареи. В этом случае, однако, СЗ батареи может быть оценено только в нерабочем состоянии батареи. Кроме того, схема измерения напряжения разомкнутой цепи находится под влиянием внешней среды, например, внешней температуры.
Схема измерения полного сопротивления батареи оценивает СЗ батареи на основе значения полного сопротивления батареи. Однако, схема измерения полного сопротивления батареи находится под значительным влиянием внешней температуры, поэтому надежность для значения оценки СЗ батареи может понизиться.
Поэтому необходимо обеспечить способ для точной оценки СЗ батареи при минимизации ошибки его оценки независимо от внешней температуры.
Краткое описание чертежей
Фиг.1 - блочное представление, схематично иллюстрирующее устройство для оценки СЗ батареи в соответствии с предпочтительным вариантом воплощения данного изобретения.
Фиг.2 - представление, показывающее структуру динамической многомерной вейвлет-нейронной сети, используемой для данного изобретения.
Фиг.3 - блок-схема, последовательно иллюстрирующая этапы обучения при использовании нейронной сети в соответствии с предпочтительным вариантом воплощения данного изобретения.
Фиг.4 - блок-схема, последовательно иллюстрирующая этапы для вывода СЗ батареи с помощью использования алгоритма окончательной оценки, полученного посредством этапов обучения, показанных на фиг.3.
Раскрытие изобретения
Данное изобретение посвящено устройству и способу для оценки СЗ батареи, которые существенно устраняют одну или более проблем из-за ограничений и недостатков предшествующего уровня техники. Задачей данного изобретения является обеспечение устройства и способа для точной оценки СЗ батареи с использованием нейронной сети.
Другой целью данного изобретения является обеспечение устройства и способа, способных к динамической оценке СЗ батареи при использовании минимума данных в различных окружающих средах, в том числе при различных температурах и расходах емкости.
Для решения этих задач и достижения других преимуществ в соответствии с целью изобретения, как воплощено и подробно описано здесь, предоставляется устройство для оценки состояния заряда (СЗ) батареи, устройство содержит: воспринимающую секцию для измерения силы тока, напряжения и температуры на элементе батареи; нейронную сеть, выполняющую алгоритм нейронной сети и алгоритм обучения, основанные на данных силы тока, напряжения и температуры, переданных в нее из воспринимающей секции, и данных о текущем времени, таким образом выводящую СЗ батареи, оцененное посредством окончательного алгоритма обучения; и компаратор для сравнения выходного значения нейронной сети с заранее определенным целевым значением и вынуждения нейронной сети итерационно выполнять алгоритм обучения, если разность между выходным значением нейронной сети и заранее определенным целевым значением находится вне заранее определенного допуска, и обновлять алгоритм обучения, чтобы сформировать окончательный алгоритм обучения.
В соответствии с предпочтительным вариантом воплощения данного изобретения заранее определенное целевое значение может быть "истинным" СЗ батареи. Однако, трудно точно вычислить заранее определенное целевое значение, поэтому опорное значение, полученное посредством выполнения эксперимента при определенных условиях, используется в качестве целевого значения. Например, опорное значение получается на основе значения, полученного вычитанием данных ампер-часов зарядного/разрядного устройства из номинальной емкости батареи или значения напряжения разомкнутой цепи батареи, соответственно или математически компенсируя друг друга.
Хотя данное изобретение описано применительно к нейронной сети в виде алгоритма динамической многомерной вейвлет-нейронной сети, возможно также использовать алгоритм динамической вейвлет-нейронной сети или алгоритм статической вейвлет-нейронной сети. Кроме того, хотя данное изобретение описано применительно к алгоритму обучения с обратным распространением, также возможно использовать схему фильтра Кальмана, генетический алгоритм (GA) или нечеткий алгоритм обучения. Чтобы достигнуть вышеупомянутые цели данного изобретения, в соответствии с другим аспектом данного изобретения предлагается способ для оценки состояния заряда (СЗ) батареи с использованием нейронной сети, способ содержит следующие этапы: (a) выполнение алгоритма обучения, основанного на данных силы тока, напряжения и температуры, измеренных на батарее, и данных текущего времени; и (b), вывод СЗ батареи, оцененного посредством окончательного алгоритма обучения, сформированного путем выполнения алгоритма обучения.
В соответствии с предпочтительным вариантом воплощения данного изобретения этап (a) включает в себя подэтапы измерения силы тока, напряжения и температуры на батарее, выполнение алгоритма нейронной сети с использованием данных силы тока, напряжения и температуры, измеренных на батарее, и данных текущего времени в качестве данных обучения, проверку того, находится ли разность между выходным значением, полученным посредством алгоритма нейронной сети, и заранее определенным целевым значением в пределах заранее определенного допуска, и итерационное выполнение алгоритма обучения, если разность находится вне заранее определенного допуска, таким образом, обновляя алгоритм обучения, чтобы сформировать окончательный алгоритм обучения.
В соответствии с предпочтительным вариантом воплощения данного изобретения этап (b) включает в себя подэтапы измерения силы тока, напряжения и температуры на батарее и вывод СЗ батареи путем оценки СЗ батареи с помощью окончательного алгоритма обучения, полученного посредством этапа (a), на основе данных силы тока, напряжения и температуры, измеренных на батарее, и данных текущего времени.
Дополнительные преимущества, цели и признаки изобретения частично сформулированы в последующем описании и частично станут очевидными для специалистов в области техники после ознакомления с нижеследующим описанием или могут быть изучены при применении изобретения на практике. Цели и другие преимущества изобретения могут быть осуществлены и достигнуты структурой, подробно показанной в письменном описании и пунктах формулы изобретения, а также в приложенных чертежах.
Вариант осуществления изобретения
Ниже приводятся подробные ссылки на предпочтительный вариант воплощения данного изобретения, примеры которого иллюстрированы в сопроводительных чертежах. Везде, где возможно, используются одни и те же номера ссылок по всем чертежам, чтобы обратиться к одним и тем же или подобным деталям.
В дальнейшем подробно разъяснен предпочтительный вариант воплощения данного изобретения со ссылкой на сопроводительные чертежи.
Фиг.1 является блочным представлением, схематически иллюстрирующим устройство 100 для оценки СЗ батареи в соответствии с предпочтительным вариантом воплощения данного изобретения.
Согласно фиг.1 устройство 100 для оценки СЗ батареи с использованием нейронной сети включает в себя модуль 12 измерения силы тока для измерения силы тока (i) на элементе 10 батареи, модуль 14 измерения напряжения для измерения напряжения (V) на элементе 10 батареи, модуль 16 измерения температуры для измерения температуры (T) на элементе 10 батареи, нейронную сеть 20 для выполнения алгоритма нейронной сети и алгоритма обучения с использованием данных обучения, включающих в себя силу тока (i), напряжение (V) и температуру (T), измеренные вышеупомянутыми измерительными модулями 12, 14 и 16, и время (K), и для вывода оценочного СЗ на основе формулы окончательного алгоритма обучения, сформированного выполнением алгоритма нейронной сети и алгоритма обучения, зарядное/разрядное устройство 30 для подачи тока зарядки/разрядки на элемент 10 батареи и компаратор 40, который сравнивает выходной СЗ (go) батареи, полученный посредством вывода из нейронной сети 20, с целевым СЗ (gT), проверяет, находится ли разность между выходным СЗ (go) и целевым СЗ (gT) в пределах заранее определенного допуска, и побуждает нейронную сеть 20 итерационно выполнять алгоритм обучения, если разность находится вне заранее определенного допуска, и, таким образом, обновлять алгоритм обучения, чтобы сформировать окончательный алгоритм обучения.
Предпочтительно целевой СЗ (gT) получается посредством выполнения эксперимента при определенных условиях. Например, целевой СЗ (gT) получается путем вычитания данных (gr) ампер-часов зарядного/разрядного устройства 30 из номинальной емкости (gN) батареи, то есть, gT=gN-gr. Это имеет место потому, что идеальное целевое СЗ может быть получено путем вычитания данных ампер-часов, соответствующих емкости, которая уже использована в батарее, из номинальной емкости батареи, если ошибка находится в пределах приемлемого допуска. В качестве альтернативы целевое СЗ (gT) получается на основе значения напряжения разомкнутой цепи батареи. Предпочтительно, чтобы значение схемы расчета ампер-часов и значения схемы измерения напряжения разомкнутой цепи математически компенсировали друг друга.
Фиг.2 является представлением, показывающим структуру нейронной сети, используемой для данного изобретения.
В соответствии с предпочтительным вариантом воплощения данного изобретения нейронная сеть включает в себя динамическую многомерную вейвлет-нейронную сеть.
Согласно фиг.2 динамическая многомерная вейвлет-нейронная сеть включает в себя входную область, скрытый уровень и уровень вывода.
Чтобы применить алгоритм оценки СЗ батареи к динамической многомерной вейвлет-нейронной сети, произвольная функция может быть разложена следующим образом на основе теории вейвлетов.
Уравнение 1
Здесь - коэффициент базисной функции для разложения произвольной функции . Кроме того, и - параметры растяжения и смещения для базисной функции соответственно.
Уравнение 2
Уравнение 2 может быть применено к динамической многомерной вейвлет-нейронной сети, которая показана на фиг.2, следующим образом.
На фиг.2, хd(k) является вектором входных данных, введенным в динамическую многомерную вейвлет-нейронную сеть. В соответствии с данным вариантом воплощения, хd(k) является вектором, содержащим входные данные, состоящие из силы тока, напряжения и температуры, введенным в динамическую многомерную вейвлет-нейронную сеть в течение заранее определенного промежутка времени (k). Таким образом, хd(k)=(i, v, T, k). Кроме того, go(хd(k)) является выходным значением, которое оценивается посредством динамической многомерной вейвлет-нейронной сети на основе входных данных. go(хd(k)) представляется в виде Уравнения 3.
Уравнение 3
Здесь и представляют собой промежуточные весовые коэффициенты, которые обновляются в каждый момент времени (k) на основе алгоритма обучения с обратным распространением (ОР) так, чтобы произвольная функция была приблизительно отождествлена нелинейной функцией.
Если разность между выходным значением go и целевым значением gT, определенная компаратором 40 динамической многомерной вейвлет-нейронной сети, не существует в пределах заранее определенного допуска (например, 3%), последующий алгоритм обучения с обратным распространением итерационно выполняется посредством нейронной сети 20.
Перед изложением алгоритма обучения с обратным распространением следует отметить, что функция ошибки определена согласно Уравнению 4.
Уравнение 4
Здесь - желаемое выходное значение, то есть целевое значение, и - фактическое выходное значение нейронной сети 20. Заменой в Уравнении 4 получается градиент ошибки, как представлено в Уравнении 5.
Уравнение 5
Уравнение 6
Поэтому окончательное обновление для промежуточного коэффициента выполняется следующим образом:
Уравнение 7
Таким образом, нейронная сеть 20 итерационно передает новое выходное значение go, которое вновь сформировано на основе обновленных значений , и , компаратору 40, итерационно выполняя алгоритм обучения с обратным распространением. Кроме того, такая процедура итерационно выполняется, пока разность между выходным значением go и целевым значением gT не определена в пределах заранее определенного допуска.
Когда разность между выходным значением go и целевым значением gT определена в пределах заранее определенного допуска, алгоритм обучения с использованием нейронной сети завершается, и предполагаемый СЗ выводится с использованием окончательной формулы алгоритма оценки (то есть, Уравнения 3), полученного посредством алгоритма обучения.
Далее описан способ оценки СЗ батареи со ссылкой на фиг.3 и 4.
Способ оценки СЗ батареи в соответствии с данным изобретением содержит этап обучения с использованием нейронной сети, то есть этап получения окончательного алгоритма оценки путем выполнения алгоритма нейронной сети и алгоритма обучения и этап вывода СЗ батареи с использованием окончательного алгоритма оценки.
Фиг.3 является блок-схемой, последовательно иллюстрирующей этапы обучения с использованием нейронной сети в соответствии с предпочтительным вариантом воплощения данного изобретения.
Согласно фиг.3 сила тока (i), напряжение (v) и температура (T) измеряются на элементе 10 батареи (этап 10). Затем выполняется алгоритм динамической многомерной вейвлет-нейронной сети с использованием измеренных силы тока (i), напряжения (v) и температуры (T) и данных их времени (k) как вектора входных данных, то есть, хd(k)=(i, v, T, k). В результате может быть получено выходное значение go (этап 12).
После этого выходное значение go сравнивается с целевым значением gT и проверяется, находится ли разность между выходным значением go и целевым gT в пределах заранее определенного предела ошибки 3% (этап 14). Хотя заранее определенный допустимый предел ошибки принимается равным 3% в данном варианте воплощения, в случае необходимости заранее определенный предел ошибки может быть изменен. СЗ батареи может быть оценено точно, по мере того как допустимый предел ошибки уменьшается. Напротив, СЗ батареи может быть оценено неточно, по мере того как допустимый предел ошибки увеличивается.
Если на этапе 14 определено, что разность превышает заранее определенный допустимый предел ошибки, выполняется алгоритм обучения с обратным распространением, таким образом получая обновленное выходное значение go (этап 16). Затем процедура возвращается к этапу 14.
Между тем, если на этапе 14 определено, что разность равна или меньше, чем заранее определенный допустимый предел ошибки, алгоритм обучения нейронной сети завершается (этап 18). В результате с помощью алгоритма обучения может быть получена окончательная формула алгоритма оценки (то есть, Уравнение 3).
Фиг.4 является блок-схемой, иллюстрирующей процедуру вывода СЗ батареи с использованием окончательного алгоритма оценки, полученного с помощью этапов обучения, которые показаны на фиг.3.
Согласно фиг.4 сила тока (i), напряжение (v) и температура (T) измеряются на элементе 10 батареи (этап 20). Затем выводится СЗ батареи с использованием окончательного алгоритма оценки, полученного алгоритмом обучения, который показан на фиг.3, с использованием измеренных силы тока (i), напряжения (v) и температуры (T) и данных их времени (k) как вектора входных данных, то есть, хd(k)=(i, v, T, k) (этап 22).
Промышленная применимость
Хотя данное изобретение было описано относительно нейронной сети в виде динамической многомерной вейвлет-нейронной сети, данное изобретение не ограничивается исключительно ею. Таким образом, данное изобретение применимо для нейронной сети с прогнозированием событий, рекуррентной нейронной сети, вейвлет-нейронной сети и т.д.
Кроме того, хотя данное изобретение использует алгоритм обучения с обратным распространением, данное изобретение не ограничивается исключительно им. Например, данное изобретение может использовать традиционную схему фильтра Кальмана, генетический алгоритм и нечеткий алгоритм обучения.
Как описано выше, данное изобретение может динамически оценивать СЗ батареи с помощью алгоритма нейронной сети и алгоритм обучения. В частности, СЗ батареи может быть точно оценено даже при различных внешних условиях, в том числе при различных температурах и расходах емкости. Данное изобретение эффективно в применении в области гибридных электрических транспортных средств, в которых СЗ батареи должно оцениваться точно.
Предшествующие варианты воплощения являются лишь иллюстративными и не должны рассматриваться как ограничение данного изобретения. Данные идеи могут быть с легкостью применены к другим типам устройств. Подразумевается, что описание данного изобретения является иллюстративным и не ограничивает объем формулы изобретения. Для специалистов в области техники будут очевидны многие альтернативы модификации и разновидности.
Claims (12)
1. Устройство для оценки состояния заряда (СЗ) батареи, содержащее воспринимающую секцию для измерения силы тока, напряжения и температуры на элементе батареи; нейронную сеть, выполняющую алгоритм нейронной сети для вычисления СЗ батареи посредством обработки данных силы тока, напряжения и температуры, переданных ей из воспринимающей секции, и данных о моменте времени, когда были измерены сила тока, напряжение и температура, согласно функции, имеющей заранее определенный весовой коэффициент, при этом заранее определенный весовой коэффициент обновляется посредством обучающего алгоритма, что вынуждает вычисленное СЗ батареи в результате обучения отслеживать заранее определенное целевое значение; компаратор для сравнения выходного значения нейронной сети с упомянутым заранее определенным целевым значением и побуждения нейронной сети выполнять алгоритм обучения, если разность между вычисленным значением СЗ батареи и заранее определенным целевым значением находится вне заранее определенного допуска.
2. Устройство по п.1, в котором заранее определенное целевое значение является опорным значением, полученным посредством выполнения эксперимента при определенных условиях.
3. Устройство по п.2, в котором опорное значение получено на основе значения вычитания данных ампер-часов зарядного/разрядного устройства из номинальной емкости батареи или значения напряжения разомкнутой цепи батареи, соответственно, или математической компенсации друг друга.
4. Устройство по п.1, в котором нейронная сеть включает в себя алгоритм динамической вейвлет-нейронной сети или алгоритм статической вейвлет-нейронной сети.
5. Устройство по п.4, в котором нейронная сеть включает в себя алгоритм динамической многомерной вейвлет-нейронной сети.
6. Устройство по п.1, в котором алгоритм обучения включает в себя алгоритм обучения с обратным распространением, схему фильтра Кальмана, генетический алгоритм или нечеткий алгоритм обучения.
7. Способ для оценки состояния заряда (СЗ) батареи с использованием нейронной сети, способ содержит следующие этапы:
выполнение алгоритма обучения нейронной сети, включающего измерение силы тока, напряжения и температуры батареи;
вычисление СЗ батареи в соответствии с алгоритмом нейронной сети, определенным функцией с заранее определенным весовым коэффициентом, посредством обработки данных измерения силы тока, напряжения и температуры и данных о моменте времени, когда измеряются сила тока, напряжение и температура,
сравнение посредством компаратора вычисленного СЗ батареи с заранее определенным целевым значением и побуждение выполнения алгоритма обучения нейронной сети, при котором происходит обновление весового коэффициента так, что вычисленное СЗ батареи вынуждено изменяться в результате обучения, чтобы отслеживать заранее определенное целевое значение, если разность между вычисленным СЗ батареи и упомянутым целевым значением находится вне заранее определенного допуска, и
вывод СЗ батареи, полученного с помощью окончательного алгоритма оценки, полученного на этапе выполнения алгоритма обучения нейронной сети на основе данных силы тока, напряжения и температуры, измеренных на батарее, и данных текущего времени.
8. Способ по п.7, в котором заранее определенное целевое значение является опорным значением, полученным посредством выполнения эксперимента при определенных условиях.
9. Способ по п.8, в котором опорное значение получено на основе значения вычитания данных ампер-часов зарядного/разрядного устройства из номинальной емкости батареи или значения напряжения разомкнутой цепи батареи, соответственно, или математической компенсации друг друга.
10. Способ по п.7, в котором нейронная сеть включает в себя алгоритм динамической вейвлет-нейронной сети или алгоритм статической вейвлет-нейронной сети.
11. Способ по п.10, в котором вейвлет-нейронная сеть включает в себя алгоритм динамической многомерной вейвлет-нейронной сети.
12. Способ по п.7, в котором алгоритм обучения включает в себя алгоритм обучения с обратным распространением, схему фильтра Кальмана, генетический алгоритм или нечеткий алгоритм обучения.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20030092880 | 2003-12-18 | ||
KR10-2003-0092880 | 2003-12-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2006119641A RU2006119641A (ru) | 2007-12-27 |
RU2328753C2 true RU2328753C2 (ru) | 2008-07-10 |
Family
ID=36809350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2006119641/28A RU2328753C2 (ru) | 2003-12-18 | 2004-12-17 | Устройство и способ для оценки уровня заряженности батареи с использованием нейронной сети |
Country Status (11)
Country | Link |
---|---|
US (1) | US7583059B2 (ru) |
EP (1) | EP1702219B1 (ru) |
JP (1) | JP4331210B2 (ru) |
KR (1) | KR100651573B1 (ru) |
CN (1) | CN100570388C (ru) |
AT (1) | ATE556327T1 (ru) |
BR (1) | BRPI0416424B8 (ru) |
CA (1) | CA2550072C (ru) |
RU (1) | RU2328753C2 (ru) |
TW (1) | TWI260808B (ru) |
WO (1) | WO2005059579A1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2491566C1 (ru) * | 2010-02-18 | 2013-08-27 | Ниссан Мотор Ко., Лтд. | Устройство оценки состояния батареи и способ оценки состояния батареи |
US8909490B2 (en) | 2010-02-18 | 2014-12-09 | Nissan Motor Co., Ltd. | Battery state estimation device and battery state estimation method |
US10732224B2 (en) | 2010-04-22 | 2020-08-04 | Enerdel, Inc. | Monitoring battery state of charge |
Families Citing this family (139)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7321220B2 (en) * | 2003-11-20 | 2008-01-22 | Lg Chem, Ltd. | Method for calculating power capability of battery packs using advanced cell model predictive techniques |
US8103485B2 (en) * | 2004-11-11 | 2012-01-24 | Lg Chem, Ltd. | State and parameter estimation for an electrochemical cell |
EP1691209B1 (en) * | 2005-02-14 | 2008-10-01 | Denso Corporation | Method and apparatus for detecting charged state of secondary battery based on neural network calculation |
KR100842678B1 (ko) * | 2005-03-17 | 2008-06-30 | 주식회사 엘지화학 | 동적 패턴에 대한 배터리 잔존량 추정법의 비교 참조값구성 방법 |
JP4623448B2 (ja) * | 2005-04-20 | 2011-02-02 | 株式会社デンソー | 二次電池の残存容量演算方法 |
KR100793616B1 (ko) * | 2005-06-13 | 2008-01-10 | 주식회사 엘지화학 | 배터리 잔존량 추정 장치 및 방법 |
US7723957B2 (en) * | 2005-11-30 | 2010-05-25 | Lg Chem, Ltd. | System, method, and article of manufacture for determining an estimated battery parameter vector |
FR2897161B1 (fr) * | 2006-02-09 | 2008-07-11 | Peugeot Citroen Automobiles Sa | Systeme de recalage de l'information d'etat de charge d'une batterie de vehicule automobile |
KR100901252B1 (ko) * | 2006-08-02 | 2009-06-08 | 주식회사 엘지화학 | 슬라이딩 모드 관측기를 이용한 2차 전지 soc 예측방법 및 장치 |
DE602007006339D1 (de) * | 2006-10-30 | 2010-06-17 | Koninkl Philips Electronics Nv | Vorrichtung und verfahren zur bestimmung des ladestatus einer nicht äquilibrierten batterie |
GB2444511B (en) * | 2006-12-06 | 2008-10-22 | Iti Scotland Ltd | Battery Management System |
CN101622547B (zh) * | 2007-02-08 | 2014-07-30 | 松下电动车辆能源股份有限公司 | 用于检测蓄电装置的异常的装置和方法 |
JP2008232758A (ja) * | 2007-03-19 | 2008-10-02 | Nippon Soken Inc | 二次電池の内部状態検出装置及びニューラルネット式状態量推定装置 |
CN101067645B (zh) * | 2007-04-20 | 2010-11-24 | 杭州高特电子设备有限公司 | 一种阀控式铅酸蓄电池性能分析方法 |
CN101067644B (zh) * | 2007-04-20 | 2010-05-26 | 杭州高特电子设备有限公司 | 蓄电池性能分析专家诊断方法 |
CN101359036B (zh) * | 2007-07-31 | 2010-11-17 | 比亚迪股份有限公司 | 电池荷电状态的测定方法 |
KR100911316B1 (ko) * | 2007-08-23 | 2009-08-11 | 주식회사 엘지화학 | 배터리의 장기 특성 예측 시스템 및 방법 |
KR100936892B1 (ko) * | 2007-09-13 | 2010-01-14 | 주식회사 엘지화학 | 배터리의 장기 특성 예측 시스템 및 방법 |
US8628872B2 (en) * | 2008-01-18 | 2014-01-14 | Lg Chem, Ltd. | Battery cell assembly and method for assembling the battery cell assembly |
US7994755B2 (en) * | 2008-01-30 | 2011-08-09 | Lg Chem, Ltd. | System, method, and article of manufacture for determining an estimated battery cell module state |
US8486552B2 (en) * | 2008-06-30 | 2013-07-16 | Lg Chem, Ltd. | Battery module having cooling manifold with ported screws and method for cooling the battery module |
US8426050B2 (en) * | 2008-06-30 | 2013-04-23 | Lg Chem, Ltd. | Battery module having cooling manifold and method for cooling battery module |
US7883793B2 (en) * | 2008-06-30 | 2011-02-08 | Lg Chem, Ltd. | Battery module having battery cell assemblies with alignment-coupling features |
US8067111B2 (en) * | 2008-06-30 | 2011-11-29 | Lg Chem, Ltd. | Battery module having battery cell assembly with heat exchanger |
US9759495B2 (en) * | 2008-06-30 | 2017-09-12 | Lg Chem, Ltd. | Battery cell assembly having heat exchanger with serpentine flow path |
US9140501B2 (en) * | 2008-06-30 | 2015-09-22 | Lg Chem, Ltd. | Battery module having a rubber cooling manifold |
US8202645B2 (en) | 2008-10-06 | 2012-06-19 | Lg Chem, Ltd. | Battery cell assembly and method for assembling the battery cell assembly |
FR2942087B1 (fr) | 2009-02-12 | 2011-02-18 | Peugeot Citroen Automobiles Sa | Dispositif et procede de gestion du niveau de charge electrique lors de la mise en charge d'une source de stockage electrochimique embarquee dans un vehicule |
US9337456B2 (en) * | 2009-04-20 | 2016-05-10 | Lg Chem, Ltd. | Frame member, frame assembly and battery cell assembly made therefrom and methods of making the same |
US8852778B2 (en) * | 2009-04-30 | 2014-10-07 | Lg Chem, Ltd. | Battery systems, battery modules, and method for cooling a battery module |
US8663828B2 (en) * | 2009-04-30 | 2014-03-04 | Lg Chem, Ltd. | Battery systems, battery module, and method for cooling the battery module |
US8403030B2 (en) * | 2009-04-30 | 2013-03-26 | Lg Chem, Ltd. | Cooling manifold |
US8663829B2 (en) | 2009-04-30 | 2014-03-04 | Lg Chem, Ltd. | Battery systems, battery modules, and method for cooling a battery module |
US20120059766A1 (en) * | 2009-05-11 | 2012-03-08 | Mahindra Reva Electric Vehicles Pvt. Ltd. | Method and System for Revenue Generation Using Energy System |
US8703318B2 (en) * | 2009-07-29 | 2014-04-22 | Lg Chem, Ltd. | Battery module and method for cooling the battery module |
US8399118B2 (en) * | 2009-07-29 | 2013-03-19 | Lg Chem, Ltd. | Battery module and method for cooling the battery module |
BR112012003621A2 (pt) * | 2009-08-21 | 2017-08-08 | Mahindra Reva Electric Vehicles Pvt Ltd | determinacao e uso de energia de reserva em sistemas de energia armazenada |
US8399119B2 (en) * | 2009-08-28 | 2013-03-19 | Lg Chem, Ltd. | Battery module and method for cooling the battery module |
WO2011118080A1 (ja) | 2010-03-23 | 2011-09-29 | 古河電気工業株式会社 | 電池内部状態推定装置および電池内部状態推定方法 |
US8319479B2 (en) * | 2010-03-23 | 2012-11-27 | Ememory Technology Inc. | Method of estimating battery recharge time and related device |
US20110234167A1 (en) * | 2010-03-24 | 2011-09-29 | Chin-Hsing Kao | Method of Predicting Remaining Capacity and Run-time of a Battery Device |
US8341449B2 (en) | 2010-04-16 | 2012-12-25 | Lg Chem, Ltd. | Battery management system and method for transferring data within the battery management system |
US9147916B2 (en) | 2010-04-17 | 2015-09-29 | Lg Chem, Ltd. | Battery cell assemblies |
TWI395965B (zh) * | 2010-06-04 | 2013-05-11 | Nat Univ Chin Yi Technology | 燃料電池故障預測系統及其建立方法 |
US8758922B2 (en) | 2010-08-23 | 2014-06-24 | Lg Chem, Ltd. | Battery system and manifold assembly with two manifold members removably coupled together |
US8353315B2 (en) | 2010-08-23 | 2013-01-15 | Lg Chem, Ltd. | End cap |
US8469404B2 (en) | 2010-08-23 | 2013-06-25 | Lg Chem, Ltd. | Connecting assembly |
US8920956B2 (en) | 2010-08-23 | 2014-12-30 | Lg Chem, Ltd. | Battery system and manifold assembly having a manifold member and a connecting fitting |
US9005799B2 (en) | 2010-08-25 | 2015-04-14 | Lg Chem, Ltd. | Battery module and methods for bonding cell terminals of battery cells together |
US8662153B2 (en) | 2010-10-04 | 2014-03-04 | Lg Chem, Ltd. | Battery cell assembly, heat exchanger, and method for manufacturing the heat exchanger |
US9015093B1 (en) | 2010-10-26 | 2015-04-21 | Michael Lamport Commons | Intelligent control with hierarchical stacked neural networks |
US8775341B1 (en) | 2010-10-26 | 2014-07-08 | Michael Lamport Commons | Intelligent control with hierarchical stacked neural networks |
US8288031B1 (en) | 2011-03-28 | 2012-10-16 | Lg Chem, Ltd. | Battery disconnect unit and method of assembling the battery disconnect unit |
JP5695464B2 (ja) * | 2011-03-28 | 2015-04-08 | 株式会社東芝 | 充放電判定装置及び充放電判定プログラム |
CN102226834B (zh) * | 2011-03-31 | 2013-02-20 | 杭州高特电子设备有限公司 | 基于模糊分类技术的蓄电池容量判断方法 |
US8449998B2 (en) | 2011-04-25 | 2013-05-28 | Lg Chem, Ltd. | Battery system and method for increasing an operational life of a battery cell |
US9178192B2 (en) | 2011-05-13 | 2015-11-03 | Lg Chem, Ltd. | Battery module and method for manufacturing the battery module |
KR20120134415A (ko) * | 2011-06-02 | 2012-12-12 | 에스케이이노베이션 주식회사 | Ess의 배터리 수명 예측 시스템 및 그 방법 |
US8993136B2 (en) | 2011-06-30 | 2015-03-31 | Lg Chem, Ltd. | Heating system for a battery module and method of heating the battery module |
US8974928B2 (en) | 2011-06-30 | 2015-03-10 | Lg Chem, Ltd. | Heating system for a battery module and method of heating the battery module |
US8859119B2 (en) | 2011-06-30 | 2014-10-14 | Lg Chem, Ltd. | Heating system for a battery module and method of heating the battery module |
US8974929B2 (en) | 2011-06-30 | 2015-03-10 | Lg Chem, Ltd. | Heating system for a battery module and method of heating the battery module |
US9496544B2 (en) | 2011-07-28 | 2016-11-15 | Lg Chem. Ltd. | Battery modules having interconnect members with vibration dampening portions |
WO2013031559A1 (ja) * | 2011-08-30 | 2013-03-07 | 三洋電機株式会社 | バッテリシステム、電動車両、移動体、電力貯蔵装置および電源装置 |
CN102364353B (zh) * | 2011-11-14 | 2013-10-16 | 北京理工大学 | 一种基于热效应的二次电池一致性评估方法 |
US9316699B2 (en) | 2012-04-05 | 2016-04-19 | Samsung Sdi Co., Ltd. | System for predicting lifetime of battery |
TWI460453B (zh) * | 2012-09-28 | 2014-11-11 | Metal Ind Res & Dev Ct | 以兩個相互垂直的分量相加合成的電池殘電量估測系統及其估測方法 |
KR101547006B1 (ko) * | 2012-10-26 | 2015-08-24 | 주식회사 엘지화학 | 배터리 잔존 용량 추정 장치 및 방법 |
US8981857B2 (en) | 2012-11-15 | 2015-03-17 | Freescale Semiconductor, Inc. | Temperature dependent timer circuit |
CN103018673B (zh) * | 2012-11-19 | 2015-01-21 | 北京航空航天大学 | 一种基于改进型动态小波神经网络的航天Ni-Cd蓄电池寿命预测方法 |
AT512003A3 (de) * | 2013-01-23 | 2014-05-15 | Avl List Gmbh | Verfahren zur Ermittlung eines regelungstechnischen Beobachters für den SoC |
KR20140099372A (ko) * | 2013-02-01 | 2014-08-12 | 삼성에스디아이 주식회사 | 배터리의 soc 추정 방법 및 이를 이용하는 배터리 관리 시스템 |
US20140244193A1 (en) * | 2013-02-24 | 2014-08-28 | Fairchild Semiconductor Corporation | Battery state of charge tracking, equivalent circuit selection and benchmarking |
CN103176139B (zh) * | 2013-03-08 | 2015-07-29 | 桂林电子科技大学 | 动力电池非光滑迟滞特性补偿的电荷状态估算方法及系统 |
US20140278169A1 (en) * | 2013-03-12 | 2014-09-18 | Samsung Sdi Co., Ltd. | Apparatus for predicting state of health of battery pack by using discrete wavelet transform |
TWI491801B (zh) * | 2013-03-18 | 2015-07-11 | Nat Univ Chin Yi Technology | 風力發電故障預測系統及其方法 |
FR3010532B1 (fr) * | 2013-09-11 | 2017-06-09 | Commissariat Energie Atomique | Procede, dispositif et systeme d'estimation de l'etat de charge d'une batterie |
US10950421B2 (en) * | 2014-04-21 | 2021-03-16 | Lam Research Corporation | Using modeling for identifying a location of a fault in an RF transmission system for a plasma system |
KR20150121920A (ko) * | 2014-04-22 | 2015-10-30 | 현대모비스 주식회사 | 차량용 배터리 센서 및 상기 센서를 이용한 계절 판단 방법 |
KR102241683B1 (ko) * | 2014-07-30 | 2021-04-19 | 삼성전자주식회사 | 배터리의 상태를 추정하는 방법 및 장치 |
CN104375091A (zh) * | 2014-11-18 | 2015-02-25 | 柳州市金旭节能科技有限公司 | 电动汽车动力蓄电池组监测方法 |
CN104569838B (zh) * | 2014-12-23 | 2017-11-21 | 深圳市科陆电子科技股份有限公司 | 基于远程监控的集装箱储能设备核心部件的评价方法 |
CN104849671B (zh) * | 2015-05-22 | 2017-07-11 | 大连理工大学 | 一种基于组合神经网络的电池组容量检测系统 |
KR102527334B1 (ko) | 2015-11-24 | 2023-05-02 | 삼성전자주식회사 | 배터리 관리 장치 및 방법 |
CN105528637B (zh) * | 2015-11-26 | 2018-06-22 | 江南大学 | 基于线性内插型模糊神经网络的诊断方法 |
CN105911476B (zh) * | 2016-04-13 | 2018-08-28 | 华北电力大学 | 一种基于数据挖掘的电池储能系统soc预测方法 |
CN106501721A (zh) * | 2016-06-03 | 2017-03-15 | 湘潭大学 | 一种基于生物进化的锂电池soc估算方法 |
CN106443453A (zh) * | 2016-07-04 | 2017-02-22 | 陈逸涵 | 一种基于bp神经网络的锂电池soc估算方法 |
CN106324517A (zh) * | 2016-08-29 | 2017-01-11 | 丹阳亿豪电子科技有限公司 | 一种新能源汽车电池性能预测方法 |
US10997490B2 (en) * | 2017-02-24 | 2021-05-04 | International Business Machines Corporation | Battery-based neural network weights |
CN107037373B (zh) * | 2017-05-03 | 2019-03-29 | 广西大学 | 基于神经网络的蓄电池剩余电量预测方法 |
US11594770B2 (en) * | 2017-05-03 | 2023-02-28 | Semiconductor Energy Laboratory Co., Ltd. | Neural network, power storage system, vehicle, and electronic device |
US11691518B2 (en) | 2017-07-21 | 2023-07-04 | Quantumscape Battery, Inc. | Predictive model for estimating battery states |
CN107436411B (zh) * | 2017-07-28 | 2019-06-14 | 南京航空航天大学 | 基于分数阶神经网络和双容积卡尔曼的电池soh在线估计方法 |
US11870042B2 (en) | 2017-09-06 | 2024-01-09 | Semiconductor Energy Laboratory Co., Ltd. | Power storage system, vehicle, electronic device, and semiconductor device |
KR101965832B1 (ko) * | 2017-11-27 | 2019-04-05 | (주) 페스코 | 배터리 soc 추정 시스템 및 이를 이용한 배터리 soc 추정방법 |
CN108414937A (zh) * | 2017-12-08 | 2018-08-17 | 国网北京市电力公司 | 充电电池荷电状态确定方法及装置 |
KR102043626B1 (ko) * | 2017-12-27 | 2019-12-02 | 주식회사 비앤에이치코리아 | 복수의 성형수술경험자의 비포 앤 애프터 이미지에 대한 빅데이터를 분석하여 성형수술을 희망하는 고객에게 가상의 성형이미지를 제공하는 딥러닝 기반 가상성형장치 |
KR101992051B1 (ko) * | 2018-03-19 | 2019-06-21 | 충북대학교 산학협력단 | 배터리 잔량 예측 방법 및 배터리 잔량 예측 시스템 |
CN108573545B (zh) * | 2018-04-24 | 2019-10-08 | 中南大学 | 一种冰雪环境无人驾驶车辆电源模型预测方法与系统 |
JP7337781B2 (ja) * | 2018-04-27 | 2023-09-04 | 株式会社半導体エネルギー研究所 | 蓄電装置の充電状態推定システム |
US10983167B2 (en) * | 2018-06-14 | 2021-04-20 | Huayuan Semiconductor (Shenzhen) Limited Company | Method and device for gauging an electronic apparatus |
CN109001640B (zh) * | 2018-06-29 | 2021-08-20 | 深圳市科列技术股份有限公司 | 一种动力电池的数据处理方法和装置 |
CN109031147B (zh) * | 2018-08-21 | 2020-12-01 | 湖南兴业绿色电力科技有限公司 | 一种磷酸铁锂电池组的soc估算方法 |
CN109633450B (zh) * | 2018-11-23 | 2021-05-14 | 成都大超科技有限公司 | 一种基于神经网络的锂电池充电检测系统 |
US11119494B2 (en) | 2019-01-07 | 2021-09-14 | Wing Aviation Llc | Using machine learning techniques to estimate available energy for vehicles |
DE112019006731T5 (de) * | 2019-01-24 | 2021-11-18 | Sony Semiconductor Solutions Corporation | Spannungssteuerungsvorrichtung |
KR102722271B1 (ko) * | 2019-02-07 | 2024-10-24 | 주식회사 엘지에너지솔루션 | 배터리 관리 장치, 배터리 관리 방법 및 배터리팩 |
CN110007235A (zh) * | 2019-03-24 | 2019-07-12 | 天津大学青岛海洋技术研究院 | 一种电动汽车蓄电池soc在线预测方法 |
DE102019107935A1 (de) * | 2019-03-27 | 2020-10-01 | Volkswagen Aktiengesellschaft | Verfahren zur Bestimmung eines Zustands einer wiederaufladbaren Batterie eines Fahrzeuges |
KR20200117794A (ko) | 2019-04-05 | 2020-10-14 | 주식회사 엘지화학 | 배터리 관리 장치 및 방법 |
CN110048477B (zh) * | 2019-04-19 | 2023-05-26 | 浙江大学宁波理工学院 | 一种基于神经元控制的快速充电器及控制方法 |
IT201900006987A1 (ru) * | 2019-05-17 | 2019-05-17 | ||
KR102652117B1 (ko) | 2019-07-10 | 2024-03-27 | 삼성전자주식회사 | 이미지 보정 방법 및 이미지 보정 시스템 |
CN110658459B (zh) * | 2019-09-12 | 2021-10-15 | 北京航空航天大学 | 基于双向循环神经网络的锂离子电池荷电状态估计方法 |
EP3812779B1 (en) | 2019-10-23 | 2022-09-28 | Novum engineerING GmbH | Analyzing electrical impedance measurements of an electrochemical battery |
EP3812783A1 (en) | 2019-10-23 | 2021-04-28 | Novum engineerING GmbH | Estimating a battery state from electrical impedance measurements using convolutional neural network means |
EP3812780B1 (en) | 2019-10-23 | 2022-09-28 | Novum engineerING GmbH | Estimating a battery state from gradients of electrical impedance measurements |
EP3812782B1 (en) | 2019-10-23 | 2022-09-14 | Novum engineerING GmbH | Estimating a temperature of an electrochemical battery |
EP3812781B1 (en) | 2019-10-23 | 2022-11-30 | Novum engineerING GmbH | Estimating a battery state of an electrochemical battery |
CN110673039B (zh) * | 2019-11-11 | 2022-02-08 | 安徽优旦科技有限公司 | 一种基于大数据的磷酸铁锂电池soc充电在线校正方法 |
US20210173012A1 (en) * | 2019-12-04 | 2021-06-10 | Robert Bosch Gmbh | Method and system for estimation of open circuit voltage of a battery cell |
KR102439041B1 (ko) | 2020-08-14 | 2022-09-02 | 주식회사 한국파워셀 | 신경망 기반의 배터리 셀 불량 및 화재 사전 진단 방법 및 장치 |
CN112234673B (zh) * | 2020-09-30 | 2022-04-22 | 长安大学 | 一种适用于均衡电路的电池能量均衡方法 |
CN112379272B (zh) * | 2020-11-16 | 2021-09-21 | 北京理工大学 | 一种基于人工智能的锂离子电池系统soc估计方法 |
DE102020130732A1 (de) | 2020-11-20 | 2022-05-25 | Audi Aktiengesellschaft | Verfahren zum Ermitteln eines Werts eines Parameters einer Batteriezelle, Steuereinrichtung und Kraftfahrzeug |
KR102575963B1 (ko) * | 2020-11-30 | 2023-09-07 | 동국대학교 산학협력단 | 셀 밸런싱 신경망 모델을 이용한 리튬 이온 배터리 팩 제어방법 및 그 제어장치 |
US12042628B2 (en) * | 2020-12-30 | 2024-07-23 | Baxter International Inc. | System and method for generating battery alarms in infusion devices |
KR20220112997A (ko) | 2021-02-05 | 2022-08-12 | 경북대학교 산학협력단 | 신경망을 이용한 리튬배터리 팩의 각 셀에 대한 실시간 충전상태 추정장치 |
WO2022248532A1 (en) * | 2021-05-25 | 2022-12-01 | Danmarks Tekniske Universitet | Data-driven and temperature-cycles based remaining useful life estimation of an electronic device |
CN113552490B (zh) * | 2021-06-29 | 2022-04-01 | 广东工业大学 | 一种基于休息恢复效应的可重构电池组soc估计方法 |
CN113258154B (zh) * | 2021-07-16 | 2021-10-15 | 苏州浪潮智能科技有限公司 | 一种电池充电方法、装置、设备及介质 |
CN114280490B (zh) * | 2021-09-08 | 2024-02-09 | 国网湖北省电力有限公司荆门供电公司 | 一种锂离子电池荷电状态估计方法及系统 |
CN113919222B (zh) * | 2021-10-09 | 2024-07-23 | 北京理工大学 | 一种电池组的内部温度在线计算方法 |
US11694560B1 (en) | 2021-12-28 | 2023-07-04 | Beta Air, Llc | Computing device and method for predicting battery temperature in an electric aircraft |
CN114725578A (zh) * | 2022-04-29 | 2022-07-08 | 苏州市职业大学 | 一种基于新能源汽车的锂电池温控装置系统 |
CN115659790B (zh) * | 2022-10-13 | 2024-02-06 | 厦门宇电自动化科技有限公司 | 一种动力电池包的温度实时检测方法 |
CN117289141A (zh) * | 2023-11-22 | 2023-12-26 | 深圳市麦迪瑞科技有限公司 | 基于人工智能的电动自行车充电状态监测方法 |
CN117991109B (zh) * | 2024-04-07 | 2024-07-30 | 宁德时代新能源科技股份有限公司 | 模型训练及充电状态的确定方法、装置、设备和存储介质 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2740554A1 (fr) | 1995-10-31 | 1997-04-30 | Philips Electronique Lab | Systeme de controle de la phase de decharge des cycles de charge-decharge d'une batterie rechargeable, et dispositif hote muni d'une batterie intelligente |
JP3520886B2 (ja) | 1996-03-08 | 2004-04-19 | サンケン電気株式会社 | 二次電池の状態判定方法 |
US6064180A (en) * | 1996-10-29 | 2000-05-16 | General Motors Corporation | Method and apparatus for determining battery state-of-charge using neural network architecture |
JPH1132442A (ja) | 1997-07-10 | 1999-02-02 | Matsushita Electric Ind Co Ltd | 蓄電池残容量推定方法及び蓄電池残容量推定システム |
WO1999061929A1 (en) * | 1998-05-28 | 1999-12-02 | Toyota Jidosha Kabushiki Kaisha | Means for estimating charged state of battery and method for estimating degraded state of battery |
EP1206826B1 (en) | 1999-05-05 | 2009-02-25 | Midtronics, Inc. | Energy management system for automotive vehicle |
JP2002228730A (ja) | 2001-02-06 | 2002-08-14 | Shikoku Electric Power Co Inc | 二次電池の残存電力量の推定装置 |
US20030184307A1 (en) * | 2002-02-19 | 2003-10-02 | Kozlowski James D. | Model-based predictive diagnostic tool for primary and secondary batteries |
JP4038788B2 (ja) | 2002-02-22 | 2008-01-30 | アクソンデータマシン株式会社 | バッテリの残存容量判定方法と、その装置 |
-
2004
- 2004-12-17 JP JP2006545239A patent/JP4331210B2/ja active Active
- 2004-12-17 CA CA2550072A patent/CA2550072C/en active Active
- 2004-12-17 WO PCT/KR2004/003332 patent/WO2005059579A1/en active Application Filing
- 2004-12-17 CN CNB2004800360213A patent/CN100570388C/zh active Active
- 2004-12-17 EP EP04808463A patent/EP1702219B1/en active Active
- 2004-12-17 KR KR1020040107700A patent/KR100651573B1/ko active IP Right Grant
- 2004-12-17 TW TW093139338A patent/TWI260808B/zh active
- 2004-12-17 AT AT04808463T patent/ATE556327T1/de active
- 2004-12-17 RU RU2006119641/28A patent/RU2328753C2/ru active
- 2004-12-17 US US11/016,028 patent/US7583059B2/en active Active
- 2004-12-17 BR BRPI0416424A patent/BRPI0416424B8/pt active IP Right Grant
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2491566C1 (ru) * | 2010-02-18 | 2013-08-27 | Ниссан Мотор Ко., Лтд. | Устройство оценки состояния батареи и способ оценки состояния батареи |
US8909490B2 (en) | 2010-02-18 | 2014-12-09 | Nissan Motor Co., Ltd. | Battery state estimation device and battery state estimation method |
US10732224B2 (en) | 2010-04-22 | 2020-08-04 | Enerdel, Inc. | Monitoring battery state of charge |
Also Published As
Publication number | Publication date |
---|---|
WO2005059579A1 (en) | 2005-06-30 |
ATE556327T1 (de) | 2012-05-15 |
US7583059B2 (en) | 2009-09-01 |
CA2550072A1 (en) | 2005-06-30 |
RU2006119641A (ru) | 2007-12-27 |
BRPI0416424B1 (pt) | 2017-06-20 |
EP1702219B1 (en) | 2012-05-02 |
EP1702219A1 (en) | 2006-09-20 |
JP2007518973A (ja) | 2007-07-12 |
BRPI0416424A (pt) | 2007-01-16 |
BRPI0416424B8 (pt) | 2023-01-17 |
TW200531326A (en) | 2005-09-16 |
CN1890574A (zh) | 2007-01-03 |
US20050194936A1 (en) | 2005-09-08 |
KR100651573B1 (ko) | 2006-11-29 |
EP1702219A4 (en) | 2010-06-09 |
TWI260808B (en) | 2006-08-21 |
CA2550072C (en) | 2011-04-19 |
JP4331210B2 (ja) | 2009-09-16 |
CN100570388C (zh) | 2009-12-16 |
KR20050061386A (ko) | 2005-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2328753C2 (ru) | Устройство и способ для оценки уровня заряженности батареи с использованием нейронной сети | |
JP5058814B2 (ja) | バッテリーの状態及びパラメーターの推定システム及び方法 | |
Li et al. | Enhanced online model identification and state of charge estimation for lithium-ion battery under noise corrupted measurements by bias compensation recursive least squares | |
US6534954B1 (en) | Method and apparatus for a battery state of charge estimator | |
US10353007B2 (en) | Rechargeable battery parameter estimation apparatus and rechargeable battery parameter estimation method for calculating first and second coefficients which are partial derivatives of an estimated value of the battery state-of-charge | |
RU2361333C2 (ru) | Оценка состояния и параметров гальванического элемента | |
CA2333619C (en) | Means for estimating charged state of battery and method for estimating degraded state of battery | |
US6388450B2 (en) | Method for determining the state of charge of storage batteries | |
US20090048793A1 (en) | State and parameter estimator having integral and differential components for electrical energy accumulators | |
US20150369875A1 (en) | Battery state estimating device | |
CN105866504B (zh) | 一种基于卡尔曼滤波的光纤电流互感器温度补偿方法 | |
US11143705B2 (en) | Method and device for detecting battery cell states and battery cell parameters | |
KR100878123B1 (ko) | 배터리 상태 및 파라미터 추정 시스템 및 방법 | |
CN109828215A (zh) | 一种提升电池单体soc估算精度的方法和系统 | |
JP5259190B2 (ja) | ジョイントバッテリー状態とパラメーター推定システム及び方法 | |
JP2020106317A (ja) | リチウム一次電池の内部抵抗同定方法、放電深度推定装置、及び放電深度推定方法 | |
JP2006220617A (ja) | 車両用蓄電装置の内部状態検出方式 | |
KR100916510B1 (ko) | 조인트 배터리 상태와 파라미터 추정 시스템 및 방법 | |
Atukalp et al. | Analytical Kalman Filter Tuning Method for Battery State of Charge Estimation: Validation for Grid Battery Energy Storage | |
KR20240125612A (ko) | 이차 전지의 갈바닉 셀의 임피던스를 모델 기반으로 추정하는 방법 및 이의 용도와 배터리 셀 모니터링 장치 및 차량 | |
CN114460479A (zh) | 一种电池荷电状态检测方法、装置及介质 | |
Kumari et al. | SoC Estimation of Li-ion Battery using Extended Kalman Filter | |
CN117932909A (zh) | 一种应用于储能系统的soc算法及soc系统 | |
KR20230130238A (ko) | 배터리 상태 추정 방법 | |
JP2021136227A (ja) | バッテリ管理装置 |