[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

RU2349911C2 - Способ и устройство для определения дефектов в лопатке турбины - Google Patents

Способ и устройство для определения дефектов в лопатке турбины Download PDF

Info

Publication number
RU2349911C2
RU2349911C2 RU2006147259/28A RU2006147259A RU2349911C2 RU 2349911 C2 RU2349911 C2 RU 2349911C2 RU 2006147259/28 A RU2006147259/28 A RU 2006147259/28A RU 2006147259 A RU2006147259 A RU 2006147259A RU 2349911 C2 RU2349911 C2 RU 2349911C2
Authority
RU
Russia
Prior art keywords
test head
fixing device
turbine blade
turbine
echo
Prior art date
Application number
RU2006147259/28A
Other languages
English (en)
Other versions
RU2006147259A (ru
Inventor
ЛАНКЕН ШУЛЬЦ Михель КЛОССЕН-ФОН (DE)
ЛАНКЕН ШУЛЬЦ Михель КЛОССЕН-ФОН
Михель ОФЕЙС (DE)
Михель ОФЕЙС
Original Assignee
Сименс Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Акциенгезелльшафт filed Critical Сименс Акциенгезелльшафт
Publication of RU2006147259A publication Critical patent/RU2006147259A/ru
Application granted granted Critical
Publication of RU2349911C2 publication Critical patent/RU2349911C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/28Details, e.g. general constructional or apparatus details providing acoustic coupling, e.g. water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/223Supports, positioning or alignment in fixed situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2693Rotor or turbine parts

Landscapes

  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Использование: для определения дефектов в лопатке турбины. Сущность: размещают согласованное с внешней геометрической формой исследуемого участка поверхности лопатки турбины фиксирующее устройство для испытательной головки на поверхности лопатки турбины, причем фиксирующее устройство имеет выемку для позиционирования испытательной головки, соединяют испытательную головку с устройством для измерения и оценки, измеряют методом ультразвукового контроля с групповым излучателем (фазированной решеткой), причем излучается ультразвуковой импульсный сигнал и принимается эхо-сигнал, обусловленный отражениями от дефектов или границ элементов форм, сравнивают эхо-сигнал с эталонным эхо-сигналом, определяют дефекты путем оценки различий между эхо-сигналом и эталонным эхо-сигналом. Технический результат: обеспечение воспроизводимого ультразвукового контроля лопаток турбины в смонтированном состоянии. 3 н. и 9 з.п. ф-лы, 7 ил.

Description

Изобретение относится к способу и устройству измерения и оценки для определения дефектов в лопатке турбины, а также к фиксирующему устройству для фиксации испытательной головки на поверхности лопатки турбины.
Общеизвестно, что дефекты, например, в форме трещин негативно влияют на прочность конструктивного элемента и тем самым на его надежность. Такие трещины на поверхности конструктивных элементов могут при определенных условиях увеличиваться. Это происходит, в частности, в таких конструктивных элементах, как валы, лопатки турбин, особенно основания лопаток турбин, которые наряду со статической нагрузкой также испытывают динамическую нагрузку.
Способы обнаружения дефектов в конструктивных элементах представлены в публикациях DE 4421277 A1, DE 3731947 A1, WO 85/02464 A1 и EP 0337700 A2. В названных документах описан основанный на внедрении краски способ контроля поверхности на наличие трещин. В этом способе на проверяемую на наличие трещин поверхность наносится контрастное вещество, которое проникает в имеющиеся трещины. Контрастное вещество удаляется, поверхность, при необходимости, очищается и покрывается тонким слоем проявителя. Проникнувшее в трещины контрастное вещество смешивается на геометрических участках трещин с проявителем, так что, ввиду тонкого слоя проявителя, происходит проявление контура трещины. При этом, например, проявитель имеет белый цвет, а контрастное вещество - красный цвет, или контрастное вещество является флюоресцирующим.
Однако с помощью названного способа в общем случае невозможно осуществить проверку оснований лопаток турбины в смонтированном состоянии.
Другой способ обнаружения дефектов в конструктивных элементах представлен в книге “Werkstoffprüfung mit Ultraschall”, J.+H.Krautkrämer, Springer-Verlag, Berlin, 1986. В частности, на стр.110-111 описано, каким образом область конструктивного элемента может исследоваться с помощью ультразвука на основе применения отражения от внутренней поверхности конструктивного элемента, с использованием передающей испытательной головки и приемной испытательной головки. При наличии противолежащих внешних сторон конструктивного элемента испытательные головки размещаются напротив друг друга на этих внешних сторонах. Передающая испытательная головка передает ультразвуковой сигнал к испытуемой поверхности. От нее он отражается к принимающей испытательной головке. Другая возможность проверки обеспечивается тандемным способом, при котором обе испытательные головки размещаются друг за другом на одной и той же внешней стороне. При этом обратная сторона конструктивного элемента используется для второго отражения. В общем случае, ни один из вышеописанных способов не применим, если имеется только одна доступная внешняя сторона конструктивного элемента и к тому же не имеется подходящей обратной стороны для дополнительного отражения согласно тандемному способу.
Другой способ для обнаружения дефектов в конструктивных элементах представляет собой так называемый способ проверки на основе вихревых токов. При этом с помощью катушки возбуждения генерируется магнитное переменное поле, которое в испытуемом материале вызывает вихревые токи. Вихревые токи, в свою очередь, вызывают образование переменного магнитного поля, которое измеряется детекторной катушкой. Дефекты материала оказывают характерное влияние на измеряемое магнитное поле и поэтому могут обнаруживаться.
Трещины, образующиеся вследствие коррозионного растрескивания, или дефекты, в случае динамической нагрузки вращающихся деталей, например диска на роторе турбины, могут привести к серьезным повреждениям. Поэтому необходимо такие конструктивные элементы с заданными интервалами проверять на дефекты или трещины, вызванные коррозионным растрескиванием. Диски колес или основания лопаток турбины или лопатки турбины, которые размещены на роторе с фиксацией посредством осевых или радиальных штифтов от проворачивания, по экономическим причинам могут не проверяться путем разборки ротора или демонтажа лопаток турбины. Поэтому рекомендовано в зоне горячей посадки и граничных с ней зон материала, в частности в области внутренней поверхности ступицы и осевых фиксаторов от проворачивания для дисков колеса, проводить ультразвуковой контроль. Однако геометрия диска колеса для ультразвукового контроля с использованием ультразвуковых головок в недоступной внутренней области ступицы и вблизи фиксаторов от проворачивания чрезвычайно сложна. Воспроизводимое выполнение ультразвукового контроля наталкивается, кроме того, на другие проблемы. В качестве поверхности для размещения головок для ультразвукового контроля в распоряжение предоставляются только боковые стенки диска колеса. Часто доступность к поверхности для размещения на диске колеса ограничена соседними дисками колеса. Другая проблема состоит в том, что пути распространения звука до отражателей, обусловленных геометрией, и до, возможно, имеющихся трещин, исходящих от отверстия ступицы, могут оказаться идентичными.
Поэтому задачей изобретения является создание способа, а также устройства для измерения и оценки и фиксирующего устройства, чтобы можно было обнаружить дефекты лопаток турбины в смонтированном состоянии на роторе.
Эта задача, направленная на способ, соответствующий изобретению, решается способом определения дефектов в лопатках турбины, который характеризуется следующими этапами:
- фиксация испытательной головки на поверхности лопатки турбины,
- соединение испытательной головки с устройством для измерения и оценки,
- измерение методом ультразвукового контроля с групповым излучателем (фазированной решеткой), причем излучается ультразвуковой импульсный сигнал, и принимается эхо-сигнал, обусловленный отражениями от дефектов или границ элементов форм,
- сравнение эхо-сигнала с эталонным эхо-сигналом,
- определение дефектов путем оценки различий между эхо-сигналом и эталонным эхо-сигналом.
Задача, направленная на устройство для измерения и оценки, соответствующее изобретению, решается устройством для измерения и оценки для определения дефектов в лопатках турбины, содержащим:
- фиксирующее устройство для фиксации испытательной головки на поверхности лопатки турбины,
- источник ультразвукового импульсного сигнала, связанный с испытательной головкой,
- приемник ультразвукового эхо-сигнала,
- устройство представления для представления эхо-сигнала.
Задача, направленная на фиксирующее устройство, решается фиксирующим устройством для фиксации испытательной головки на поверхности лопатки турбины, причем фиксирующее устройство выполнено из легко деформируемого материала.
Преимущество изобретения, в числе прочего, заключается в том, что могут определяться дефекты лопаток турбины в смонтированном состоянии. Отсутствует необходимость в требующих больших затрат времени и, следовательно, дорогостоящих операциях демонтажа и повторного монтажа лопаток турбины.
За счет предложенного использования испытательных головок, которые выполнены в виде групповых излучателей (фазированных решеток), можно изменять направление излучаемого ультразвукового сигнала или направление, с которого может приниматься ультразвуковой сигнал.
С помощью этого способа, например, можно проводить надежный и оперативный анализ в зоне ожидаемых дефектов, связанной с основаниями лопаток турбины. Трещины возникают вследствие высокой механической, термической или коррозионной нагрузки. При этом возникают трещины, обусловленные усталостью материала или вибрацией. Посредством предложенного способа возможно раннее распознавание и последующий контроль возникающих дефектов.
Предложенный способ обеспечивает репродуцируемые результаты проверки и пригоден для практического использования.
В предпочтительном варианте осуществления изобретения в качестве метода ультразвукового контроля с групповым излучателем (фазированной решеткой) применяется метод импульсной эхо-локации.
С помощью метода импульсной эхо-локации возможно очень точное определение дефектов.
Изобретение исходит из того, что испытательная головка фиксируется на поверхности лопатки турбины. Испытательная головка при этом фиксируется таким образом, что после отсоединения испытательной головки и последующего повторного прикрепления испытательной головки она занимает точно то же самое место, что и до демонтажа. Позиционирование испытательной головки должно проводиться очень точно. Только таким образом возможны воспроизводимые измерения. Во время измерения испытательной головкой излучается ультразвуковой импульсный сигнал, и принимается эхо-сигнал, вызванный отражениями от дефектов и границ элементов форм.
Путем сравнения эхо-сигнала с эталонным эхо-сигналом дефекты могут быть определены за счет того, что оцениваются различия между эхо-сигналом и эталонным эхо-сигналом.
Предпочтительным образом, эталонные эхо-сигналы определяются путем моделирования или из измерений на, по существу, бездефектной лопатке турбины.
За счет использования испытательной головки, выполненной в виде фазированной решетки, можно излучать ультразвуковой импульсный сигнал в различных направлениях. За счет этого создается возможность выполнять так называемую угловую развертку в большем угловом диапазоне. Тем самым во время процесса измерения контролируется увеличенная зона лопатки турбины.
Предпочтительным образом, угловой диапазон находится в пределах от -45° до +45° относительно основного направления излучения, причем основное направление излучения проходит, по существу, перпендикулярно к поверхности лопатки турбины в месте испытательной головки.
Изобретение исходит из того, что для фиксации испытательной головки на поверхности лопатки турбины используется фиксирующее устройство. С помощью этого фиксирующего устройства можно позиционировать испытательную головку и с высокой точностью установить ее на поверхности лопатки турбины. Даже после демонтажа фиксирующего устройства и последующего повторного монтажа на поверхности лопатки турбины испытательная головка занимает точно то же самое положение, что и перед демонтажем фиксирующего устройства.
При этом фиксирующее устройство изготавливается из легко деформируемого материала. Это обеспечивает преимущество, заключающееся в том, что фиксирующее устройство может изготавливаться быстрым и экономичным способом.
Предпочтительным образом, фиксирующее устройство выполняется из пластика, дерева или резины.
В предпочтительном варианте осуществления изобретения фиксирующее устройство изготавливается таким образом, что обращенная к поверхности лопатки турбины внешняя геометрическая форма фиксирующего устройства согласована с внешней геометрической формой поверхности лопатки турбины, и фиксирующее устройство имеет выемку для позиционирования испытательной головки.
За счет согласования фиксирующего устройства с внешней формой поверхности лопатки турбины, что, по существу, приводит к форме типа негативного отпечатка, становится возможным испытательную головку всегда помещать в одно и то же место проверяемого участка основания лопатки турбины.
Предпочтительным образом, фиксирующее устройство выполнено при этом легко монтируемым.
Для лучшего монтажа и для лучшей передачи ультразвукового сигнала между фиксирующим устройством и поверхностью лопатки турбины наносится легко деформируемая паста для передачи ультразвука.
Примеры выполнения изобретения представлены на чертежах, на которых компоненты, имеющие сходные функции, обозначены одинаковыми ссылочными позициями.
На чертежах показано:
Фиг.1 - вид в сечении паровой турбины,
Фиг.2 - пространственный вид лопатки турбины,
Фиг.3 - пространственный вид части лопатки турбины с фиксирующим устройством,
Фиг.4 - другой пространственный вид части лопатки турбины с фиксирующим устройством,
Фиг.5 - пространственный вид части ротора и устройства для измерения и оценки,
Фиг.6 - представление снимка измерения с изображением дефекта,
Фиг.7 - представление снимка измерения для, по существу, бездефектной эталонной лопатки турбины.
На фиг.1 представлен вид в сечении паровой турбины 1. Паровая турбина 1 имеет внешний корпус 2 и внутренний корпус 3. Вал 4 установлен с возможностью вращения вокруг оси 5 вращения. На поверхности 6 вала в окружном направлении размещены лопатки 7 турбины. Во внутреннем корпусе 3 размещены направляющие лопатки 8 турбины. В процессе работы пар поступает во впускной канал 9 и расширяется при прохождении через проточный канал 10. Вал 4 при этом приводится во вращение. Не показанный на чертеже ротор генератора может, тем самым, приводиться во вращение.
В случаях осмотра или в случаях отказов, как правило, внешний корпус 2 паровой турбины 1 открывается, чтобы обеспечить доступ к отдельным лопаткам 7 турбины на валу 4.
На фиг.2 показан пространственный вид лопатки 7 турбины. Лопатка 7 турбины имеет основание 11 лопатки турбины. Показанное на фиг.2 основание 11 лопатки турбины образует так называемое многоярусное основание. В процессе работы паровой турбины 1, из-за высокого числа оборотов вала 4, возникают высокие центробежные усилия. Такие высокие центробежные усилия могут привести к дефектам в форме трещин в основаниях 11 лопаток турбины и даже в верхней части 12 лопаток турбины.
Незначительные дефекты в форме трещин в большинстве случаев незаметны при наблюдении невооруженным глазом. Трещины могут встречаться как на поверхности 13 лопаток турбины, так и во внутренней области лопаток 7 турбины.
На фиг.3 показан пространственный вид части лопатки 7 турбины и фиксирующего устройства 14. Фиксирующее устройство 14 выполнено из легко деформируемого материала. Фиксирующее устройство может быть выполнено из пластика, дерева или резины. Фиксирующее устройство также может быть выполнено из заливочного компаунда, который после отверждения становится жестким.
Фиксирующее устройство 14 выполнено таким образом, что геометрическая форма фиксирующего устройства 14, обращенная к поверхности 13 лопатки турбины, согласована с внешней геометрической формой участка поверхности 13 лопатки турбины. Как видно из фиг.3, фиксирующее устройство 14 опирается на кромку 15 лопатки турбины. За счет этого смещение фиксирующего устройства в направлении 16 смещения невозможно. Если фиксирующее устройство снимается с лопатки 7 турбины, то оно может вновь быть размещено точно на том же самом месте.
Фиксирующее устройство 14 имеет выемку 17, в которой размещается испытательная головка 18 таким образом, что обеспечивается прохождение ультразвуковых лучей. Испытательная головка монтируется в выемке 17 таким образом, что, с одной стороны, испытательная головка механически жестко зажата в фиксирующем устройстве или удерживается иным образом, а с другой стороны, прилегает максимально близко к поверхности 13 лопатки турбины, чтобы передача ультразвуковых волн происходила в максимальной степени без потерь. Испытательная головка 18 имеет выход 19 испытательной головки, который проводником 20 соединен с устройством 21 для измерения и оценки. Фиксирующее устройство 14 монтируется на поверхности 13 лопатки турбины посредством легко деформируемой пасты, обеспечивающей передачу ультразвукового излучения.
В качестве пасты, обеспечивающей передачу ультразвукового излучения, может использоваться прозрачный для ультразвукового излучения гель или клей.
Тем самым, фиксирующее устройство 14 может выполняться легко монтируемым.
Ввиду внешней формы фиксирующего устройства 14 отпадает необходимость в сложном монтаже. С помощью пасты, обеспечивающей передачу ультразвукового излучения, можно заполнять очень мелкие воздушные зазоры, благодаря чему ультразвуковой сигнал может хорошо распространяться в материале. На основе эхо-сигналов посадка фиксирующего устройства может непосредственно контролироваться.
На фиг.4 можно видеть другой пространственный вид лопатки 7 турбины с фиксирующим устройством 14. Внешняя форма показанного на фиг.4 фиксирующего устройства 14' не идентична внешней форме показанного на фиг.3 фиксирующего устройства 14. Как представлено на фиг.3, внешняя форма фиксирующего устройства 14 согласована с определенным участком поверхности 13 лопатки турбины. Фиксирующие устройства 14, 14' представляют, так сказать, негативную форму участка поверхности 13 лопатки турбины.
На фиг.5 показан пространственный вид части вала 4 с лопатками 7 турбины. Размещенное на участке лопатки 7 турбины фиксирующее устройство 14 связано через проводник 20 с устройством 21 для измерения и оценки. При этом испытательная головка 18 выполнена как фазированная решетка или испытательная головка с групповым излучателем.
Во время проверки лопатки 7 турбины испытательная головка 18 излучает ультразвуковую волну в некотором направлении. Ультразвуковая волна отражается от дефектов или границ элементов формы и принимается испытательной головкой 18 в виде эхо-сигнала. Эхо-сигнал затем направляется в устройство 21 для измерения и оценки. Тем самым, применяется метод импульсной эхо-локации. В альтернативной форме выполнения может применяться так называемый метод Pitch Catch (двухпозиционной локации), при котором одна испытательная головка передает ультразвуковой сигнал, а другая испытательная головка принимает этот сигнал.
За счет использования испытательной головки, выполненной в виде фазированной решетки, можно излучать ультразвуковой импульсный сигнал в различных направлениях. За счет этого создается возможность реализовать так называемую угловую развертку в большем угловом диапазоне. Предпочтительным образом, угловой диапазон находится в пределах от -45° до +45° относительно основного направления излучения, причем основное направление излучения проходит, по существу, перпендикулярно к поверхности лопатки турбины в месте испытательной головки. В особенно предпочтительных формах выполнения угловой диапазон находится в пределах от -85° до +85° относительно основного направления излучения.
На фиг.6 представлен результат такого измерения. В левой части фиг.6 представлена так называемая угловая развертка. При этом ультразвуковая волна излучается испытательной головкой в угловом диапазоне от 0° до 80°. Темные пятна на угловой развертке указывают на отражения от границ элементов форм или дефектов. В правой части фиг.6 показано так называемое А-изображение. А-изображение показывает определенное или измеренное значение интенсивности эхо-сигнала в зависимости от времени распространения ультразвукового сигнала или полученного из него расстояния от испытательной головки до границы элемента формы или дефекта.
На фиг.7 в левой части представлена угловая развертка, полученная с использованием той же самой испытательной головки 18 и того же самого фиксирующего устройства 14. Вообще этот снимок был получен на лопатке 7 турбины, которая не имела никаких дефектов. Темные пятна на угловой развертке относятся только к отражениям от границ элементов форм. Представленная в левой части фиг.7 угловая развертка также может быть определена как эталонный эхо-сигнал. Предпочтительным образом, эталонный эхо-сигнал следовало бы получать не исключительно для одной бездефектной лопатки турбины, а для нескольких. Кроме того, также целесообразно эталонный эхо-сигнал определять путем моделирования.
Из фиг.7 можно видеть, что на участке, обозначенном крестиком, не было принято никакого эхо-сигнала. В противоположность этому, на фиг.6 на участке, обозначенном крестиком, однозначно принимается эхо-сигнал. Остальные темные пятна на угловой развертке, показанной на фиг.6, по существу, идентичны темным пятнам, имеющимся на угловой развертке, показанной на фиг.7. Темное пятно, обозначенное крестиком, однозначно соответствует дефекту. Тем самым, становится возможным, путем оценки различий между эхо-сигналом и эталонным эхо-сигналом, сделать вывод о наличии дефектов лопатки 7 турбины. В альтернативных формах выполнения оценка может выполняться программным обеспечением распознавания изображений.
В качестве подготовительной меры для позиционирования испытательной головки на поверхности 13 лопатки турбины служат вычисления в рамках математического моделирования. С помощью математического моделирования, при заданном позиционировании испытательной головки 18, обеспечивается моделирование того, каким образом должен выглядеть ожидаемый эхо-сигнал.
Позиционирование и угол зондирования определяются путем упомянутого моделирования.
Для каждого исследуемого диапазона лопатки 7 турбины изготавливается, соответственно, индивидуальное фиксирующее устройство 14. Фиксирующее устройство 14 может также определяться как формирующий башмак. В зависимости от типа лопатки используются испытательные головки с фазированными решетками, варьируемые по горизонтали и/или по вертикали. В зависимости от применения в одной угловой развертке могут определяться и анализироваться участки до 35 мм на наличие ожидаемых дефектных зон.
Теоретические исследования для определения параметров зондирования, позиционирования испытательной головки и угла зондирования проводятся с помощью трехмерного моделирования. Определение параметров осуществляется итеративным путем, то есть позиционирование зондирования испытательной головкой, угол установки и зондирования варьируются до тех пор, пока не будут достигнуты теоретически самые благоприятные условия падения волны. Для визуализации на компьютере проводятся соответствующие процедуры моделирования. Посредством данного способа можно установить местоположение дефекта и однозначным образом идентифицировать дефект. Однозначная идентификация дефекта обеспечивается на основе большого отношения сигнал/шум. Наряду с углом зондирования, также важными параметрами испытательной головки являются величина качания и частота испытания. Угол зондирования и величина качания определяются в соответствии с геометрией основания лопатки турбины или величиной площади связывания. Частота испытания выбирается таким образом, чтобы обеспечивалось удовлетворительное разрешение дефектов при большой величине отношения сигнал/шум. Величины качания и частота испытания должны быть согласованы друг с другом таким образом, чтобы за счет расходимости пучка ультразвукового излучения еще можно было установить наличие дефектов при неблагоприятном положении зондирования. В качестве переменных параметров должны выбираться следующие праметры: место зондирования, угол зондирования. Испытательные головки 18 выполняются встраиваемыми в фиксирующее устройство 14 с возможностью замены.
Площадь связывания у основания 11 лопатки турбины и в требуемой для проверки зоне лопатки 7 турбины должна быть свободна от налета (коррозии, загрязнений и т.п.) и водоотталкивающих веществ (жира, масла и т.д.). Измеренные значения амплитуды, времени распространения и угла излучения ультразвукового сигнала сохраняются в устройстве 21 для измерения и оценки. Данные могут повторно извлекаться для последующей оценки.

Claims (12)

1. Способ определения дефектов в лопатке (7) турбины, отличающийся следующими этапами:
размещение согласованного с внешней геометрической формой исследуемого участка поверхности (13) лопатки турбины фиксирующего устройства (14) для испытательной головки (18) на поверхности (13) лопатки турбины, причем фиксирующее устройство (14) имеет выемку для позиционирования испытательной головки (18),
соединение испытательной головки с устройством (21) для измерения и оценки,
измерение методом ультразвукового контроля с групповым излучателем (фазированной решеткой), причем излучается ультразвуковой импульсный сигнал и принимается эхо-сигнал, обусловленный отражениями от дефектов или границ элементов форм,
сравнение эхо-сигнала с эталонным эхо-сигналом,
определение дефектов путем оценки различий между эхо-сигналом и эталонным эхо-сигналом.
2. Способ по п.1, отличающийся тем, что в качестве метода ультразвукового контроля с групповым излучателем (фазированной решеткой) применяется метод импульсной эхо-локации.
3. Способ по п.1, отличающийся тем, что эталонный эхо-сигнал определяется путем математического моделирования.
4. Способ по п.1, отличающийся тем, что эталонный эхо-сигнал определяется путем измерений на, по существу, бездефектной лопатке (7) турбины.
5. Способ по п.2, отличающийся тем, что испытательная головка (18) выполняется в виде фазированной решетки, при этом ультразвуковой импульсный сигнал может излучаться в различных направлениях.
6. Способ по п.5, отличающийся тем, что ультразвуковой импульсный сигнал излучается в угловом диапазоне от -45 до +45° относительно основного направления излучения, причем основное направление излучения проходит, по существу, перпендикулярно к поверхности (13) лопатки турбины в месте испытательной головки (18).
7. Устройство (21) для измерения и оценки для определения дефектов в лопатках (7) турбины, отличающееся тем, что содержит
согласованное с внешней геометрической формой исследуемого участка поверхности (13) лопатки турбины фиксирующее устройство (14) для фиксации испытательной головки (18) на поверхности (13) лопаток турбины, причем фиксирующее устройство (14) имеет выемку для позиционирования испытательной головки (18),
источник ультразвукового импульсного сигнала, связанный с испытательной головкой (18),
приемник ультразвукового эхо-сигнала,
устройство представления для представления эхо-сигнала.
8. Устройство (21) для измерения и оценки по п.7, отличающееся тем, что испытательная головка (18) выполнена как испытательная головка на основе фазированной решетки.
9. Фиксирующее устройство (14) для фиксации испытательной головки (18) на поверхности (13) лопатки турбины, отличающееся тем, что
фиксирующее устройство (14) согласовано с внешней геометрической формой исследуемого участка поверхности (13) лопатки турбины,
причем обращенная к поверхности (13) лопаток турбины внешняя геометрическая форма фиксирующего устройства (14) согласована с внешней геометрической формой поверхности (13) лопаток турбины, и фиксирующее устройство (14) имеет выемку для позиционирования испытательной головки (18).
10. Фиксирующее устройство (14) по п.9, отличающееся тем, что фиксирующее устройство (14) изготовлено из легко деформируемого материала, такого как пластик, дерево или резина.
11. Фиксирующее устройство (14) по п.9, отличающееся тем, что фиксирующее устройство (14) выполнено легко монтируемым.
12. Фиксирующее устройство (14) по п.9, отличающееся тем, что фиксирующее устройство (14) выполнено с возможностью монтажа на поверхности (13) лопатки турбины посредством легко деформируемой пасты, обеспечивающей передачу ультразвука.
RU2006147259/28A 2004-06-01 2005-05-12 Способ и устройство для определения дефектов в лопатке турбины RU2349911C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP04012922.3 2004-06-01
EP04012922A EP1610122A1 (de) 2004-06-01 2004-06-01 Verfahren und Vorrichtung zur Ermittlung von Defekten in einer Turbinenschaufel mittels eines Ultraschall-Gruppenstrahlers

Publications (2)

Publication Number Publication Date
RU2006147259A RU2006147259A (ru) 2008-07-20
RU2349911C2 true RU2349911C2 (ru) 2009-03-20

Family

ID=34925205

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006147259/28A RU2349911C2 (ru) 2004-06-01 2005-05-12 Способ и устройство для определения дефектов в лопатке турбины

Country Status (13)

Country Link
US (1) US7987721B2 (ru)
EP (2) EP1610122A1 (ru)
JP (1) JP2008501109A (ru)
KR (1) KR20070027638A (ru)
CN (1) CN101027552B (ru)
AT (1) ATE529739T1 (ru)
BR (1) BRPI0511725A (ru)
CA (1) CA2569195C (ru)
ES (1) ES2374294T3 (ru)
MX (1) MXPA06013793A (ru)
PL (1) PL1751535T3 (ru)
RU (1) RU2349911C2 (ru)
WO (1) WO2005119242A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2490626C1 (ru) * 2011-12-22 2013-08-20 Открытое акционерное общество "Научно-производственное объединение "Сатурн" (ОАО "НПО "Сатурн") Устройство для испытания лопаток турбомашины
RU2589456C1 (ru) * 2015-05-21 2016-07-10 Открытое акционерное общество "Акционерная компания по транспорту нефти "Транснефть" (ОАО "АК "Транснефть") Способ неразрушающего контроля литых корпусных деталей
RU2732469C1 (ru) * 2017-10-06 2020-09-17 ООО "Газпром трансгаз Москва" Способ обнаружения трещины лопатки газотурбинного двигателя

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006009480B4 (de) * 2006-02-27 2008-05-29 Eads Deutschland Gmbh Aerodynamisches Profil für Luftfahrzeuge und Windkraftanlagen sowie Verfahren zur Messung der Eisdicke auf einem aerodynamischen Profil
US7654143B2 (en) * 2007-04-03 2010-02-02 General Electric Company Method and apparatus for in-situ inspection of rotary machine components
JP4931872B2 (ja) * 2008-07-09 2012-05-16 株式会社日立製作所 タービン動翼
DE102009046804A1 (de) 2009-11-18 2011-05-19 Man Diesel & Turbo Se Verfahren zur Rissprüfung an Schaufeln eines Rotors einer Strömungsmaschine
DE102010033302A1 (de) * 2010-08-04 2012-02-09 Alstom Technology Ltd. Verfahren zum Überprüfen der Mechanischen Integrität von Stabilisierungselementen an den Laufschaufeln einer Turbine sowie Abtastvorrichtung zur Durchführung des Verfahrens
EP2418483A1 (en) 2010-08-10 2012-02-15 RWE Npower plc. Ultrasonic inspection apparatus and method for inspection of components and a wedge and method for producing a wedge
CN102147286A (zh) * 2010-11-20 2011-08-10 无锡透平叶片有限公司 双柱塞测频装置
US8365584B1 (en) * 2011-07-13 2013-02-05 General Electric Company Apparatus for inspecting turbomachine components in-situ
JP5343117B2 (ja) * 2011-11-10 2013-11-13 株式会社日立製作所 タービン動翼
US8965100B2 (en) * 2012-01-20 2015-02-24 The Boeing Company Ultrasonic modeling for inspection of composite irregularities
US8783119B2 (en) * 2012-09-26 2014-07-22 United Technologies Corporation Vane arm testing rig
EP2925972B1 (en) * 2012-11-28 2019-01-02 United Technologies Corporation Turbofan with optical diagnostic capabilities
CN103063742B (zh) * 2013-01-06 2016-02-10 沈阳黎明航空发动机(集团)有限责任公司 一种带涂层转子叶片的表面波原位探伤方法
CN103018334B (zh) * 2013-01-09 2015-06-10 国网河南省电力公司电力科学研究院 汽轮机叶片菌型根部超声成像检测方法及相控阵换能装置
US9646599B2 (en) * 2013-10-24 2017-05-09 Spirit Aerosystems, Inc. Remoldable contour sensor holder
JP6300225B2 (ja) * 2013-12-03 2018-03-28 東芝エネルギーシステムズ株式会社 タービン翼の検査装置及びその検査方法
CN103698399B (zh) * 2013-12-19 2016-06-29 国家电网公司 一种汽轮机叶片枞树型根部超声成像检测方法
CN103969338A (zh) * 2014-05-22 2014-08-06 东北轻合金有限责任公司 一种超声波水浸自动探伤铝合金预拉伸板的检测方法
US9726628B2 (en) * 2014-09-09 2017-08-08 Siemens Energy, Inc. Hardware and method for implementation of in situ acoustic thermograph inspections
FR3029288B1 (fr) * 2014-11-27 2016-12-23 Electricite De France Procede de detection et de caracterisation par ultrasons de defauts dans un materiau heterogene
US10031096B2 (en) * 2015-01-14 2018-07-24 Siemens Energy, Inc. Portable acoustic thermography of in situ L-O blades
JP6488178B2 (ja) * 2015-04-24 2019-03-20 三菱日立パワーシステムズ株式会社 超音波検査装置
CN109580785A (zh) * 2017-09-29 2019-04-05 上海金艺检测技术有限公司 用于汽轮机叶片根部缺陷的扫查工装及方法
DE102018210500A1 (de) * 2018-06-27 2020-01-02 MTU Aero Engines AG Verfahren und Vorrichtung zum zerstörungsfreien akustischen Untersuchen zumindest eines Bereichs eines Bauteils einer Strömungsmaschine
US11608756B2 (en) * 2018-07-17 2023-03-21 General Electric Company Service apparatus for use with rotary machines
US11378511B2 (en) * 2019-11-21 2022-07-05 Applied Materials, Inc. Methods and apparatus for detecting corrosion of conductive objects
CN110940730B (zh) * 2019-12-23 2022-02-15 润电能源科学技术有限公司 一种汽轮机叶片相控阵超声检测方法和装置
CN111678986B (zh) * 2020-07-17 2024-06-21 杭州浙达精益机电技术股份有限公司 用于涡轮机叶片边缘缺陷的超声导波检测装置和方法
CN112485334B (zh) * 2020-11-20 2023-05-16 西安热工研究院有限公司 一种动叶片叶根相控阵超声检测部件形状实时判别方法
US20230041428A1 (en) * 2021-08-05 2023-02-09 Siemens Energy, Inc. System and method of phased array ultrasonic inspection of turbine blades

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3530595A1 (de) * 1985-08-27 1987-03-05 Kraftwerk Union Ag Verfahren und einrichtung zur ultraschallpruefung einer turbinenschaufel auf anrisse im schaufelfuss
SU1439486A1 (ru) * 1987-04-27 1988-11-23 Киевский Политехнический Институт Им.50-Летия Великой Октябрьской Социалистической Революции Система акустического изображени
RU2072519C1 (ru) * 1989-02-08 1997-01-27 Асеа Браун Бовери АГ Устройство вихретокового неразрушающего контроля поверхности материала конструктивных элементов
RU2153602C1 (ru) * 1999-02-15 2000-07-27 Военный инженерно-технический университет Способ технического диагностирования упругих трубопроводов
JP2004077357A (ja) * 2002-08-21 2004-03-11 Hitachi Ltd ガスタービン空気圧縮機翼面亀裂検査法および装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5555248A (en) * 1978-10-20 1980-04-23 Toshiba Corp Ultrasonic-wave probe
US4335600A (en) * 1980-11-13 1982-06-22 General Electric Company Detecting internal abnormalities in turbines
DE3342855A1 (de) * 1983-11-26 1985-06-05 Brent Chemicals International PLC, Iver, Buckinghamshire Verfahren zur zerstoerungsfreien pruefung von oberflaechendefekten
DE8418008U1 (de) * 1984-06-14 1985-10-10 Jurid Werke Gmbh, 2056 Glinde Prüfkopf zur zerstörungsfreien Prüfung von Werkstoffen, Werkstoffverbindungen und dgl. mittels Ultraschall
JPS61155855A (ja) * 1984-12-28 1986-07-15 Toshiba Corp 超音波探傷装置
JPS623659A (ja) * 1985-06-28 1987-01-09 Toho Gas Co Ltd 超音波式ガス管水道管判別器
JPS62261955A (ja) * 1986-05-09 1987-11-14 Toshiba Corp 超音波探傷装置
DE3731947A1 (de) * 1987-09-23 1989-04-13 Kurt Dr Sauerwein Verfahren und vorrichtung zum feststellen und auswerten von oberflaechenrissen bei werkstuecken
EP0337700A3 (en) * 1988-04-15 1991-02-06 Westinghouse Electric Corporation Pen rubber mold maker apparatus and method for inspecting the inside surface of a tubular member
JPH01299456A (ja) * 1988-05-27 1989-12-04 Toshiba Corp 超音波探傷装置
JPH03114453A (ja) * 1989-09-29 1991-05-15 Terumo Corp 超音波カプラおよびその製造方法
US5365787A (en) * 1991-10-02 1994-11-22 Monitoring Technology Corp. Noninvasive method and apparatus for determining resonance information for rotating machinery components and for anticipating component failure from changes therein
FR2683323B1 (fr) * 1991-11-05 1994-02-11 Paris Vii Universite Procede et dispositif de controle interne de pieces par ultrasons.
US5423220A (en) * 1993-01-29 1995-06-13 Parallel Design Ultrasonic transducer array and manufacturing method thereof
US5426980A (en) * 1993-07-19 1995-06-27 General Electric Company Booted ultrasonic transducer
DE4421277A1 (de) 1994-06-21 1995-04-06 Mr Chemie Gmbh Penetriermittel und Verfahren zur zerstörungsfreien Werkstoff-Rißprüfung
PL325924A1 (en) * 1995-09-29 1998-08-17 Siemens Ag Method of and apparatus for reflectoscopically examining disks of unknown shape mounted by contration on their associated shafts
US5913243A (en) 1997-09-30 1999-06-15 General Electric Co. Ultrasonic transducer for nondestructive testing of generator field coils of dynamoelectric machines
KR100334165B1 (ko) * 1998-04-17 2002-11-27 삼성종합화학주식회사 에틸렌 중합 및 에틸렌/α-올레핀 공중합용 담지촉매의 제조방법
US6523418B2 (en) * 1998-07-30 2003-02-25 Don E. Bray Apparatus and method for ultrasonic stress measurement using the critically refracted longitudinal (Lcr) ultrasonic technique
US6019011A (en) * 1998-12-09 2000-02-01 Eaton Corporation System for control of auxiliary section of compound transmissions
US6237419B1 (en) * 1999-08-16 2001-05-29 General Electric Company Aspherical curved element transducer to inspect a part with curved entry surface
JP2002090348A (ja) * 2000-09-21 2002-03-27 Tokyo Electric Power Co Inc:The 超音波探触子および超音波検査方法
US6813950B2 (en) * 2002-07-25 2004-11-09 R/D Tech Inc. Phased array ultrasonic NDT system for tubes and pipes
GB0220986D0 (en) * 2002-09-10 2002-10-23 Univ Bristol Ultrasound probe
WO2004065954A1 (ja) * 2003-01-17 2004-08-05 The Tokyo Electric Power Company, Incorporated 超音波探触子
US7010982B2 (en) * 2004-04-30 2006-03-14 General Electric Company Method of ultrasonically inspecting airfoils

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3530595A1 (de) * 1985-08-27 1987-03-05 Kraftwerk Union Ag Verfahren und einrichtung zur ultraschallpruefung einer turbinenschaufel auf anrisse im schaufelfuss
SU1439486A1 (ru) * 1987-04-27 1988-11-23 Киевский Политехнический Институт Им.50-Летия Великой Октябрьской Социалистической Революции Система акустического изображени
RU2072519C1 (ru) * 1989-02-08 1997-01-27 Асеа Браун Бовери АГ Устройство вихретокового неразрушающего контроля поверхности материала конструктивных элементов
RU2153602C1 (ru) * 1999-02-15 2000-07-27 Военный инженерно-технический университет Способ технического диагностирования упругих трубопроводов
JP2004077357A (ja) * 2002-08-21 2004-03-11 Hitachi Ltd ガスタービン空気圧縮機翼面亀裂検査法および装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2490626C1 (ru) * 2011-12-22 2013-08-20 Открытое акционерное общество "Научно-производственное объединение "Сатурн" (ОАО "НПО "Сатурн") Устройство для испытания лопаток турбомашины
RU2589456C1 (ru) * 2015-05-21 2016-07-10 Открытое акционерное общество "Акционерная компания по транспорту нефти "Транснефть" (ОАО "АК "Транснефть") Способ неразрушающего контроля литых корпусных деталей
RU2732469C1 (ru) * 2017-10-06 2020-09-17 ООО "Газпром трансгаз Москва" Способ обнаружения трещины лопатки газотурбинного двигателя

Also Published As

Publication number Publication date
CN101027552B (zh) 2010-12-01
EP1751535B1 (de) 2011-10-19
WO2005119242A1 (de) 2005-12-15
US7987721B2 (en) 2011-08-02
JP2008501109A (ja) 2008-01-17
ATE529739T1 (de) 2011-11-15
MXPA06013793A (es) 2007-03-01
EP1751535A1 (de) 2007-02-14
US20080250860A1 (en) 2008-10-16
PL1751535T3 (pl) 2012-03-30
KR20070027638A (ko) 2007-03-09
RU2006147259A (ru) 2008-07-20
ES2374294T3 (es) 2012-02-15
BRPI0511725A (pt) 2008-01-08
CA2569195A1 (en) 2005-12-15
EP1610122A1 (de) 2005-12-28
CN101027552A (zh) 2007-08-29
CA2569195C (en) 2013-12-24

Similar Documents

Publication Publication Date Title
RU2349911C2 (ru) Способ и устройство для определения дефектов в лопатке турбины
US8839673B2 (en) System and method for industrial ultrasonic inspection using phased array probe and distance-gain-size flaw sizing
JP6441321B2 (ja) 超音波伝送による改良型検査方法
US6082198A (en) Method of ultrasonically inspecting turbine blade attachments
US7428842B2 (en) Phased array ultrasonic testing system and methods of examination and modeling employing the same
CN101711358B (zh) 利用超声波对检测物体进行无损的材料检测的方法和装置
US7010982B2 (en) Method of ultrasonically inspecting airfoils
CN104535648B (zh) 一种汽轮机叶片超声导波检测方法
US20040020296A1 (en) Phased array ultrasonic NDT system for fastener inspections
JP4694576B2 (ja) タービン部品の欠陥検出方法および装置
JP3714960B2 (ja) 軸に焼き嵌めされた円板の超音波探傷検査方法及び装置
US9329155B2 (en) Method and device for determining an orientation of a defect present within a mechanical component
US11733211B2 (en) Method and device for testing a component non-destructively
KR101787904B1 (ko) 초음파 탐상용 웨지 및 이를 포함하는 초음파 탐상 장치
KR102307101B1 (ko) 미지의 표면 기하구조를 갖는 부품의 초음파 검사
CN114113321A (zh) 一种燃气轮机压气机叶轮叶根槽相控阵超声检测系统及方法
JP4049985B2 (ja) 超音波探傷装置および方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170513

NF4A Reinstatement of patent

Effective date: 20171219

PC41 Official registration of the transfer of exclusive right

Effective date: 20211201