[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

RU2237649C2 - Способ дистиллятивного получения моноэтиленгликоля высокой чистоты - Google Patents

Способ дистиллятивного получения моноэтиленгликоля высокой чистоты Download PDF

Info

Publication number
RU2237649C2
RU2237649C2 RU2001111007A RU2001111007A RU2237649C2 RU 2237649 C2 RU2237649 C2 RU 2237649C2 RU 2001111007 A RU2001111007 A RU 2001111007A RU 2001111007 A RU2001111007 A RU 2001111007A RU 2237649 C2 RU2237649 C2 RU 2237649C2
Authority
RU
Russia
Prior art keywords
column
stripping
pressure
water
distillation unit
Prior art date
Application number
RU2001111007A
Other languages
English (en)
Other versions
RU2001111007A (ru
Inventor
Тилль АДРИАН (DE)
Тилль АДРИАН
Бернд БЕССЛИНГ (DE)
Бернд БЕССЛИНГ
Ханс ХАССЕ (DE)
Ханс ХАССЕ
Франс ВАНСАНТ (DE)
Франс ВАНСАНТ
Герхард ТАЙС (DE)
Герхард Тайс
Original Assignee
Басф Акциенгезельшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Басф Акциенгезельшафт filed Critical Басф Акциенгезельшафт
Publication of RU2001111007A publication Critical patent/RU2001111007A/ru
Application granted granted Critical
Publication of RU2237649C2 publication Critical patent/RU2237649C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

Изобретение относится к способу дистиллятивного получения моноэтиленгликоля высокой чистоты из продукта гидролиза окиси этилена при помощи отпарки воды под давлением, вакуумной отпарки воды и последующей дистиллятивной очистки, отличающийся тем, что по крайней мере первая колонна отпарки под давлением в каскаде оснащена блоком отгона, имеющим по крайней мере одну ступень разделения, и часть потока верха колонны (колонн) отпарки воды под давлением, оснащенной(ных) блоком отгона, выводится из процесса, при этом температура в зоне ниже точки ввода питания в первую колонну каскада составляет более 80°С, и давление в блоке отгона составляет по крайней мере 1 бар. Способ позволяет получить моноэтиленгликоль высокой чистоты без использования присадочных веществ или специальных материалов. 4 з.п.ф-лы, 3 ил., 2 табл.

Description

Изобретение касается способа дистиллятивного получения моноэтиленгликоля высокой чистоты.
В крупном техническом масштабе моноэтиленгликоль получают при помощи гидролиза окиси этилена, отпарки воды и дистилляционной очистки. Для повышения селективности гидролиза окиси этилена (в дальнейшем обозначаемой сокращением ОЭ) обеспечивают работу реактора гидролиза с большим избытком воды (с массовым соотношением воды к окиси этилена в пределах от 4:1 до 15:1). В результате этого может быть снижена доля выхода гликолей, в частности диэтиленгликоля, триэтиленгликоля и т.д. Обычно реактор гидролиза работает при температурах в диапазоне от 120° до 250°С и давлениях в диапазоне от 30 до 40 бар. Сначала продукт гидролиза подвергается отпарке воды до ее остаточного содержания в пределах от 100 до 200 миллионных долей, а затем разделению на различные виды гликолей в чистом виде.
Отпарка воды производится, как правило, в колоннах, расположенных в каскадной схеме по степени снижения давления. По соображениям экономии расхода тепла только испаритель куба первой колонны, работающей под давлением, обогревается, как правило, паром со стороны, все же остальные колонны обогреваются вторичным паром соответственно предшествующей колонны. Подача сырья производится соответственно в куб колонн под первую тарелку, поскольку для разделения воды и гликолей не требуется наличия отгонного блока. В зависимости от содержания воды в продукте реактора гидролиза и уровней давления и температуры пара со стороны используемого для обогрева испарителя первой колонны каскад отпарки воды может иметь от 2 до 7 колонн, работающих под давлением. К блоку отпарки воды под давлением примыкает блок отпарки под вакуумом, этот процесс производится, как правило, в одной колонне с помощью отгонного блока. Получаемая при этом вода возвращается в процесс перед реактором гидролиза. Обезвоженный раствор, содержащий гликоли, разделяется в нескольких колоннах на чистые вещества. Продукты в виде моно (МЭГ), ди (ДЭГ) и триэтиленгликоля (ТЭГ) отбираются соответственно в виде продуктов верха колонн, все последующие гликоли получают в виде смеси, называемой полиэтиленгликолем (ПЭГ) как продукт куба последней колонны.
Обычные установки для получения гликоля имеют наряду с продуктовыми потоками всего лишь один единственный другой выход, так называемую сдувку уксусного альдегида на испарителе куба второй колонны отпарки воды под давлением, где происходит отбор несконденсированной части вторичного пара, используемого для обогрева первой колонны. Таким образом, побочные компоненты, которые попадают на установку получения гликоля с потоком воды/окиси этилена или же образуются на этой установке в результате побочных реакций, могут быть выведены с нее только через сдувку уксусного альдегида или через продуктовые потоки.
В последнем указанном варианте страдает качество продукции, поэтому он является нежелательным.
До настоящего времени оптимизация на установках производства гликолей проводилась только по их основным задачам, в частности по снижению энергозатрат и капиталовложений в блоках отпарки воды и дистилляционной очистки. В последнее время предъявляются все более строгие требования к качеству моноэтиленгликоля, в частности к содержанию побочных компонентов. Имеется два качества продуктового моноэтиленгликоля: технический (антифризный), отвечающий невысоким требованиям, предназначенный для использования в качестве хладагента, и волоконный, отвечающий высоким требованиям, предназначенный для использования при производстве искусственного волокна. В спецификациях на волоконный моноэтиленгликоль в зависимости от заказчика требуется содержание свободных альдегидов в пересчете на уксусный альдегид по спектрофотометрической методике определения в виде синего комплекса МВТХ (триметил-2-бензотиа-золинонгидразонхлоргидрат) от 7 до 20 миллионных частей и минимальное ультрафиолетовое светопропускание при длине волны 220 нм от 76% до 80%, а при длине волны 275 нм - от 90% до 95%. Измерению содержания свободных альдегидов способствует, в частности, наличие формальдегида (ФА), уксусного альдегида (УА) и гликольальдегида. Активные в ультрафиолетовых лучах субстанции, снижающие светопропускание в ультрафиолетовых лучах (так называемые вредители), в значительной степени неизвестны и уже в концентрациях менее 1 миллионной части делают продукт не соответствующим спецификации. Примерами такого рода являются акролеин и кретоновый альдегид.
Заявка на патент Японии А-60089439 описывает способ очистки моноэтиленгликоля при помощи вакуумной перегонки с подачей инертного газа. При помощи потока азота выводят из процесса преимущественную часть побочных компонентов и получают гликоль высокой степени чистоты, пригодный для производства волокна. Но недостатком этого способа является то, что для эффективного удаления побочных компонентов требуется большое количество азота. Это приводит к нежелательным потерям продукта в отработанном газе и к недопустимо высокой динамической нагрузке по жидкости на колонну дистилляции.
Заявка на патент ФРГ А-1942094 описывает способ очистки моноэтиленгликоля в колонне дистилляции при помощи водяного пара, при котором благодаря водяному пару летучесть загрязнений повышается по сравнению с летучестью моноэтиленгликоля.
Заявка на патент Канады С-133050 описывает способ очистки моноэтиленгликоля при помощи подачи бисульфитных ионов с последующей обработкой на анионообменных смолах.
Далее известны способы очистки моноэтиленгликоля, при которых образование побочных компонентов должно быть снижено за счет изменения конструкции аппаратуры и за счет используемых при этом материалов. Заявка на патент ФРГ А-19602116 описывает способ очистки моноэтиленгликоля на аппаратуре, поверхность которой обработана восстанавливающими соединениями фосфора. Но упомянутые выше способы обладают тем недостатком, что для получения моноэтиленгликоля высокой степени чистоты необходимы присадочные вещества или дополнительные мероприятия по оформлению аппаратуры.
Задачей настоящего изобретения является предоставление простого способа дистиллятивной перегонки для получения моноэтиленгликоля высокой чистоты без использования присадочных веществ или специальных материалов. Вывод из процесса побочных компонентов, отрицательно влияющих на качественные показатели, должен преимущественно производиться в водных потоках отходов с максимальным содержанием гликоля 1 мас.%, при этом концентрация побочных компонентов в этих потоках должна быть повышена в 10 - 100 раз, в противном случае будет образовываться слишком большое количество стоков.
Поставленная задача решается способом дистиллятивного получения моноэтиленгликоля высокой чистоты из продукта гидролиза окиси этилена при помощи отпарки воды под давлением, вакуумной отпарки воды и последующей дистиллятивной очистки за счет того, что по крайней мере первая колонна отпарки под давлением в каскаде оснащена блоком отгона, имеющим по крайней мере одну ступень разделения, и часть потока верха колонны (колонн) отпарки воды под давлением, оснащенной(ных) блоком отгона, выводится из процесса, при этом температура в зоне ниже точки ввода питания в первую колонну каскада составляет более 80°С, и давление в блоке отгона составляет по крайней мере 1 бар. Предпочтительно отгонный блок имеет от 2 до 10 ступеней разделения, особенно предпочтительно от 3 до 6 ступеней разделения.
Было обнаружено, что снижающие качество продукции побочные компоненты могут быть особенно эффективно отобраны в определенных точках процесса. Установление этих точек не является простым, поскольку поведение этих побочных компонентов в силу сложных условий фазового равновесия до настоящего времени не могло быть оценено достаточно хорошо. Поэтому на обычных крупнотоннажных производствах был предусмотрен только очень грубо приближенный отбор для сверхлегкокипящих побочных компонентов, так называемая сдувка уксусного альдегида на испарителе куба второй колонны отпарки воды под давлением. Этот отбор не оптимизирован, поскольку поведение побочных компонентов в значительной степени было неизвестным или же не учитывалось при оформлении процесса.
Эти компоненты делят по кривой их разгонки на три класса следующим образом:
1) низкокипящие компоненты, имеющие летучесть ниже летучести воды (в частности, уксусный альдегид, формальдегид в чистой воде, акролеин);
2) компоненты с температурой кипения в среднем диапазоне, имеющие значение летучести в диапазоне от летучести по воде до значения летучести по моноэтиленгликолю (в частности, формальдегид в водных растворах, содержащих гликоль, формальдегид в обезвоженном моноэтиленгликоле, гликольальдегид, кротоновый альдегид);
3) высококипящие компоненты, имеющие летучесть ниже летучести моноэтиленгликоля (в частности, высокомолекулярные альдегиды, вредные субстанции, снижающие светопропускание в ультрафиолетовых лучах).
В соответствии с настоящей заявкой отбор побочных компонентов, в частности легкокипящих, лучше производится на стадии отпарки воды под давлением. Для этого колонна отпарки воды под давлением или по крайней мере первая колонна каскада отпарки воды под давлением оснащается отгонным блоком, имеющим по крайней мере одну ступень разделения, преимущественно от 2 до 10 ступеней разделения, особенно предпочтительно от 3 до 6 ступеней разделения, при этом часть потока верха колонны (или колонн) отпарки воды под давлением выводится из процесса при помощи отгонного блока.
Обычные крупнотоннажные производства имеют так называемую сдувку уксусного альдегида на испарителе куба второй колонны отпарки воды под давлением: здесь производится конденсация значительной части вторичного пара первой колонны отпарки воды, несконденсировавшаяся часть, составляющая примерно от 1 до 5 мас.% от общего количества вторичного пара, выводится из процесса. Оставшаяся часть вторичного пара конденсируется в случае необходимости в последующем теплообменнике, при этом тепло конденсации может быть использовано в подходящей точке общей схемы процесса. Но при этой традиционной схеме решения через сдувку уксусного альдегида могут быть выведены из процесса только побочные компоненты, которые как составная часть вторичного пара отводятся в первой колонне отпарки воды под давлением. А это - особенно в случае с формальдегидом - является недостаточным, поскольку летучесть формальдегида в водных растворах снижается с увеличением содержания гликоля, в частности в результате химических реакций формальдегида с водой и гликолями. И поэтому для возможности выделения формальдегида из содержащего гликоль продукта куба колонны отпарки воды под давлением необходимо наличие в этой колонне или по крайней мере в первой колонне каскада отпарки воды под давлением блока отгона, имеющего по крайней мере одну ступень разделения, преимущественно от 2 до 10 ступеней разделения, особенно предпочтительно от 3 до 6 ступеней разделения. Только после выделения формальдегида в чисто водный вторичный пар первой колонны его можно выводить из процесса вместе с уксусным альдегидом в месте, предусмотренном для вывода уксусного альдегида. При этом отделение формальдегида в блоке отгона идет тем лучше, чем выше температура и соответственно давление в колонне отпарки воды под давлением или в первой колонне каскада отпарки под давлением и чем больше воды содержится в продукте на выходе из реактора. Можно сэкономить две дополнительные тарелки в блоке отгона, если конструктивно выполнить испаритель куба колонны с "отделенным кубом" в соответствии с заявкой на патент ФРГ С-3338488.
Количество выведенных побочных компонентов, в частности уксусного альдегида и формалина, зависит от того, сколько выводится из контура процесса стоков. Но при этом количество вторичного пара, несконденсировавшегося в испарителе куба второй колонны отпарки воды, не может быть произвольно высоким по условиям энергетической схемы и регулирования. Был разработан особо предпочтительный вариант способа, по которому возможно дальнейшее выделение побочных компонентов из конденсированного вторичного пара при помощи стриппинга паром. Насыщенный побочными компонентами пар стриппинга может быть в последующем энергетически использован в подходящей точке процесса. Поэтому для стриппинга водяным паром не требуется дополнительной энергии, нужен только дополнительный аппарат. Вывод побочных компонентов особенно эффективен в том случае, если отпарной погон подается в качестве флегмы в первую колонну отпарки воды, поскольку в результате этого возврата содержание альдегида в верхней части первой колонны отпарки воды под давлением и в стриппинг-колонне возрастает и таким образом увеличивается также и доля, выводимая из процесса.
Положительным является случай, когда температура в зоне ниже точки ввода сырья составляет в диапазоне от 100°С до 250°С, предпочтительно в диапазоне от 115°С до 230°С. Давление в блоке отгона составляет предпочтительно в диапазоне от 2 до 30 бар. Положительной является ситуация, когда поток верха колонны (или колонн) отпарки воды под давлением, оснащенной(ных) блоком отгона, оставшийся после вывода части потока, отводится в парциальный конденсатор и/или в стриппинг-колонну, в частности в аппарат для проведения отгонки водяным паром, и обогащенный побочными компонентами газообразный поток (или потоки) выводится из процесса.
Положительным является случай, когда парциальный конденсатор и/или стриппинг-колонна работают при температурах выше 90°С, предпочтительно в диапазоне от 120°С до 250°С.
Настоящее изобретение более подробно поясняется на основании чертежа, а также примеров исполнения.
На фигуре 1 изображена схема крупнотоннажного производства получения гликоля по уровню техники.
На фигуре 2 - схема особенно предпочтительного способа получения гликоля в соответствии с настоящим изобретением.
На фигуре 3 - пример исполнения заявленного способа с одной колонной отпарки воды под давлением, оснащенной блоком отгона и узлом вывода побочных компонентов в виде потока верха колонны, а также с последующим концентрированием в парциальном конденсаторе и стриппинг-колонне.
На фигуре 1 представлена схема крупнотоннажного производства получения гликоля согласно уровню техники. Смесь воды и окиси этилена с массовым соотношением "вода:окись этилена" в диапазоне от 4:1 до 15:1 подается в реактор гидролиза 1 и затем на отпарку воды под давлением, которая в настоящем случае представлена в виде каскада из трех колонн 2, 3 и 4, расположенных в порядке снижения давления. Точка ввода запитки колонн 2, 3 и 4 находится соответственно в кубе. Поток вторичного пара первой колонны 2 отпарки воды под давлением конденсируется в испарителе куба второй колонны 3 отпарки воды под давлением, а несконденсировавшаяся часть, так называемая сдувка уксусного альдегида (В/УА, то есть "вода/уксусный альдегид"), выводится из процесса. Конденсат вторичного пара колонн 2, 3 и 4 отпарки воды под давлением возвращается в процесс перед реактором гидролиза 1. Продукт куба последней колонны 4 отпарки воды под давлением подается в среднюю часть колонны вакуумной отпарки воды. Содержащий в основном воду вторичный пар из колонны 5 вакуумной отпарки воды также конденсируется и возвращается в процесс перед реактором гидролиза 1. Продукт же куба колонны 5 вакуумной отпарки воды подается в колонну 6, предназначенную для дистиллятивной очистки моноэтиленгликоля, из которой отбираются моноэтиленгликоль в виде продукта верха колонны, а также побочные компоненты, в частности формальдегид, гликольальдегид и вредные субстанции. Продукт куба колонны 6 дистиллятивной очистки моноэтиленгликоля подается в колонну 7, предназначенную для дистиллятивной очистки диэтиленгликоля, из которой в виде продукта верха колонны отбирается чистый диэтиленгликоль и продукт куба которой подается в следующую колонну 8, предназначенную для дистиллятивной очистки триэтиленгликоля. Продукт верха колонны дистиллятивной очистки триэтиленгликоля представляет собой чистый триэтиленгликоль, а продукт куба колонны 8 содержит смесь гликолей, обозначаемую как полиэтиленгликоль.
В отличие от этого на фигуре 2 представлено крупнотоннажное производство для получения моноэтиленгликоля высокой чистоты по настоящей заявке. В противовес технологической схеме на фигуре 1 точка ввода питания первой колонны 2 отпарки воды под давлением расположена выше и при этом эта отпарная колонна 2 имеет блок отгонки, оснащенный тарелками в количестве от 2 до 6.
Другое отличие по сравнению со способом, представленным на фигуре 1, состоит в том, что вторичный пар первой отпарной колонны 2 после парциальной конденсации в испарителе куба отпарной колонны 3 освобождается при помощи водяного пара в стриппинг-колонне от побочных компонентов. Содержащий побочные компоненты газообразный поток (В/УА/ФА, то есть "вода/уксусный альдегид/формальдегид") выводится из процесса.
На фигуре 3 представлен пример соответствующего настоящей заявке оформления отпарной колонны 2 под давлением, оснащенной блоком отгона, а также стриппинг-колонной 9 для концентрирования побочных компонентов перед их выводом из процесса. Точка подвода дистиллируемого потока 21, содержащего гликоль, находится на пятой тарелке отпарной колонны 2, оснащенной двадцатью колпачковыми тарелками, продукт верхней части которой 23 подается после частичной конденсации в виде потока 26 в стриппинг-колонну 9, оснащенную десятью колпачковыми тарелками, и освобождается в противотоке водяного пара 29 от побочных компонентов. Газообразные потоки 25 и 27, содержащие побочные компоненты, выводятся из процесса. Парциальный поток продукта куба стриппинг-колонны 9 образует как поток 24 флегму колонны отпарки воды 2. Состав потоков с 21 по 29 для способа по настоящей заявке приведен в таблице 1а. Для сравнения в таблице 1б приведен состав потоков с 21 по 29 для способа, используемого по уровню техники, то есть с колонной отпарки воды под давлением, не имеющей блока отгонки и стриппинг-колонны.
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
По заявленному способу получают продуктовый поток 22 из первой колонны отпарки воды под давлением с меньшим количеством загрязнений (0,0 г/ч уксусного альдегида и 2,0 г/ч формалина) по сравнению с производством по уровню техники (0,3 г/ч уксусного альдегида и 4,6 г/ч формальдегида).
По заявленному способу из процесса выводится 1,1 г/ч уксусного альдегида и 0,7 г/ч формальдегида в поток 25, а также 1,6 г/ч уксусного альдегида и 1,4 г/ч формальдегида в поток 27 по сравнению всего лишь с 1,2 г/ч уксусного альдегида и 0,6 г/ч формальдегида в поток 25, как это обеспечивается способом по уровню техники.

Claims (5)

1. Способ дистиллятивного получения моноэтиленгликоля высокой чистоты из продукта гидролиза окиси этилена при помощи отпарки воды под давлением, вакуумной отпарки воды и последующей дистиллятивной очистки, отличающийся тем, что по крайней мере первая колонна отпарки под давлением в каскаде оснащена блоком отгона, имеющим по крайней мере одну ступень разделения, и часть потока верха колонны (колонн) отпарки воды под давлением, оснащенной(ных) блоком отгона, выводится из процесса, при этом температура в зоне ниже точки ввода питания в первую колонну каскада составляет более 80°С и давление в блоке отгона составляет по крайней мере 1 бар.
2. Способ по п.1, отличающийся тем, что блок отгона имеет от 2 до 10 ступеней разделения, предпочтительно от 3 до 6 ступеней разделения.
3. Способ по п.1 или 2, отличающийся тем, что температура в зоне ниже точки ввода питания в первую колонну каскада составляет от 100 до 250°С, предпочтительно от 115 до 230°С, и давление в блоке отгона составляет от 2 до 30 бар.
4. Способ по любому из пп.1-3, отличающийся тем, что поток верха колонны (колонн) отпарки воды под давлением, оснащенной(ных) блоком отгона, подается в парциальный конденсатор, из которого выводится из процесса неcконденсировавшаяся часть потока, а оставшийся поток отводится в стриппинг-колонну, в частности в аппарат для проведения отгонки водяным паром, из которого обогащенный (обогащенные) побочными компонентами газообразный поток (потоки) выводится (выводятся ) из процесса.
5. Способ по п.4, отличающийся тем, что парциальный конденсатор и/или стриппинг-колонна работают при температурах выше 90°С, предпочтительно в диапазоне от 120 до 250°С.
RU2001111007A 1998-09-23 1999-09-21 Способ дистиллятивного получения моноэтиленгликоля высокой чистоты RU2237649C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19843652A DE19843652A1 (de) 1998-09-23 1998-09-23 Verfahren zur Herstellung von hochreinem Monoethylenglykol
DE19843652.1 1998-09-23

Publications (2)

Publication Number Publication Date
RU2001111007A RU2001111007A (ru) 2003-02-10
RU2237649C2 true RU2237649C2 (ru) 2004-10-10

Family

ID=7881987

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001111007A RU2237649C2 (ru) 1998-09-23 1999-09-21 Способ дистиллятивного получения моноэтиленгликоля высокой чистоты

Country Status (20)

Country Link
US (1) US6514388B1 (ru)
EP (1) EP1115681B1 (ru)
JP (1) JP4427189B2 (ru)
KR (1) KR100670881B1 (ru)
CN (1) CN1183077C (ru)
AR (1) AR020654A1 (ru)
AT (1) ATE234799T1 (ru)
AU (1) AU6466399A (ru)
BR (1) BR9913891B1 (ru)
CA (1) CA2345140C (ru)
DE (2) DE19843652A1 (ru)
ES (1) ES2194518T3 (ru)
ID (1) ID29489A (ru)
MY (1) MY122385A (ru)
PL (1) PL196671B1 (ru)
RU (1) RU2237649C2 (ru)
SA (1) SA99200782B1 (ru)
TW (1) TW498061B (ru)
UA (1) UA60381C2 (ru)
WO (1) WO2000017140A1 (ru)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2833951A1 (fr) * 2001-12-21 2003-06-27 Bp Chemicals Snc Procede de fabrication et de recuperation d'oxyde d'ethylene
CN100413833C (zh) * 2004-04-16 2008-08-27 中国石油化工股份有限公司上海石油化工研究院 环氧乙烷水合制乙二醇的方法
CN1321099C (zh) * 2005-09-28 2007-06-13 蓝仁水 从稀水溶液中浓缩低级多元醇的工艺方法
WO2007074066A1 (en) * 2005-12-29 2007-07-05 Basf Se A process for separating propylene glycol from aqueous compositions
TW200838838A (en) * 2006-12-22 2008-10-01 Dow Technology Investments Llc Process for reducing side-reactions during alkylene glycol and poly-alkylene glycol manufacturing
KR101602986B1 (ko) * 2008-10-09 2016-03-11 셀 인터나쵸나아레 레사아치 마아츠샤피 비이부이 모노에틸렌 글리콜 회수 방법
CN102209700A (zh) * 2008-11-10 2011-10-05 陶氏技术投资有限公司 用于生产低色素二醇的方法
PL217778B1 (pl) 2011-06-20 2014-08-29 Piotr Medoń Sposób osuszania glikolu i układ do osuszania glikolu
CN102951999B (zh) * 2012-11-15 2014-09-10 四川亚联高科技股份有限公司 一种乙二醇生产过程中的脱水方法
CN103553877B (zh) * 2013-10-22 2015-06-17 新疆天业(集团)有限公司 电石炉气制乙二醇中乙二醇精馏的方法
KR101527394B1 (ko) * 2014-01-06 2015-06-09 한국과학기술원 원료 내 회수대상물질을 회수하는 공정에 구비되는 저용해도 염 제거장치
KR102395386B1 (ko) * 2015-04-13 2022-05-09 삼성디스플레이 주식회사 고순도 글리콜계 화합물의 제조방법
ES2729155T3 (es) 2015-12-16 2019-10-30 Repsol Sa Método para la preparación de glicoles
CN107867973A (zh) * 2016-12-31 2018-04-03 福建双环能源科技股份有限公司 一种乙二醇脱水装置及使用方法
GB201710508D0 (en) 2017-06-30 2017-08-16 Johnson Matthey Davy Technologies Ltd Process
US11325877B2 (en) 2017-11-23 2022-05-10 Shell Usa, Inc. Processes for the production of ethylene oxide and ethylene glycol
EP4567020A1 (de) 2023-12-06 2025-06-11 Basf Se Reinigung von kühlmittelzusammensetzungen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2510548A (en) * 1947-06-20 1950-06-06 Lummus Co Multiple-effect distillation
US3875019A (en) * 1972-12-22 1975-04-01 Sir Soc Italiana Resine Spa Recovery of ethylene glycol by plural stage distillation using vapor compression as an energy source
US4349417A (en) * 1980-01-18 1982-09-14 Hoechst Aktiengesellschaft Process for the manufacture of extremely pure monoethylene glycol
US4622104A (en) * 1984-05-15 1986-11-11 Atochem Process for the recovery of ethylene glycol in concentrated form
RU2111949C1 (ru) * 1996-08-19 1998-05-27 Акционерное общество "Нижнекамскнефтехим" Способ извлечения моно- и диэтиленгликолей из кубового остатка процесса выделения моноэтиленгликоля

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1942094A1 (de) 1968-08-22 1970-02-26 Union Carbide Corp Verfahren zur Reinigung von verunreinigten Glykolen
US3847754A (en) * 1970-08-03 1974-11-12 Ppg Industries Inc Recovery of glycols from mixed glycol composition by distillation with acid treatment
DE3338488A1 (de) 1982-10-29 1984-05-03 Basf Ag, 6700 Ludwigshafen Verfahren zur gewinnung von temperaturempfindlichen produkten durch thermisch schonende destillation mittels eines mit einer destillationskolonne verbundenen duennschichtverdampfers und eine anordnung zur durchfuehrung des verfahrens
JPS6089439A (ja) 1983-10-24 1985-05-20 Mitsui Toatsu Chem Inc エチレングリコ−ルの製造方法
DE19602116A1 (de) 1996-01-22 1997-07-24 Basf Ag Verfahren zur Gewinnung von Glykolen mit niedrigem Aldehydgehalt

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2510548A (en) * 1947-06-20 1950-06-06 Lummus Co Multiple-effect distillation
US3875019A (en) * 1972-12-22 1975-04-01 Sir Soc Italiana Resine Spa Recovery of ethylene glycol by plural stage distillation using vapor compression as an energy source
US4349417A (en) * 1980-01-18 1982-09-14 Hoechst Aktiengesellschaft Process for the manufacture of extremely pure monoethylene glycol
US4622104A (en) * 1984-05-15 1986-11-11 Atochem Process for the recovery of ethylene glycol in concentrated form
RU2111949C1 (ru) * 1996-08-19 1998-05-27 Акционерное общество "Нижнекамскнефтехим" Способ извлечения моно- и диэтиленгликолей из кубового остатка процесса выделения моноэтиленгликоля

Also Published As

Publication number Publication date
AR020654A1 (es) 2002-05-22
UA60381C2 (ru) 2003-10-15
BR9913891B1 (pt) 2011-01-11
CN1319079A (zh) 2001-10-24
DE19843652A1 (de) 2000-03-30
CN1183077C (zh) 2005-01-05
PL196671B1 (pl) 2008-01-31
ATE234799T1 (de) 2003-04-15
KR20010075294A (ko) 2001-08-09
CA2345140A1 (en) 2000-03-30
DE59904662D1 (de) 2003-04-24
WO2000017140A1 (de) 2000-03-30
BR9913891A (pt) 2001-07-03
JP2002526462A (ja) 2002-08-20
US6514388B1 (en) 2003-02-04
SA99200782B1 (ar) 2006-07-31
KR100670881B1 (ko) 2007-01-18
EP1115681B1 (de) 2003-03-19
ES2194518T3 (es) 2003-11-16
AU6466399A (en) 2000-04-10
ID29489A (id) 2001-08-30
PL346752A1 (en) 2002-02-25
MY122385A (en) 2006-04-29
TW498061B (en) 2002-08-11
JP4427189B2 (ja) 2010-03-03
CA2345140C (en) 2009-06-16
EP1115681A1 (de) 2001-07-18

Similar Documents

Publication Publication Date Title
RU2237649C2 (ru) Способ дистиллятивного получения моноэтиленгликоля высокой чистоты
FI80218B (fi) Foerfarande och anlaeggning foer rening av en tvaokomponentvaetskeblandning medelst destillering.
US4039395A (en) Purification of acetic acid
JP3712903B2 (ja) グリセリンの製造方法
EP1888194B1 (en) New stripper configuration for the production of ethylene oxide
US20020010378A1 (en) Method for production of ethylene oxide
RU2235710C2 (ru) Способ получения высокочистого моноэтиленгликоля
CN111328325B (zh) 生产环氧乙烷和乙二醇的方法
US4966657A (en) Process for separating ethylene oxide from aldehyde impurities by distillation
EP2934712B1 (en) Production of ethanol products
US6395142B1 (en) Method and apparatus for purifying low grade acetonitrile and other constituents from hazardous waste
KR20000028897A (ko) 공정흐름을 정제하기 위한 방법
JP2001031600A (ja) 高純度モノエチレングリコールの製法
RU2785430C2 (ru) Способы производства этиленоксида и этиленгликоля
MXPA01002578A (en) Method for producing highly pure monoethylene glycol
MXPA01002968A (en) Method for producing highly pure monoethylene glycol
RU2186053C2 (ru) Способ получения моноэтиленгликоля волоконной чистоты
RU2105590C1 (ru) Способ выделения и очистки этанола
RU2317970C2 (ru) Очистка 1,3-пропандиола путем перегонки