RU2203965C2 - Способ производства холоднокатаной полосы - Google Patents
Способ производства холоднокатаной полосы Download PDFInfo
- Publication number
- RU2203965C2 RU2203965C2 RU2001118706/02A RU2001118706A RU2203965C2 RU 2203965 C2 RU2203965 C2 RU 2203965C2 RU 2001118706/02 A RU2001118706/02 A RU 2001118706/02A RU 2001118706 A RU2001118706 A RU 2001118706A RU 2203965 C2 RU2203965 C2 RU 2203965C2
- Authority
- RU
- Russia
- Prior art keywords
- strip
- temperature
- excess
- cold
- rolling
- Prior art date
Links
Images
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Изобретение относится к металлургии, конкретнее к технологии прокатки и термической обработки металлов, и может быть использовано при производстве высокопрочной холоднокатаной полосы из углеродистой стали в нагартованном состоянии. Технический результат, достигаемый изобретением, состоит в повышении стабильности механических свойств и увеличении выхода годной полосы. Используют углеродистую сталь следующего состава, мас.%: углерод 0,30-0,45; кремний 0,01-0,05; марганец 0,85-1,35; алюминий 0,01-0,04; хром не более 0,10; никель не более 0,05; медь не более 0,10; молибден не более 0,05; сера не более 0,02; фосфор не более 0,02; железо остальное. Сляб нагревают до температуры 1260-1320oС, прокатывают в полосу с температурой конца прокатки 820-880oС, охлаждают до температуры 550-590oС и сматывают в рулон. После травления полосу подвергают холодной прокатке с суммарным обжатием 60-73%. 1 з.п.ф-лы, 4 табл.
Description
Изобретение относится к металлургии, конкретнее к технологии прокатки металлов, и может быть использовано при производстве высокопрочной полосы из углеродистой стали в нагартованном состоянии.
Холоднокатаная полоса для изготовления упаковочной ленты из углеродистой стали, поставляемая в нагартованном состоянии, должна соответствовать следующему комплексу механических свойств (табл.1).
Известен способ производства высокопрочной полосы из углеродистой стали, включающий нагрев сляба, горячую прокатку полосы, охлаждение и смотку в рулон, травление, холодную прокатку. При этом углеродистая сталь имеет следующий состав, мас. %:
Углерод - 0,1-0,3
Кремний - 0,25-2,0
Марганец - 1,5-2,5
Фосфор - Менее 0,01
Сера - Менее 0,03
Алюминий - 0,02-0,10
Кальций - 0,0002-0,003
Железо и примеси - Остальное [1]
Данный способ не обеспечивает получения заданных свойств холоднокатаной полосы в нагартованном состоянии.
Углерод - 0,1-0,3
Кремний - 0,25-2,0
Марганец - 1,5-2,5
Фосфор - Менее 0,01
Сера - Менее 0,03
Алюминий - 0,02-0,10
Кальций - 0,0002-0,003
Железо и примеси - Остальное [1]
Данный способ не обеспечивает получения заданных свойств холоднокатаной полосы в нагартованном состоянии.
Известен также способ производства высокопрочной холоднокатаной полосы из углеродистой стали следующего состава, мас.%:
Углерод - До 0,2
Кремний - До 2,0
Марганец - 0,3-2,0
Фосфор - До 0,03
Сера - До 0,02
Алюминий - 0,015-0,2
Азот - 0,004-0,02
Ванадий - 0,004-0,02
Титан - 0,01-0,1
Ниобий - 0,01-0,1
Железо - Остальное
Согласно известному способу сляб нагревают и подвергают горячей прокатке при температуре выше точки Аr3. Затем полосу охлаждают и сматывают в рулон при температуре 700oС. После травления горячекатаную полосу подвергают холодной прокатке с суммарным обжатием 30% [2].
Углерод - До 0,2
Кремний - До 2,0
Марганец - 0,3-2,0
Фосфор - До 0,03
Сера - До 0,02
Алюминий - 0,015-0,2
Азот - 0,004-0,02
Ванадий - 0,004-0,02
Титан - 0,01-0,1
Ниобий - 0,01-0,1
Железо - Остальное
Согласно известному способу сляб нагревают и подвергают горячей прокатке при температуре выше точки Аr3. Затем полосу охлаждают и сматывают в рулон при температуре 700oС. После травления горячекатаную полосу подвергают холодной прокатке с суммарным обжатием 30% [2].
Недостаток известного способа состоит в том, что холоднокатаная полоса имеет нестабильные механические свойства, что приводит к повышенной ее отбраковке.
Наиболее близким по своей технической сущности и достигаемым результатам к предлагаемому изобретению является способ производства холоднокатаной полосы из углеродистой стали, включающий нагрев сляба до температуры аустенитизации, горячую прокатку полосы с температурой конца прокатки 850-900oС, охлаждение до температуры 550-750oС и смотку в рулон. Затем горячекатаную полосу подвергают травлению и холодной прокатке с суммарным обжатием 42-75%. Углеродистая сталь, из которой изготавливают ленту, имеет следующий химический состав, мас.%:
Углерод - Не более 0,10
Марганец - 0,25-0,45
Кремний - 0,03
Фосфор - Не более 0,025
Сера - Не более 0,03
Никель - Не более 0,10
Медь - Не более 0,15
Хром - Не более 0,10
Железо - Остальное [3]
При использовании известного способа производства не обеспечивается стабильное получение требуемых механических свойств холоднокатаной полосы в нагартованном состоянии, что снижает выход годной полосы.
Углерод - Не более 0,10
Марганец - 0,25-0,45
Кремний - 0,03
Фосфор - Не более 0,025
Сера - Не более 0,03
Никель - Не более 0,10
Медь - Не более 0,15
Хром - Не более 0,10
Железо - Остальное [3]
При использовании известного способа производства не обеспечивается стабильное получение требуемых механических свойств холоднокатаной полосы в нагартованном состоянии, что снижает выход годной полосы.
Техническая задача, решаемая изобретением, состоит в повышении стабильности механических свойств и увеличении выхода годной полосы.
Поставленная техническая задача решается тем, что в известном способе производства холоднокатаной полосы из углеродистой стали, включающем нагрев сляба, горячую прокатку, охлаждение и смотку полосы в рулон, травление и холодную прокатку, согласно предложению сляб нагревают до температуры 1260-1320oС, горячую прокатку завершают при температуре 820-880oС, охлаждение полосы ведут до температуры 550-590oС, а холодную прокатку осуществляют с суммарным обжатием 60-73%.
Необходимый комплекс механических свойств полосы в нагартованном состоянии и высокая стабильность свойств достигается, в частности, при использовании стали следующего химического состава, мас.%:
Углерод - 0,30-0,45
Кремний - 0,01-0,05
Марганец - 0,85-1,35
Алюминий - 0,01-0,04
Хром - Не более 0,10
Никель - Не более 0,05
Медь - Не более 0,10
Молибден - Не более 0,05
Сера - Не более 0,020
Фосфор - Не более 0,020
Железо - Остальное
Сущность изобретения состоит в следующем. Нагрев сляба из углеродистой стали до температуры 1260-1320oС обеспечивает аустенитизацию и полное растворение карбидов в аустените. При указанной температуре нагрева не происходит чрезмерный рост аустенитного зерна, окисление и ослабление границ зерен. Горячая прокатка полосы в температурном интервале от 1260-1320 до 820-880oС обеспечивает измельчение и динамическую рекристаллизацию аустенитных зерен. При последующем охлаждении полос до температуры смотки 550-590oС происходит контролируемый процесс превращения аустенита в ферритно-перлитную смесь, упрочненную частицами карбидов. Таким образом, в процессе горячей прокатки одновременно с получением заданных размеров полосы достигается формирование оптимального фазового состава и морфологии фаз для последующей холодной прокатки. Холодная прокатка с суммарным обжатием 60-73% позволяет осуществить наклеп ферритно-перлитной микроструктуры стали, измельчить зерно, создать мартенсит деформации и за счет этого обеспечить заданные стабильные показатели прочности, твердости и пластичности стальной полосы в нагартованном состоянии.
Углерод - 0,30-0,45
Кремний - 0,01-0,05
Марганец - 0,85-1,35
Алюминий - 0,01-0,04
Хром - Не более 0,10
Никель - Не более 0,05
Медь - Не более 0,10
Молибден - Не более 0,05
Сера - Не более 0,020
Фосфор - Не более 0,020
Железо - Остальное
Сущность изобретения состоит в следующем. Нагрев сляба из углеродистой стали до температуры 1260-1320oС обеспечивает аустенитизацию и полное растворение карбидов в аустените. При указанной температуре нагрева не происходит чрезмерный рост аустенитного зерна, окисление и ослабление границ зерен. Горячая прокатка полосы в температурном интервале от 1260-1320 до 820-880oС обеспечивает измельчение и динамическую рекристаллизацию аустенитных зерен. При последующем охлаждении полос до температуры смотки 550-590oС происходит контролируемый процесс превращения аустенита в ферритно-перлитную смесь, упрочненную частицами карбидов. Таким образом, в процессе горячей прокатки одновременно с получением заданных размеров полосы достигается формирование оптимального фазового состава и морфологии фаз для последующей холодной прокатки. Холодная прокатка с суммарным обжатием 60-73% позволяет осуществить наклеп ферритно-перлитной микроструктуры стали, измельчить зерно, создать мартенсит деформации и за счет этого обеспечить заданные стабильные показатели прочности, твердости и пластичности стальной полосы в нагартованном состоянии.
Использование стали предложенного химического состава позволяет получить заданные свойства при любом сочетании температурно-деформационных параметров и их колебании в пределах указанных диапазонов, неизбежно существующих в реальных производственных процессах. Это дополнительно способствует увеличению выхода годной полосы.
Экспериментально установлено, что увеличение температуры нагрева сляба выше 1320oС приводит к росту аустенитных зерен, что отрицательно сказывается на свойствах готовой полосы. Снижение температуры нагрева менее 1260oС снижает пластичность полосы ниже допустимой.
При температуре конца прокатки выше 880oС не достигается требуемая прочность и твердость нагартованной полосы. Снижение температуры конца прокатки ниже 820oС ведет к образованию мелкозернистой структуры, переупрочнению и охрупчиванию полосы.
Увеличение температуры смотки выше 590oС ведет к образованию разнобалльной структуры, возрастанию неравномерности механических свойств. Уменьшение температуры смотки ниже 550oС приводит к росту твердости и прочности выше допустимого уровня.
При холодной прокатке с обжатием 60-73% обеспечивается увеличение твердости и прочности до заданных значений и наиболее полное их выравнивание по длине ленты. Если обжатие в процессе прокатки составляет менее 60%, то прочностные свойства нагартованной полосы ниже допустимого уровня, выход годной полосы снижается вследствие влияния колебаний химического состава стали и режимов горячей прокатки на равномерность свойств. При суммарном обжатии более 73% относительное удлинение ниже допустимого, полоса приобретает хрупкость.
Углерод является основным упрочняющим. При содержании углерода менее 0,30% прочностные свойства нагартованной полосы ниже допустимого уровня. Увеличение содержания углерода более 0,45% приводит к потере пластичности и охрупчиванию полосы.
Кремний раскисляет и упрочняет сталь. Снижение содержания кремния менее 0,01% увеличивает окисленность стали, снижает прочностные свойства полосы. Увеличение концентрации кремния сверх 0,05% охрупчивает полосу, что недопустимо.
Марганец оказывает упрочняющее, раскисляющее и десульфурирующее действие. При содержании марганца менее 0,85% не достигается требуемая прочность нагартованной полосы. Увеличение концентрации марганца более 1,35% переупрочняет полосу, ведет к потере пластичности.
Алюминий введен для раскисления. При содержании алюминия менее 0,01% ухудшается пластичность полосы, она становится склонной к старению. Увеличение содержания алюминия более 0,04% способствует графитизации стали и падению прочности полосы.
Хром, никель, медь и молибден упрочняют сталь, но при концентрации более 0,10% хрома, 0,05% никеля, 0,10% меди и 0,05% молибдена имеет место падение пластичности нагартованной полосы ниже допустимого уровня.
Сера и фосфор являются вредными примесями, ухудшающими механические свойства нагартованной полосы. Однако при концентрации серы не более 0,020% и фосфора не более 0,020% их действие проявляется слабо, а увеличение концентрации каждого из этих элементов ухудшает пластичность и охрупчивает полосу.
Пример реализации способа
Для производства холоднокатаной полосы используют непрерывно литые слябы сечением 250х1710 мм, массой 15 т из углеродистой стали следующего химического состава, мас.%:
С - 0,38
Si - 0,03
Mn - 1,05
Al - 0,025
Cr - 0,03
Ni - 0,01
Cu - 0,03
Mo - 0,009
S - 0,013
P - 0,015
Fe - Остальное
Слябы загружают в газовую нагревательную печь с шагающими балками и производят разогрев до температуры Тн=1290oС. Очередной сляб выталкивают на печной рольганг непрерывного широкополосного стана 2000 и осуществляют его горячую прокатку в полосу толщиной 1,8 мм, температуру конца прокатки поддерживают равной Ткп=870oС. На отводящем рольганге стана производят охлаждение полосы до температуры Тсм=570oС, затем полосу сматывают в рулон.
Для производства холоднокатаной полосы используют непрерывно литые слябы сечением 250х1710 мм, массой 15 т из углеродистой стали следующего химического состава, мас.%:
С - 0,38
Si - 0,03
Mn - 1,05
Al - 0,025
Cr - 0,03
Ni - 0,01
Cu - 0,03
Mo - 0,009
S - 0,013
P - 0,015
Fe - Остальное
Слябы загружают в газовую нагревательную печь с шагающими балками и производят разогрев до температуры Тн=1290oС. Очередной сляб выталкивают на печной рольганг непрерывного широкополосного стана 2000 и осуществляют его горячую прокатку в полосу толщиной 1,8 мм, температуру конца прокатки поддерживают равной Ткп=870oС. На отводящем рольганге стана производят охлаждение полосы до температуры Тсм=570oС, затем полосу сматывают в рулон.
Горячекатаную полосу в дальнейшем подвергают сернокислотному травлению и холодной прокатке на пятиклетевом стане кварто 1700 до конечной толщины 0,62 мм с суммарным обжатием
Для получения упаковочной ленты холоднокатаные полосы разрезают вдоль с помощью дисковых ножниц.
Для получения упаковочной ленты холоднокатаные полосы разрезают вдоль с помощью дисковых ножниц.
В табл. 2 дан химический состав сталей, в табл.3 - режимы производства упаковочной ленты, а в табл.4 - свойства холоднокатаных нагартованных полос и выход годного.
Из табл.2-4 следует, что при реализации предложенного способа (варианты 2-4) обеспечивается повышение стабильности механических свойств и увеличение выхода годной нагартованной полосы. При запредельных значениях заявленных параметров (варианты 1,5) и реализации способа-прототипа (вариант 6) стабильность механических свойств и выход годной полосы снижаются.
Технико-экономические преимущества предложенного способа заключаются в том, что при его реализации достигается повышение стабильности механических свойств нагартованной полосы при колебаниях технологических режимов производства и содержаний химических элементов в стали. В качестве базового объекта принят способ-протитоп. Использование предложенного способа обеспечит повышение рентабельности производства холоднокатаной нагартованной полосы на 15-20%.
Источники информации
1. Заявка 61-272321 (Япония), МПК С 21 D 9/46, С 21 D 8/02, 1986 г.
1. Заявка 61-272321 (Япония), МПК С 21 D 9/46, С 21 D 8/02, 1986 г.
2. Заявка 56-130430 (Япония), МПК С 21 D 9/48, С 21 D 8/02, 1981 г.
3. С.С. Гусева и др. Непрерывная термическая обработка автолистовой стали. М., Металлургия, 1979 г., с. 9-15.
Claims (1)
1. Способ производства холоднокатаной полосы из углеродистой стали, включающий нагрев сляба, горячую прокатку, охлаждение и смотку полосы в рулон, травление и холодную прокатку, отличающийся тем, что сляб нагревают до температуры 1260-1320oС, горячую прокатку завершают при температуре 820-880oС, охлаждение полосы ведут до температуры 550-590 oС, а холодную прокатку осуществляют с суммарным обжатием 60-73%
2. Способ по п. 1, отличающийся тем, что сталь имеет следующий химический состав, мас. %:
Углерод - 0,30-0,45
Кремний - 0,01-0,05
Марганец - 0,85-1,35
Алюминий - 0,01-0,04
Хром - Не более 0,10
Никель - Не более 0,05
Медь - Не более 0,10
Молибден - Не более 0,05
Сера - Не более 0,020
Фосфор - Не более 0,020
Железо - Остальное
2. Способ по п. 1, отличающийся тем, что сталь имеет следующий химический состав, мас. %:
Углерод - 0,30-0,45
Кремний - 0,01-0,05
Марганец - 0,85-1,35
Алюминий - 0,01-0,04
Хром - Не более 0,10
Никель - Не более 0,05
Медь - Не более 0,10
Молибден - Не более 0,05
Сера - Не более 0,020
Фосфор - Не более 0,020
Железо - Остальное
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2001118706/02A RU2203965C2 (ru) | 2001-07-05 | 2001-07-05 | Способ производства холоднокатаной полосы |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2001118706/02A RU2203965C2 (ru) | 2001-07-05 | 2001-07-05 | Способ производства холоднокатаной полосы |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2203965C2 true RU2203965C2 (ru) | 2003-05-10 |
RU2001118706A RU2001118706A (ru) | 2003-05-27 |
Family
ID=20251481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2001118706/02A RU2203965C2 (ru) | 2001-07-05 | 2001-07-05 | Способ производства холоднокатаной полосы |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2203965C2 (ru) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2442830C1 (ru) * | 2010-10-08 | 2012-02-20 | Федеральное государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" | Способ производства высокопрочных стальных фабрикатов |
RU2529325C1 (ru) * | 2013-08-13 | 2014-09-27 | Открытое акционерное общество "Северсталь" (ОАО "Северсталь") | Способ производства холоднокатаного проката для упаковочной ленты |
RU2586196C2 (ru) * | 2011-12-22 | 2016-06-10 | ТиссенКрупп Рассельштайн ГмбХ | Листовая сталь для применения в качестве упаковочной стали и способ получения упаковочной стали |
RU2638611C1 (ru) * | 2013-12-11 | 2017-12-14 | Арселормиттал | Мартенситная сталь, стойкая к замедленному разрушению, и способ изготовления |
-
2001
- 2001-07-05 RU RU2001118706/02A patent/RU2203965C2/ru not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
ГУСЕВА С.С. и др. Непрерывная термическая обработка автолистовой стали. - М.: Металлургия, 1979, с.8-15. * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2442830C1 (ru) * | 2010-10-08 | 2012-02-20 | Федеральное государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" | Способ производства высокопрочных стальных фабрикатов |
RU2586196C2 (ru) * | 2011-12-22 | 2016-06-10 | ТиссенКрупп Рассельштайн ГмбХ | Листовая сталь для применения в качестве упаковочной стали и способ получения упаковочной стали |
RU2529325C1 (ru) * | 2013-08-13 | 2014-09-27 | Открытое акционерное общество "Северсталь" (ОАО "Северсталь") | Способ производства холоднокатаного проката для упаковочной ленты |
RU2638611C1 (ru) * | 2013-12-11 | 2017-12-14 | Арселормиттал | Мартенситная сталь, стойкая к замедленному разрушению, и способ изготовления |
US10196705B2 (en) | 2013-12-11 | 2019-02-05 | Arcelormittal | Martensitic steel with delayed fracture resistance and manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110088326B (zh) | 热轧扁钢产品及其生产方法 | |
JP5064525B2 (ja) | 異方性が小さく焼入性に優れた高炭素鋼板及びその製造方法 | |
JP5270274B2 (ja) | 伸びおよび伸びフランジ性に優れた高強度冷延鋼板 | |
RU2463359C1 (ru) | Способ производства толстолистового низколегированного штрипса | |
JP2007277696A (ja) | 極軟質高炭素熱延鋼板およびその製造方法 | |
RU2750752C1 (ru) | Стальной профиль, имеющий толщину, составляющую по меньшей мере 100 мм, и способ его изготовления | |
RU2433192C1 (ru) | Способ производства холоднокатаной полосы (варианты) | |
JP5644966B2 (ja) | 焼入れ性に優れる面内異方性の小さい高炭素熱延鋼板およびその製造方法 | |
JP2007070661A (ja) | 伸びと穴拡げ性に優れた高強度薄鋼板およびその製造方法 | |
KR100859303B1 (ko) | 내형갤링성 및 내피로특성이 우수한 고장력 열연강판 및그 제조방법 | |
RU2549807C1 (ru) | Способ производства рулонного проката из высокопрочной хладостойкой стали | |
RU2463360C1 (ru) | Способ производства толстолистового низколегированного штрипса | |
RU2203965C2 (ru) | Способ производства холоднокатаной полосы | |
RU2358024C1 (ru) | Способ производства штрипсов из низколегированной стали | |
JP4644075B2 (ja) | 穴拡げ性に優れた高強度薄鋼板およびその製造方法 | |
JP5481941B2 (ja) | 高強度冷延鋼板用熱延鋼板およびその製造方法、ならびに高強度冷延鋼板の製造方法 | |
RU2241769C1 (ru) | Способ производства штрипсов из низколегированной стали | |
RU2262537C1 (ru) | Способ производства штрипсов из низколегированной стали | |
RU2499640C1 (ru) | Способ производства холоднокатаного проката для упаковочной ленты | |
JPH09279302A (ja) | 張出し成形性に優れた鋼板およびその製造方法 | |
RU2495142C1 (ru) | Способ производства толстолистового проката из низколегированной стали | |
RU2318881C2 (ru) | Способ производства полос для изготовления обсадных труб | |
RU2197542C1 (ru) | Способ производства листовой стали | |
JP4765388B2 (ja) | 打抜き後の平坦度に優れる冷間圧延ままの薄鋼板の製造方法 | |
RU2529325C1 (ru) | Способ производства холоднокатаного проката для упаковочной ленты |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20160706 |