RU2123773C1 - Электролюминесцентное устройство и способ его изготовления - Google Patents
Электролюминесцентное устройство и способ его изготовления Download PDFInfo
- Publication number
- RU2123773C1 RU2123773C1 RU98106974A RU98106974A RU2123773C1 RU 2123773 C1 RU2123773 C1 RU 2123773C1 RU 98106974 A RU98106974 A RU 98106974A RU 98106974 A RU98106974 A RU 98106974A RU 2123773 C1 RU2123773 C1 RU 2123773C1
- Authority
- RU
- Russia
- Prior art keywords
- layer
- aluminum
- polyaniline
- polyvinyl alcohol
- doped polyaniline
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 238000000034 method Methods 0.000 title abstract description 4
- 229920000767 polyaniline Polymers 0.000 claims abstract description 30
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 18
- 239000000956 alloy Substances 0.000 claims abstract description 18
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 18
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000004372 Polyvinyl alcohol Substances 0.000 claims abstract description 13
- 230000005525 hole transport Effects 0.000 claims abstract description 13
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 13
- 229920002451 polyvinyl alcohol Polymers 0.000 claims abstract description 13
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 11
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims abstract description 10
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 9
- 239000011777 magnesium Substances 0.000 claims abstract description 9
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 8
- 239000011521 glass Substances 0.000 claims abstract description 7
- 229910052706 scandium Inorganic materials 0.000 claims abstract description 7
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 claims abstract description 7
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 claims abstract description 7
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims abstract description 6
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims abstract description 5
- 235000019253 formic acid Nutrition 0.000 claims abstract description 5
- 150000001735 carboxylic acids Chemical class 0.000 claims abstract description 4
- 238000002347 injection Methods 0.000 claims description 29
- 239000007924 injection Substances 0.000 claims description 29
- 239000000243 solution Substances 0.000 claims description 14
- 239000000758 substrate Substances 0.000 claims description 6
- 229910003437 indium oxide Inorganic materials 0.000 claims description 5
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 4
- 229910001887 tin oxide Inorganic materials 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims description 3
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims description 2
- -1 poly(2-methoxy-5- (2'-ethylhexyloxy)-1,4-phenylenevinylene) Polymers 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 3
- 229920002554 vinyl polymer Polymers 0.000 abstract description 3
- 230000003247 decreasing effect Effects 0.000 abstract description 2
- 238000000295 emission spectrum Methods 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 47
- 230000005855 radiation Effects 0.000 description 8
- 229910006404 SnO 2 Inorganic materials 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 5
- 238000005119 centrifugation Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 229940100630 metacresol Drugs 0.000 description 4
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 3
- 229920001225 polyester resin Polymers 0.000 description 3
- 239000004645 polyester resin Substances 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229910001148 Al-Li alloy Inorganic materials 0.000 description 2
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000001989 lithium alloy Substances 0.000 description 2
- 238000004776 molecular orbital Methods 0.000 description 2
- 238000006862 quantum yield reaction Methods 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/82—Cathodes
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Использование: в электронной технике, в частности для электролюминесцентных экранов, индикаторов, светодиодов и т.д. Сущность: ЭЛУ состоит из электронного инжектирующего слоя из сплава на основе алюминия, активного люминесцентного слоя из поли(2-метокси-5-(2'-этилгексилокси)-1,4-фениленвинилена), дырочного транспортного слоя на основе р-допированного полианилина и дырочного инжектирующего слоя из смешанного оксида индия и олова. В качестве электронного инжектирующего слоя использован сплав на основе алюминия, содержащий, мас.%: литий 0,3-2,5, магний 0,5-6,0, скандий и/или цирконий 0,01-0,3, а в качестве дырочного транспортного слоя использован р-допированный полианилин, пластифицированный поливиниловым спиртом. Для изготовления ЭЛУ предложен способ, включающий последовательное нанесение на стеклянную подложку полупрозрачного слоя смешанного оксида индия и олова, слоя р-допированного полианилина, пластифицированного виниловым спиртом, люминесцентного слоя - поли(2-метокси-5-(2'-этилгексилокси)-1,4-фениленвинилена) и электронного инжектирующего слоя из сплава на основе алюминия, при этом нанесение р-допированного полианилина проводят в растворе, содержащем компоненты, мас. %: полианилин 0,6-1,5; поливиниловый спирт 0,6-1,5; паратолуолсульфокислота или карбоновая кислота, 0,06-0,5; муравьиная кислота - остальное. Техническим результатом изобретения является снижение порога зажигания, достижение более высокой яркости при более низких напряжениях и токах, т.е. повышение квантового выхода, уменьшение ширины спектра излучения, а также упрощение технологии изготовления ЭЛУ за счет сокращения количества стадий, уменьшения длительности некоторых стадий, возможности проведения всех операций без создания инертной атмосферы. 2 с.п. ф-лы, 1 ил.
Description
Изобретение относится к электронной технике, в частности к электролюминесцентным экранам, индикаторам и т.д.
Известно электролюминесцентное устройство (ЭЛУ) на основе полимерных материалов, состоящее из электронного инжектирующего слоя из металла, активного электролюминесцентного слоя из поли(2-метокси-5-(2'-этилгексилокси)-1,4-фениленвинилена), дырочного транспортного слоя из проводящего полианилина и дырочного инжектирующего слоя из смешанного оксида индия и олова (In2O3 - SnO2) [1,2].
Указанное устройство имеет спектр излучения с максимумом на длине волны 620 нм и шириной спектра на половине высоты распределения 100 нм [1], что является недостаточным для получения чистого цвета.
Наиболее близким к предлагаемому изобретению является ЭЛУ, состоящее из электронного инжектирующего слоя из алюминий-литиевого сплава с содержанием лития 0,2%, активного люминесцентного слоя из поли(2-метокси-5-(2'-этилгексилокси)-1,4-фениленвинилена), дырочного транспортного слоя на основе проводящего полианилина и дырочного инжектирующего слоя из смешанного оксида индия и олова (In2O3 - SnO2) [3].
Использование в качестве электронного инжектирующего слоя низколегированных сплавов алюминия со щелочными металлами позволяет добиться заметного квантового выхода и снизить рабочее напряжение. Однако содержание щелочного металла в сплаве может постоянно снижаться из-за взаимодействия с окружающей средой и полимерами в составе ЭЛУ, приводя к ухудшению инжекционных характеристик и ограничению ресурса работы ЭЛУ.
К недостаткам устройства следует также отнести относительно высокий порог зажигания по напряжению 1,7 B, относительно малую яркость 400 кд/м2 при 3 B и большую ширину спектра излучения (100 нм при 300 K), не позволяющую получить чистый цвет для использования в полноцветных дисплеях.
Известен способ изготовления ЭЛУ, включающий следующую последовательность операций: 1) нанесение на дырочный инжектирующий слой из смешанного оксида индия и олова (In2O3 - SnO2) дырочного транспортного слоя из проводящего полианилина с добавкой полиэфирной смолы - эта операция осуществляется путем нанесения методом центрифугирования смеси двух растворов - раствора комплекса полианилина и камфоросульфокислоты (КСК) в мета-крезоле и раствора полиэфирной смолы в мета-крезоле с последующей сушкой в течение 12 ч при 50oC; 2) нанесение активного люминесцентного слоя - поли(2-метокси-5-(2'-этилгексилокси)-1,4-фениленвинилена) методом центрифугирования из раствора в ксилоле; 3) напыление в высоком вакууме (2,0 • 10-7 мм рт.ст.) алюминий-литиевого сплава с содержанием Li 0,2% [3].
Известный способ отличается сложностью технологии и высокой трудоемкостью в связи с тем, что:
а) комплекс полианилина и КСК готовится длительным механическим перемешиванием указанных компонентов с последующим растворением образовавшегося комплекса в мета-крезоле;
б) присутствуют дополнительные стадии приготовления раствора полиэфирной смолы и смешивания этого раствора с раствором полианилиновой соли;
в) используемый растворитель - мета-крезол требует длительной сушки до 12 ч и ухудшает условия труда;
г) необходимо проведение всех стадий в инертной атмосфере.
а) комплекс полианилина и КСК готовится длительным механическим перемешиванием указанных компонентов с последующим растворением образовавшегося комплекса в мета-крезоле;
б) присутствуют дополнительные стадии приготовления раствора полиэфирной смолы и смешивания этого раствора с раствором полианилиновой соли;
в) используемый растворитель - мета-крезол требует длительной сушки до 12 ч и ухудшает условия труда;
г) необходимо проведение всех стадий в инертной атмосфере.
Задачей изобретения является создание электролюминесцентного устройства с улучшенными характеристиками и упрощение технологии его изготовления.
Техническим результатом изобретения является снижение порога зажигания, достижение более высокой яркости при более низких напряжениях и токах, т.е. повышение квантового выхода, уменьшение ширины спектра излучения, а также упрощение технологии изготовления ЭЛУ за счет сокращения количества стадий, уменьшения длительности некоторых стадий, возможности проведения всех операций без создания инертной атмосферы.
Указанный технический результат достигается тем, что в ЭЛУ, состоящем из электронного инжектирующего слоя на основе алюминиевого сплава, активного люминесцентного слоя поли(2-метокси-5-(2'-этилгексилокси)-1,4-фениленвинилена), дырочного транспортного слоя из p-допированного (дырочно проводящего) полианилина и дырочного инжектирующего слоя из смешанного оксида индия и олова (In2O3 - SnO2) и стеклянной подложки, в качестве электронного инжектирующего слоя использован сплав на основе алюминия, содержащий, мас.%: литий 0,3 - 2,5, магний 0,5-6,0, скандий и/или цирконий 0,01-0,3, а в качестве дырочного транспортного слоя использован p-допированный полианилин, пластифицированный поливиниловым спиртом.
Ведение в алюминий магния одновременно с литием приводит к снижению поверхностной активности последнего. Это позволяет использовать в качестве инжектирующих слоев сплавы на основе алюминия с более высоким содержанием лития, что в свою очередь способствует улучшению инжекционных и ресурсных характеристик электрода. Наличие циркония и/или скандия в сплаве обеспечивает большую однородность пленки электрода. Нижний предел содержания легирующих компонентов сплава обусловлен эффектом снижения яркости ЭЛУ, а верхний - сегрегацией сплава на компоненты в процессе нанесения вследствие взаимодействия металлического лития с органическим веществом и деструкцией последнего. Использование сплава с высоким содержанием лития и магния позволяет проводить нанесение при более низком вакууме (1,0 • 10-4 - 10-5 мм рт.ст.) методами вакуумно-плазменного или термического осаждения.
Использование в изобретении в качестве дырочного транспортного слоя p-допированного полианилина, пластифицированного поливиниловым спиртом (ПВС), обеспечивает высокую пластичность пленки полианилина и гарантирует отсутствие сквозных дефектов при меньшей толщине пленки. Это особенно важно для ЭЛУ с электродом из сплава на основе алюминия, легированного поверхностно активным щелочным металлом - литием. Таким образом, при достаточной прозрачности пленки полианилина обеспечиваются ее хорошие защитные свойства и, как следствие, хорошие ресурсные характеристики устройства.
Указанный технический результат достигается тем, что в способе изготовления ЭЛУ путем последовательного нанесения на стеклянную подложку с полупрозрачным слоем смешанного оксида индия и олова слоев p-допированного полианилина, активного люминесцентного слоя - поли(2-метокси-5-(2'-этилгексилокси)-1,4-фениленвинилена) и электронного инжектирующего слоя из сплава на основе алюминия, содержащего, мас. %: литий 0,3-2,5, магний 0,5-6,0, скандий и/или цирконий 0,01-0,3, для нанесения слоя p-допированного полианилина, пластифицированного поливиниловым спиртом, используют раствор, содержащий следующие компоненты, мас.%: полианилин 0,6 - 1,5; паратолуолсульфокислота или карбоновая кислота 0,06 - 0,5; поливиниловый спирт 0,6 - 1,5; муравьиная кислота - остальное.
Использование такого раствора позволяет проводить сушку при 20 - 70oC в течение нескольких минут и обеспечивает сплошность покрытия.
На чертеже показано электролюминесцентное устройство.
Электролюминесцентное устройство состоит из электронного инжектирующего слоя 5 из сплава на основе алюминия, активного люминесцентного слоя 4 из поли(2-метокси-5-(2'-этилгексилокси)-1,4-фениленвинилена), дырочного транспортного слоя 3 из p-допированного карбоновыми кислотами или паратолуолсульфокислотой и пластифицированного поливиниловым спиртом полианилина и дырочного инжектирующего слоя 2 из смешанного оксида индия и олова (In2O3 - SnO2), нанесенного на стеклянную подложку 1.
Устройство работает следующим образом. При подаче положительного электрического смещения на дырочный инжектирующий слой 2 относительно электронного инжектирующего слоя 5 электроны из электронного инжектирующего слоя 5 переходят на нижние свободные, а дырки из дырочного инжектирующего слоя 2 переходят через дырочный транспортный слой 3 на верхние занятые молекулярные орбитали молекул активного люминесцентного слоя 4 из поли(2-метокси-5-(2'-этилгексилокси)-1,4-фениленвинилена) и двигаются навстречу друг другу в активном люминесцентном слое 4; при сближении электрона и дырки, находящихся на одной молекуле поли(2-метокси-5-(2'-этилгексилокси)-1,4-фениленвинилена), происходит их радиационная рекомбинация с излучением кванта света с энергией, равной энергетическому расстоянию между верхней занятой и нижней свободной молекулярными орбиталями.
Пример 1. Используют стеклянную подложку 1 с полупрозрачным дырочным инжектирующим слоем 2 из смешанного оксида индия и олова (In2O3 - SnO2) с сопротивлением 30 Ом/□, на которую методом центрифугирования наносят дырочный транспортный слой 3 толщиной 0,1 мкм из раствора полианилина с ПТСК в муравьиной кислоте при следующем содержании компонентов, мас.%; полианилин 1,0; ПТСК 0,2; ПВС 0,6; муравьиная кислота - остальное. Нанесенный слой 3 сушат при 60-70oC в течение 30 мин. Затем центрифугированием наносят активный люминесцентный слой 4 толщиной 0,1 мкм из орто-ксилольного раствора (8 мг/мл) поли(2-метокси-5-(2'-этилгексилокси)-1,4-фениленвинилена) и сушат в течение 20 мин при 60-70oC. Образец помещают в вакуумную установку ВУП-5, откачивают в динамическом режиме до вакуума 1,0 • 10-5 мм рт.ст., прогревают в вакууме до 100oC в течение 2 ч и после охлаждения до комнатной температуры напыляют электронный инжектирующий слой 5 путем испарения сплава на основе алюминия, содержащего, мас.%: литий 1,73, магний 1,96, цирконий 0,1 и алюминий - остальное. Толщина электронного инжектирующего слоя 5 - 0,1 мкм. Площадь светящейся поверхности 4 мм2. Изготовленное таким образом ЭЛУ обладает следующими параметрами:
- порог появления излучения по току 0,025 мА и по напряжению 1,5 В, что на 10% ниже, чем у прототипа (1,7 B);
- яркость при напряжении 3 B составляет 550 кд/м2, что на 35% выше, чем у прототипа (400 кд/м2);
- яркоcть 1200 кд/м2 достигается при напряжении 3,4 B и токе 2,5 мА, яркость 4000 кд/м2 - при токе около 8 мА и напряжении около 6 B, что вдвое ниже, чем у прототипа (10 B);
- ширина спектра излучения на половине высоты его распределения составляет 60 нм, что на 40%; ниже, чем у прототипа.
- порог появления излучения по току 0,025 мА и по напряжению 1,5 В, что на 10% ниже, чем у прототипа (1,7 B);
- яркость при напряжении 3 B составляет 550 кд/м2, что на 35% выше, чем у прототипа (400 кд/м2);
- яркоcть 1200 кд/м2 достигается при напряжении 3,4 B и токе 2,5 мА, яркость 4000 кд/м2 - при токе около 8 мА и напряжении около 6 B, что вдвое ниже, чем у прототипа (10 B);
- ширина спектра излучения на половине высоты его распределения составляет 60 нм, что на 40%; ниже, чем у прототипа.
Пример 2. ЭЛУ изготовлено, как в примере 1, но при нанесении слоя полианилина с ПТСК в раствор добавляют ПВС в количестве 1,5 мас.%, а в качестве электронного инжектирующего слоя наносят сплав на основе алюминия, содержащий, мас.%: литий 2,1; магний 3,0, цирконий 0,1; скандий 0,2 и алюминий - остальное. Толщина электронного инжектирующего слоя 5 - 0,15 мкм. Для этого ЭЛУ порог появления излучения равен 1,5 B и 0,03 мА, яркость 1200 кд/м2 достигается при токе 1,7 мА.
Пример 3. ЭЛУ изготовлено, как в примере 2, но при нанесении слоя полианилина вместо ПТСК использован раствор с карбоновой кислотой в количестве 0,06 мас. %, а в качестве электронного инжектирующего слоя наносят сплав на основе алюминия, содержащий, мас.%: литий 1,78, магний 5,16, цирконий 0,06, скандий 0,14 и алюминий - остальное. Яркость 1200 кд/м2 достигается при токе 3,3 мА.
Таким образом, электролюминесцентное устройство, изготовленное по данному изобретению, обладает по сравнению с прототипом следующими преимуществами:
- порог появления излучения по напряжению на 15% ниже, чем у прототипа;
- яркость при напряжении 3 B на 40% выше, чем у прототипа;
- яркость 4000 кд/м2 достигается при напряжении около 6 B, что вдвое ниже, чем у прототипа;
- ширина спектра излучения на половине высоты его распределения составляет 60 нм, что на 40% ниже, чем у прототипа;
- квантовая эффективность примерно в 1,5 раза выше;
- упрощение технологии изготовления ЭЛУ за счет сокращения количества стадий с 10 до 6, уменьшения длительности стадий нанесения полианилина с 12 ч до 30 мин, возможности проведения всех стадий нанесения органических слоев без создания инертной атмосферы.
- порог появления излучения по напряжению на 15% ниже, чем у прототипа;
- яркость при напряжении 3 B на 40% выше, чем у прототипа;
- яркость 4000 кд/м2 достигается при напряжении около 6 B, что вдвое ниже, чем у прототипа;
- ширина спектра излучения на половине высоты его распределения составляет 60 нм, что на 40% ниже, чем у прототипа;
- квантовая эффективность примерно в 1,5 раза выше;
- упрощение технологии изготовления ЭЛУ за счет сокращения количества стадий с 10 до 6, уменьшения длительности стадий нанесения полианилина с 12 ч до 30 мин, возможности проведения всех стадий нанесения органических слоев без создания инертной атмосферы.
Литература.
1. I. D. Parker, Carrier tuneling and device characteristics in polymer light-emiting diodes, J. Appl.Phys. (1994), v. 75, N 3, p. 1656-1666; D.Braun, A.J. Heeger, Visible light emission from semiconducting polymer diodes, Appl. Phys. Lett (1991), v. 58, N 18, pp. 1982-1984.
2. Y. Yang, A.J. Heeger, Polyaniline as a transparent electrode for polymer lightemitting diodes, Appl. Phys. Letters (1994), v. 64, N 10, p. 1245-1247.
3. Y. Yang, E. Westerweele, C. Zhang, P. Smith, A.J. Heeger, Enhanced performance of polymer light-emutting diodes using high-syrface area polyaniline network electrodes, J. Appl. Phys. (1995), v. 77, N 2. p. 694-698.
Claims (2)
1. Электролюминесцентное устройство, состоящее из электронного инжектирующего слоя из сплава на основе алюминия, активного люминесцентного слоя - поли(2-метокси-5-(2'-этилгексилокси)-1,4-фениленвинилена), дырочного транспортного слоя на основе p-допированного полианилина, дырочного инжектирующего слоя из смешанного оксида индия и олова и стеклянной подложки, отличающееся тем, что в качестве электронного инжектирующего слоя использован сплав на основе алюминия, содержащий, мас.%: литий 0,3 - 2,5, магний 0,5 - 6,0, скандий и/или цирконий 0,01 - 0,3, а в качестве дырочного транспортного слоя использован p-допированный полианилин, пластифицированный поливиниловым спиртом.
2. Способ изготовления электролюминесцентного устройства, включающий последовательное нанесение на стеклянную подложку полупрозрачного слоя смешанного оксида индия и олова, слоя p-допированного полианилина, активного люминесцентного слоя - поли(2-метокси-5-(2'-этилгексилокси)-1,4-фениленвинилена) и электронного инжектирующего слоя из сплава на основе алюминия, отличающийся тем, что для нанесения слоя p-допированного полианилина, пластифицированного поливиниловым спиртом, используют раствор, содержащий компоненты, мас.%:
Полианилин - 0,6 - 1,5
Поливиниловый спирт - 0,6 - 1,5
Паратолуолсульфокислота или карбоновая кислота - 0,06 - 0,5
Муравьиная кислота - Остальноек
Полианилин - 0,6 - 1,5
Поливиниловый спирт - 0,6 - 1,5
Паратолуолсульфокислота или карбоновая кислота - 0,06 - 0,5
Муравьиная кислота - Остальноек
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU98106974A RU2123773C1 (ru) | 1998-04-20 | 1998-04-20 | Электролюминесцентное устройство и способ его изготовления |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU98106974A RU2123773C1 (ru) | 1998-04-20 | 1998-04-20 | Электролюминесцентное устройство и способ его изготовления |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2123773C1 true RU2123773C1 (ru) | 1998-12-20 |
RU98106974A RU98106974A (ru) | 1999-04-20 |
Family
ID=20204740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU98106974A RU2123773C1 (ru) | 1998-04-20 | 1998-04-20 | Электролюминесцентное устройство и способ его изготовления |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2123773C1 (ru) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003034512A1 (de) * | 2001-10-16 | 2003-04-24 | Bayer Aktiengesellschaft | Elektrophosphoreszierende anordnung mit leitfähigen polymeren |
WO2004061993A2 (en) * | 2002-12-27 | 2004-07-22 | Add-Vision, Inc. | Method for encapsulation of light emitting polyme devices and apparatus made by same |
WO2006086480A3 (en) * | 2005-02-10 | 2009-04-30 | Plextronics Inc | Hole injection/transport layer compositions and devices |
RU2469015C1 (ru) * | 2008-12-10 | 2012-12-10 | Кэнон Кабусики Кайся | Производное бензоинденохризена и его применение в органическом, излучающем свет устройстве |
RU2519514C2 (ru) * | 2008-05-22 | 2014-06-10 | Кэнон Кабусики Кайся | Конденсированное полициклическое соединение и органическое светоизлучающее устройство, содержащее это соединение |
-
1998
- 1998-04-20 RU RU98106974A patent/RU2123773C1/ru active
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003034512A1 (de) * | 2001-10-16 | 2003-04-24 | Bayer Aktiengesellschaft | Elektrophosphoreszierende anordnung mit leitfähigen polymeren |
US6869697B2 (en) | 2001-10-16 | 2005-03-22 | Bayer Aktiengesellschaft | Electrophosphorescent arrangement comprising conductive polymers |
WO2004061993A2 (en) * | 2002-12-27 | 2004-07-22 | Add-Vision, Inc. | Method for encapsulation of light emitting polyme devices and apparatus made by same |
WO2004061993A3 (en) * | 2002-12-27 | 2004-12-23 | Add Vision Inc | Method for encapsulation of light emitting polyme devices and apparatus made by same |
WO2006086480A3 (en) * | 2005-02-10 | 2009-04-30 | Plextronics Inc | Hole injection/transport layer compositions and devices |
RU2519514C2 (ru) * | 2008-05-22 | 2014-06-10 | Кэнон Кабусики Кайся | Конденсированное полициклическое соединение и органическое светоизлучающее устройство, содержащее это соединение |
RU2469015C1 (ru) * | 2008-12-10 | 2012-12-10 | Кэнон Кабусики Кайся | Производное бензоинденохризена и его применение в органическом, излучающем свет устройстве |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4138912B2 (ja) | エレクトロルミネセンスデバイスで用いられる二層電子注入電極 | |
JP3786969B2 (ja) | 改良されたカソードを備える有機発光デバイス | |
JP4328486B2 (ja) | エレクトロルミネッセント装置 | |
JP2773297B2 (ja) | 有機薄膜el素子 | |
Braun et al. | Electroluminescence from light-emitting diodes fabricated from conducting polymers | |
US7830085B2 (en) | White electrophosphorescence from semiconducting polymer blends | |
US20060232200A1 (en) | Organic electroluminescent element | |
JPH07312290A (ja) | 有機薄膜el素子 | |
JP2005183406A6 (ja) | 有機発光デバイス | |
JPH06290873A (ja) | 有機薄膜発光素子 | |
JP2001503908A (ja) | ポリマー発光ダイオード | |
Jen et al. | Efficient light-emitting diodes based on a binaphthalene-containing polymer | |
KR100683050B1 (ko) | 유기 전계발광 장치 | |
Yu et al. | Planar light-emitting devices fabricated with luminescent electrochemical polyblends | |
CN100356610C (zh) | 具有菲咯啉稠合的吩嗪的有机发光装置 | |
RU2123773C1 (ru) | Электролюминесцентное устройство и способ его изготовления | |
JPH08502854A (ja) | ポリチオフェンを使用するエレクトロルミネッセンス装置および方法 | |
Östergård et al. | Electrochemically prepared light-emitting diodes of poly (para-phenylene) | |
JPH05114487A (ja) | 有機薄膜発光素子 | |
US20060186792A1 (en) | Organic electroluminescent devices formed with rare-earth metal containing cathode | |
US20210184183A1 (en) | Manufacturing method of graphene oxide film, organic light-emitting diode, and manufacturing method thereof | |
CN100474651C (zh) | 有机无机发光二极管的制造方法 | |
US6259201B1 (en) | Structure of polymeric/organic electroluminescent device using ionomer as charge transport layer and method of making the same | |
JPH11219790A (ja) | エレクトロルミネセンスデバイス用多層電極 | |
JP2837171B2 (ja) | 透明導電性フィルム |