RU2041179C1 - Керамический материал, металлокерамический композиционный материал и способ получения керамического материала - Google Patents
Керамический материал, металлокерамический композиционный материал и способ получения керамического материала Download PDFInfo
- Publication number
- RU2041179C1 RU2041179C1 SU915010479A SU5010479A RU2041179C1 RU 2041179 C1 RU2041179 C1 RU 2041179C1 SU 915010479 A SU915010479 A SU 915010479A SU 5010479 A SU5010479 A SU 5010479A RU 2041179 C1 RU2041179 C1 RU 2041179C1
- Authority
- RU
- Russia
- Prior art keywords
- powder
- aluminum
- bismuth
- metal
- ceramic
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
- C01F7/42—Preparation of aluminium oxide or hydroxide from metallic aluminium, e.g. by oxidation
- C01F7/422—Preparation of aluminium oxide or hydroxide from metallic aluminium, e.g. by oxidation by oxidation with a gaseous oxidator at a high temperature
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/14—Methods for preparing oxides or hydroxides in general
- C01B13/32—Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process
- C01B13/326—Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process of elements or compounds in the liquid state
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G29/00—Compounds of bismuth
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G29/00—Compounds of bismuth
- C01G29/006—Compounds containing, besides bismuth, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/44—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/02—Amorphous compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
- C01P2002/54—Solid solutions containing elements as dopants one element only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/90—Other properties not specified above
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Catalysts (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Laminated Bodies (AREA)
- Polyesters Or Polycarbonates (AREA)
- Powder Metallurgy (AREA)
Abstract
Керамический материал, металлокерамический композиционный материал и способ получения керамического материала. Использование: в качестве деталей машин, функциональных узлов электронных систем, катализаторов, носителей катализаторов, датчиков, адсорбентов и т.п. Сущность изобретения: керамический материал имеет формулу где 0,0001≅ x ≅ 0,10, M1 по крайней мере один из элементов, выбранный из: Si, P, B, Sb, Se, Te, Sn, Te, Sn, Zn, In, Cr, Nb, Se, J, Sr, Ba, Ca, Na, Li, Mg, Mn, W, Ti, Zr и редкоземельные металлы, M2 по крайней мере один из элементов, выбранный из: Fe, Ni, Co, Rh, Ru, Re, Cu, и Pb, 0≅ y≅ 0,1, 0≅ y2≅ 0,01. Металлокерамический композиционный материал включает порошок указанного выше керамического материала, и металлический компонент, в качестве которого используют алюминий или висмут. Указанный керамический материал получают путем быстрого охлаждения расплава, имеющего состав
Description
Изобретение касается содержащего алюминий оксида, используемого в качестве материала для изготовления деталей машин, функциональных узлов электронных систем (таких как подложки электронных схем или пакеты программ), катализаторов носителей катализаторов, датчиков, адсорбентов, наполнителей хроматографических колонок; формованных изделий, получаемых путем формования содержащего алюминий оксида; изделий, получаемых путем термической обработки формованных заготовок; и способа получения содержащего алюминий оксида.
Наиболее близким по технической сущности к предлагаемому керамическому материалу является керамический материал на основе глинозема, содержащий дополнительно, MgO 0,5-1; TiO2 0,1-0,3; SiO2 0,1-0,2; ZrO2 8-15 и частично стабилизированный J2O3 [1]
Изделие из такого материала обычно получают путем ввода органического или неорганического связующего и формования полученной смеси. Такое изделие после формования подвергается высокотемпературной обработке при 1400оС и выше. С другой стороны, если порошок формуется без связующего, то необходимо, чтобы формование осуществлялось при высокой температуре, составляющий 1100оС и выше, или необходимо использовать такие устройства, как пресс горячего формования и др.
Изделие из такого материала обычно получают путем ввода органического или неорганического связующего и формования полученной смеси. Такое изделие после формования подвергается высокотемпературной обработке при 1400оС и выше. С другой стороны, если порошок формуется без связующего, то необходимо, чтобы формование осуществлялось при высокой температуре, составляющий 1100оС и выше, или необходимо использовать такие устройства, как пресс горячего формования и др.
Известен также способ получения тонкодисперсных порошков оксида алюминия путем распыления струи расплавленного алюминия воздухом с высокой скоростью и окисления частиц в пламени горелки [2]
Предлагаемый керамический материал на основе оксида алюминия, в составе которого содержатся следовые количества висмута, эффективен для получения формованного изделия при низкой температуре, и этот новый порошок может быть легко получен путем быстрого охлаждения расплава металлического алюминия, в который введены следовые количества металлического висмута для коагуляции этого расплава и последующего окисления продукта коагуляции. Предлагаемый материал имеет состав Al1-x-y1-y2BixM1y1M2y2Oz, (в котором х определяется как 0,0001 ≅ х ≅ 0,10, М1 является по меньшей мере одним из элементов из числа следующих: Si, P, B, Sb,Se, Te, Sn, Zn, In, Cr, Nb, Sc, J, Sr, Ba, Ca, Na, Li, Mg, Mn, W, Ti, Zr, Hf, Be и редкоземельные металлы; M2 является, по меньшей мере, одним из следующих элементов: Fe, Ni, Co, Rh, Ru, Re, Cu и Pb, y1 определяется как 0 ≅ y1 ≅ 0,1, у2 определяется как 0 ≅ у2≅ 0,01, z определяется как 1,2 ≅ z ≅ 1,5, и х, у1, у2 и z каждый является атомным отношением) и может быть получен как в аморфном, так и в кристаллическом состоянии. На его основе получают металлокерамический композиционный материал, включающий порошок указанного выше состава и металлический компонент, в качестве которого используют алюминий или висмут.
Предлагаемый керамический материал на основе оксида алюминия, в составе которого содержатся следовые количества висмута, эффективен для получения формованного изделия при низкой температуре, и этот новый порошок может быть легко получен путем быстрого охлаждения расплава металлического алюминия, в который введены следовые количества металлического висмута для коагуляции этого расплава и последующего окисления продукта коагуляции. Предлагаемый материал имеет состав Al1-x-y1-y2BixM1y1M2y2Oz, (в котором х определяется как 0,0001 ≅ х ≅ 0,10, М1 является по меньшей мере одним из элементов из числа следующих: Si, P, B, Sb,Se, Te, Sn, Zn, In, Cr, Nb, Sc, J, Sr, Ba, Ca, Na, Li, Mg, Mn, W, Ti, Zr, Hf, Be и редкоземельные металлы; M2 является, по меньшей мере, одним из следующих элементов: Fe, Ni, Co, Rh, Ru, Re, Cu и Pb, y1 определяется как 0 ≅ y1 ≅ 0,1, у2 определяется как 0 ≅ у2≅ 0,01, z определяется как 1,2 ≅ z ≅ 1,5, и х, у1, у2 и z каждый является атомным отношением) и может быть получен как в аморфном, так и в кристаллическом состоянии. На его основе получают металлокерамический композиционный материал, включающий порошок указанного выше состава и металлический компонент, в качестве которого используют алюминий или висмут.
Способ получения, содержащего алюминий керамического материала, включает быстрое охлаждение расплава, имеющего состав Al1-x-y1-y2BixM1y1M2y2 (в котором х определяется как 0,0001 ≅ х ≅ 0,10,M1 является, по крайней мере, одним из элементов из числа следующих Si, P, B, Sb, Se, Te, Sn, Zn, In, Cr, Nb, Sc, J, Sr, Ba, Ca, Na, Li, Mg, Mn, W, Ti, Zr, Hf, Be и редкоземельные металлы, М2 является по крайней мере, одним из элементов из числа следующих: Fe, Ni, Co, Rh, Ru, Re, Cu и Pb, y1 определяется как 0≅ у1 ≅ 0,1, у2 определяется как 0 ≅ у2 ≅ 0,01, и х, у1 и у2 каждый представляют собой атомное отношение) с целью коагуляции этого расплава, и последующее окисление образующегося продукта коагуляции.
В случае, когда х в указанной выше композиции состава Al1-x-y1-y2BixM1y1M2y2 (в котором х, у1, у2, М1 и М2 определены выше) составляет менее чем 0,0001, формование при низкой температуре затруднительно. Когда х превышает 0,10, снижается электрическая изоляция. Предел значений х составляет предпочтительно от 0,01 включительно до 0,005 включительно, более предпочтительно от 0,002 включительно до 0,02 включительно. М1 и М2, по желанию, могут отсутствовать или могут быть включены. Однако, когда у1 превышает значение 0,1 и у2 превышает значение 0,01 электрическая изоляция снижается.
Для обеспечения низкотемпературной формуемости значение z в указанной выше композиции находится в пределах 1,2 ≅ z ≅ 1,5, предпочтительно в пределах 1,3 ≅ z ≅ 1,495, еще более предпочтительно в пределах 0,4 ≅ z ≅ ≅1,49, хотя оно зависит от условий окисления. Однако, значение z точно определяется путем корректирования количества кислорода, адсорбируемого и поглощаемого образцом при проведении измерений.
Скорость быстрого охлаждения составляет предпочтительно не менее чем 103 оС/с, более предпочтительно не менее чем 104 оС/с. В качестве способа быстрого охлаждения и коагуляции доступен способ распыления газом, распыления водой под высоким давлением, способ, в котором расплав быстро охлаждается путем столкновения его с ротором, способ вращающегося электрода, способ, представляющий собой комбинацию распыления газом и способ, в котором расплав быстро охлаждается при столкновении его с ротором. Газ, используемый в способе распыления, выбирается предпочтительно из числа газов, которые не обладают реакционной способностью к расплаву, используемому в данном изобретении, таких как аргон, гелий, азот, или из числа газов с низкой реакционной способностью. Этот газ может содержать небольшое количество кислорода и воды.
Быстро охлажденный и коагулированный содержащий алюминий сплав, используемый согласно данному изобретению, легко окисляется при контактировании с кислородосодержащим газом. Обычно в результате окисления на поверхности алюминия образуется твердый слой окисла. В результате этого внутри алюминия окисления не происходит. Однако, как было установлено, алюминиевый сплав, содержащий следовое количество висмута, используемый в способе данного изобретения, претерпевает окисление даже при очень низкой температуре до тех пор, пока не окислится алюминий внутри сплава, и этот сплав образует аморфный содержащий алюминий оксид. Кислородсодержащий газ для окисления выбирается из числа следующих: кислород, воздух или газовая смесь кислорода с инертным газом аргоном или азотом. Хотя концентрация кислорода в кислородосодержащем газе не является строго ограниченной, воздух является предпочтительным ввиду легкости работы с ним. Температура, при которой алюминиевый сплав контактирует с кислородсодержащим газом, может быть комнатной. Окисление может ускоряться путем нагревания сплава по желанию или может замедляться путем его охлаждения. В случае использования кислородосодержащего газа, включающего также небольшое количество воды, скорость образования порошка может быть увеличена. При осуществлении способа быстрого охлаждения расплава, отвечающего данному изобретению, с целью его коагуляции, продукт коагуляции получается в форме ленты, измельченного фрагмента или порошка. Продукт коагуляции в форме ленты, измельченного фрагмента и т.д. превращается в порошок лишь в результате его окисления без механического измельчения. Продукт коагуляции может быть дополнительно тонко измельчен, или же время для получения порошка может быть сокращено за счет использования шаровой мельницы или другого оборудования, если это требуется. Когда значение х в формуле Al1-x-y1-y2BixM1y1M2y2, отвечающей данному изобретению, составляет не менее чем 0,001, порошкование легко осуществлять путем окисления. Когда значение х не менее чем 0,002, продукт прекращается в порошок с высокой удельной поверхностью и со средним диаметром частицы не более чем 100 микрон, лишь при выдержке его в воздухе при комнатной температуре.
Керамический материал, отвечающий данному изобретению, заключает в себя небольшое количество висмута и/или алюминия в металлическом состоянии, и эти металлы могут быть введены при правильном выборе условий (температуры, времени и т.д.). Количества как алюминия, так и висмута в металлическом состоянии составляют предпочтительно не более чем 0,1 и не более чем 0,22 (как атомных отношений) соответственно для обеспечения электрической изоляции.
Полученный предложенным способом керамический материал является аморфным продуктом и может стать кристаллическим продуктом в результате его термической обработки при высокой температуре. Например, при нагревании при 700оС в течение 8 ч он становится кристаллической окисью алюминия. При осуществлении этой термообработки в атмосфере инертного газа может получаться кристаллический оксид алюминия, содержащий небольшое количество металлического висмута и/или алюминия.
Средний диаметр частицы полученного керамического порошка для формованного изделия составляет предпочтительно не более чем 100 мк. Когда средний диаметр частицы превышает 100 мк, полученное формованное изделие имеет пониженную прочность. Средний диаметр частицы составляет предпочтительно от 0,1 до 30 мк.
Изделия из предлагаемого керамического материала получают прессованием в пресс-форме, литьем, ракельным формованием, продавливанием, инжекционным формованием и т. п. Этот порошок может формоваться при отсутствии известного связующего, такого как смола и другие. Однако при необходимости такое связующее может быть введено.
Порошок, отвечающий данному изобретению, может формоваться в пресс-форме путем его нагревания при низкой температуре, даже без связующего. Температура нагревания составляет предпочтительно от 250 до 700оС, особенно предпочтительно от 300 до 500оС. Давление прессования в пресс-форме составляет предпочтительно не менее чем 100 МПа, более предпочтительно не менее чем 500 МПа. Полученное таким образом формованное изделие имеет высокую твердость и высокие электроизоляционные свойства. При дальнейшем нагревании формованного изделия при высокой температуре, составляющей 700оС и выше, может быть получено изделие из кристаллического содержащего алюминий оксида, имеющего более высокую прочность, более высокую твердость, более высокие электроизоляционные свойства и т.д.
Ниже настоящее изобретение поясняется конкретными примерами.
П р и м е р 1. 17,6 г металлического алюминиевого порошка (со степенью чистоты не менее чем 99,9% поставляется фирмой High Parity Chemicals Co. Ltd и 0,48 г металлического висмута (со степенью чистоты не менее чем 99,9%), поставляется фирмой High Parity Chemicals Co. Ltd плавятся и смешиваются в дуговой печи, в которую вставлена кварцевая трубка с форсункой (диаметр форсунки 5 мм) и расплавляются под действием высокочастотного индукционного нагрева. Этот расплав подается в виде струи на металлический ролик (изготовленный из меди, диаметром 200 мм, шириной 10 мм), вращающийся со скоростью 3000 об/мин, имеющий нормальную температуру, в атмосфере аргона при перепаде давления 0,2 кг/см2. Образующиеся лентообразные тонкие фрагменты выдерживаются в атмосфере при нормальной температуре в течение 3 ч, и в результате получается порошок. Этот порошок исследовали с помощью сканирующего электронного микроскопа; измеренный средний диаметр частицы составлял 15 мк.
Содержание Al, Bi и O в содержащем алюминий оксиде, отвечающем настоящему изобретению, определяли методами ICP и с помощью термовесов. Сначала до образования порошка, содержащий алюминий оксид взвешивали. Заданное количество оксида растворяли в концентрированной соляной кислоте, и образующийся раствор анализировали посредством ICP (высокочастотного, индукционно связанного плазменно-эмиссионного анализатора) и определяли соотношение в композиции Al и Bi. Далее порошок, полученный путем выдержки содержащего алюминий оксида в кислородосодержащем газе (например, воздухе), высушивали в вакууме при 300оС в течение 1 ч для полного удаления воды, и заданное количество порошка растворяли в растворителе. Полученный раствор анализировали посредством ICP, и количество кислорода рассчитывали по балансу Al и Bi.
Полученный как указано выше порошок имел следующий состав: Al0,9965Bi0,0036O1,41 (атомное отношение). Хотя анализ данного порошка методом дифракции рентгеновских лучей обнаружил присутствие следовых количество кристаллов металлического висмута (0,0001) и металлического алюминия (0,0589) в целом этот порошок был аморфным (см.рис.2).
П р и м е р 2. 17,6 г металлического алюминиевого порошка и 0,41 г металлического висмутового порошка перемешивают и быстро охлаждают и коагулируют таким же образом, как и в примере 1. Полученный лентообразный продукт коагуляции выдерживается в атмосфере в течение 2 ч с образованием порошка. Этот порошок имеет средний диаметр частицы 17 мк. Удельная поверхность порошка измеряется методом БЭТ с использованием азота. Измеренная удельная поверхность порошка составляет 16 м2/г.
Хотя исследование методом дифракции рентгеновских лучей обнаружило присутствие небольших количеств кристаллов металлического висмута 0,0001, и металлического алюминия 0,033, в целом данный порошок аморфен. Этот порошок имеет следующий состав (который определен методом ICP): Al0,997Bi0,003O1,45 (атомное отношение).
П р и м е р 3. 17,6 г металлического алюминиевого порошка и 0,27 г металлического висмутового порошка смешиваются и быстро охлаждаются, и коагулируются таким же образом, как и в примере 1. Полученный лентообразный продукт коагуляции выдерживается в атмосфере в течение ночи, и в результате образуется порошок. Этот порошок имеет средний диаметр частицы 20 мк и имеет следующий состав: Al0,998Bi0,002O1,4 (атомное отношение). Хотя анализ методом дифракции рентгеновских лучей обнаружил присутствие небольших количеств кристаллов металлического висмута, 0,0001, и металлического алюминия, 0,066, в целом данный порошок аморфен.
П р и м е р 4. 11 г металлического алюминиевого порошка и 0,085 г металлического висмутового порошка смешиваются и быстро охлаждаются и коагулируются таким же образом, как и в примере 1. Полученный лентообразный продукт коагуляции выдерживается в течение ночи в атмосфере при 100оС, и в результате получается порошок. Этот порошок имеет средний диаметр частицы 30 мк и имеет следующий состав: Al0,999Bi0,001O1,49.
П р и м е р 5. 11 г металлического алюминиевого порошка и 0,425 г металлического висмутового порошка смешиваются и быстро охлаждаются и коагулируются таким же образом, как и в примере 1. Полученный лентообразный продукт коагуляции выдерживается в атмосфере и в результате образуется порошок. Этот порошок имеет средний диаметр частицы 10 мк и имеет следующий состав: Al0,995Bi0,005O1,49 (атомное отношение). Хотя анализ методом дифракции рентгеновских лучей обнаружил присутствие небольшого количества кристаллов металлического висмута (0,0066), данный порошок в целом аморфен.
П р и м е р 5. 11 г металлического алюминиевого порошка и 0,425 г металлического висмутового порошка смешиваются и быстро охлаждаются и коагулируются таким же образом, как и в примере 1. Полученный лентообразный продукт коагуляции выдерживается в атмосфере и в результате образуется порошок. Этот порошок имеет средний диаметр частицы 10 мк и имеет следующий состав: Al0,995Bi0,005O1,49 (атомное отношение). Хотя анализ методом дифракции рентгеновских лучей обнаружил присутствие небольшого количества кристаллов металлического висмута (0,0066), данный порошок в целом аморфен.
П р и м е р 6. 11 г металлического алюминиевого порошка и 0,85 г металлического висмута смешиваются и быстро охлаждаются и коагулируются таким же образом, как и в примере 1. Полученный лентообразный продукт коагуляции выдерживается в атмосфере с образованием порошка. Этот порошок имеет средний диаметр частицы 10 мк и имеет следующий состав: Al0,999Bi0,01O1,49 (атомное отношение). Хотя исследование методом дифракции рентгеновских лучей обнаружило присутствие небольшого количества кристаллов металлического висмута (0,0066), в целом порошок аморфен.
П р и м е р 7. 11 г металлического алюминиевого порошка и 0,2 г металлического висмутового порошка смешиваются и быстро охлаждаются и коагулируются таким же образом, как и в примере 1. Полученный лентообразный продукт коагуляции выдерживается в атмосфере с образованием порошка. Этот порошок имеет средний диаметр частицы 10 мк и имеет следующий состав: Al0,996Bi0,007O1,49.
П р и м е р 8. 17,6 г металлического алюминиевого порошка и 4,94 г металлического висмутового порошка смешиваются и быстро охлаждаются и коагулируются таким же образом, как и в примере 1. Полученный лентообразный продукт коагуляции выдерживается в атмосфере в течение 3 ч, в результате чего образуется порошок. Этот порошок имеет средний диаметр частицы 8 мк и имеет следующий состав: Al0,965Bi0,035O1,48 (атомное отношение). Хотя анализ методом дифракции рентгеновских лучей обнаружил присутствие небольшого количества кристаллов металлического висмута (0,0133), этот порошок в целом аморфен.
П р и м е р 9. 17,6 г металлического алюминиевого порошка и 0,1 г металлического висмутового порошка смешиваются и быстро охлаждаются и коагулируются таким же образом, как и в примере 1. При выдержке полученного лентообразного продукта коагуляции в атмосфере в течение ночи, лентообразные фрагменты частично превращаются в порошок. Лентообразная часть и порошкообразная часть смешиваются, и смесь анализируется. Смесь имеет следующий измеренный состав: Al0,9993Bi0,0007O1,35.
П р и м е р 10. Содержащий алюминий оксидный порошок, полученный таким же образом, как и в примере 1, высушивается в вакууме и вводится в форму, имеющую полость диаметром 5 мм и длиной 50 мм (из мартенситностареющей стали) и порошок вакуумируется (2 х 10-3 мм рт.ст.) при комнатной температуре в течение 30 мин. Затем температура в форме повышается вплоть до 380оС в течение 30 мин, и она подвергается воздействию давления 900 МПа в течение 10 мин. Температура снижается до комнатной путем вакуумирования, и образующееся формованное изделие извлекается из формы. Это формованное изделие представляет собой диск диаметром 5 мм и толщиной 1,5 мм. Этот диск имеет твердость по Бикерсу, измеренную под нагрузкой 100 г 318 кгс/мм2. Его электросопротивление, измеренное согласно JIS К6911-1979 5.13, составляет 1,1 х x1012 Ом. см. Его теплопроводность составляет 0,25 кал/см.соС.
П р и м е р 11. 11 г металлического алюминиевого порошка и 8,55 г металлического висмутового порошка смешиваются и быстро охлаждаются и коагулируются таким же образом, как и в примере 1. Полученный лентообразный продукт коагуляции выдерживается в атмосфере с образованием порошка. Этот порошок имеет средний диаметр частицы 10 мк и имеет следующий состав: Al0,9Bi0,1O1,48 (атомное отношение). Хотя анализ методом дифракции рентгеновских лучей обнаружил небольшое количество кристаллов металлического висмута (0,0133) в целом данный порошок аморфен.
Этот порошок формуется с использованием того же устройства, что описано в примере 10, в тех же условиях, что описаны в примере 1. Формованное изделие имеет твердость 340 кгс/мм2. Его электросопротивление составляет 5,6 х 1010 Ом.см.
П р и м е р 12. Порошки, полученные согласно примерам 2-9, формуются в том же формовочном устройстве, что описано в примере 10, при температуре 250-400оС под давлением 500-1000 МПа. Однако, перед использованием лентообразный продукт коагуляции, полученный в примере 9, измельчается в шаровой мельнице до тех пор, пока не получается средний диаметр частицы 10 мкм. Все полученные формованные изделия имеют твердость 300 кгс/мм2 и больше.
П р и м е р 13. 220 г металлического алюминия и 6 г металлического висмута смешиваются друг с другом, и смесь вводится в кварцевый тигель (имеющий форсунку) и расплавляется с нагревом вплоть до температуры 1100оС посредством высокочастотного индукционного нагревателя в атмосфере азота. Полученный расплав вводится в форме струи через форсунку и атмосфере азота в течение 10 с. В то же самое время азот, содержащийся в баллоне (давление в баллоне 150 атм. ) вводится через периферическую форсунку 1,7 м3 (нормальн. т-ра, давл.), направляясь струей на струю расплава. Анализ образующегося порошка посредством сканирующего электронного микроскопа, обнаружил образование сфер (средним диаметром частицы 35 мк). При выдержке порошка в атмосфере в течение одного дня при т-ре 100оС получается тонкий порошок средним диаметром частицы 10 мк. Этот порошок, подвергнутый анализу методом дифракции рентгеновских лучей, обнаружил присутствие небольших количеств кристаллов металлического висмута (0,002) и металлического алюминия (0,018). Однако в целом этот тонкий порошок аморфен. Этот тонкий порошок имеет следующий состав: Al0,9965Bi0.0035O1,47 (атомное отношение).
П р и м е р 14. Формованное изделие, полученное как описано в примере 8, прокаливается при температуре 1000оС в атмосфере, и прокаленное изделие анализируется на твердость по Викерсу и на электросопротивление согласно способам, описанным в примере 8. Твердость и электросопротивление составляют соответственно 900 кгс/мм2 и 1,5 х 1014 Ом.см.
П р и м е р 15. Оксиды алюминия состава Al0,994Bi0,005M10,001Oz приготавливаются таким же образом, как описано в примере 1. В качестве М1 использованы Si, B, Sn и Mn. Полученные лентообразные продукты коагуляции выдерживаются в атмосфере в течение одного дня и в результате получается порошок. Измеренное значение Z составляет от 1,45 до 1,48. Эти порошки формуются в том же формовочном устройстве, что и в примере 10, в тех же условиях, что и в примере 10. Все полученные формованные изделия являются твердыми продуктами, твердость их составляет 300 кгс/мм2 или выше.
П р и м е р 16. Оксиды алюминия состава Al0,994Bi0,004Si0,001M20,001 вводятся в форме струи таким же образом как и в примере 1. В качестве М2 используются Fe, Ni и Pb. Полученные лентообразные продукты коагуляции выдерживаются в атмосфере в течение одного дня и в результате получается порошок. Полученные порошки имеют следующий состав: Al0,994Bi0,004Si0,001M20,001Ox, где х составляет от 1,44 до 1,49. Эти порошки формуются в том же формовочном устройстве, что и в примере 10, в тех же условиях, что и в примере 10. Все полученные формованные изделия были твердыми изделиями; твердость их составляет 300 кгс/мм2 или выше.
Claims (6)
1. Керамический материал, включающий оксид алюминия и модифицирующие добавки, отличающийся тем, что он имеет общую формулу
где 0,0001 ≅ x ≅ 0,10;
M1 по крайней мере один из элементов, выбранный из ряда Si, P, B, Sb, Se, Te, Sn, Zn, In, Cr, Nb, Sc, I, Sr, Ba, Ca, Na, Li, Mg, Mn, W, Ti, Zr, Hf, Be и редкоземельные металлы;
M2 по крайней мере один из элементов, выбранный из ряда Fe, Ni, Co, Rh, Ru, Re, Cu, и Pb;
0 ≅ y1 ≅ 0,1;
0 ≅ y2 ≅ 0,01;
1,2 ≅ z ≅ 1,5.
где 0,0001 ≅ x ≅ 0,10;
M1 по крайней мере один из элементов, выбранный из ряда Si, P, B, Sb, Se, Te, Sn, Zn, In, Cr, Nb, Sc, I, Sr, Ba, Ca, Na, Li, Mg, Mn, W, Ti, Zr, Hf, Be и редкоземельные металлы;
M2 по крайней мере один из элементов, выбранный из ряда Fe, Ni, Co, Rh, Ru, Re, Cu, и Pb;
0 ≅ y1 ≅ 0,1;
0 ≅ y2 ≅ 0,01;
1,2 ≅ z ≅ 1,5.
2. Материал по п.1, отличающийся тем, что он представляет собой порошок с размером частиц 0,1 100,0 мкм.
3. Металлокерамический композиционный материал, включающий керамический порошок на основе оксида алюминия и металлический компонент, отличающийся тем, что керамический порошок имеет общую формулу
где 0,0001 ≅ x ≅ 0,1;
M1 по крайней мере один из элементов, выбранный из ряда Si, P, B, Sb, Se, Te, Sn, Zn, In, Cr, Nb, Sc, I, Sr, Ba, Ca, Na, Li, Mg, Mn, W, Ti, Zr, Hf, Be и редкоземельные металлы;
M2 по крайней мере один из элементов, выбранный из ряда Fe, Ni, Co, Rh, Ru, Re, Cu и Pb;
0 ≅ y1 ≅ 0,1;
0 ≅ y2 ≅ 0,01;
1,2 ≅ z ≅ 1,5,
а в качестве металлического компонента используют алюминий или висмут.
где 0,0001 ≅ x ≅ 0,1;
M1 по крайней мере один из элементов, выбранный из ряда Si, P, B, Sb, Se, Te, Sn, Zn, In, Cr, Nb, Sc, I, Sr, Ba, Ca, Na, Li, Mg, Mn, W, Ti, Zr, Hf, Be и редкоземельные металлы;
M2 по крайней мере один из элементов, выбранный из ряда Fe, Ni, Co, Rh, Ru, Re, Cu и Pb;
0 ≅ y1 ≅ 0,1;
0 ≅ y2 ≅ 0,01;
1,2 ≅ z ≅ 1,5,
а в качестве металлического компонента используют алюминий или висмут.
4. Материал по п.3, отличающийся тем, что он представляет собой порошок с размером частиц 0,1 100,0 мкм.
5. Способ получения керамического материала на основе оксида алюминия путем быстрого охлаждения расплава и последующего окисления, отличающийся тем, что расплав имеет состав общей формулы
где 0,0001 ≅ x ≅ 0,10;
M1 по крайней мере один из элементов, выбранный из группы Si, P, B, Sb, Se, Te, Sn, Zn, In, Cr, Nb, Sc, I, Sr, Ba, Ca, Na, Li, Mg, Mn, W, Ti, Zr, Hf, Be и редкоземельные металлы;
M2 по крайней мере один из элементов, выбранный из группы Fe, Ni, Co, Rh, Ru, Re, Cu и Pb;
0 ≅ y1 ≅ 0,1;
0 ≅ y2 ≅ 0,01.
где 0,0001 ≅ x ≅ 0,10;
M1 по крайней мере один из элементов, выбранный из группы Si, P, B, Sb, Se, Te, Sn, Zn, In, Cr, Nb, Sc, I, Sr, Ba, Ca, Na, Li, Mg, Mn, W, Ti, Zr, Hf, Be и редкоземельные металлы;
M2 по крайней мере один из элементов, выбранный из группы Fe, Ni, Co, Rh, Ru, Re, Cu и Pb;
0 ≅ y1 ≅ 0,1;
0 ≅ y2 ≅ 0,01.
6. Способ по п. 5, отличающийся тем, что готовый керамический порошок подвергают термической обработке до перевода его в кристаллическое состояние.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP1990/000399 WO1991014654A1 (fr) | 1990-03-27 | 1990-03-27 | Des oxydes a base d'aluminium, des moulages de ceux-ci, et la fabrication desdits oxydes |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2041179C1 true RU2041179C1 (ru) | 1995-08-09 |
Family
ID=13986443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SU915010479A RU2041179C1 (ru) | 1990-03-27 | 1991-11-26 | Керамический материал, металлокерамический композиционный материал и способ получения керамического материала |
Country Status (9)
Country | Link |
---|---|
US (1) | US5413974A (ru) |
EP (1) | EP0474866B1 (ru) |
KR (1) | KR950001661B1 (ru) |
AT (1) | ATE106365T1 (ru) |
AU (1) | AU628959B2 (ru) |
DE (1) | DE69009473T2 (ru) |
ES (1) | ES2053184T3 (ru) |
RU (1) | RU2041179C1 (ru) |
WO (1) | WO1991014654A1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2453517C1 (ru) * | 2010-12-09 | 2012-06-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный индустриальный университет" (ФГБОУ ВПО "МГИУ") | Способ получения конструкционной алюмооксидной керамики |
RU2572996C2 (ru) * | 2004-06-10 | 2016-01-20 | Сеул Семикондактор Ко., Лтд. | Люминесцентный материал для светодиода |
RU2801933C2 (ru) * | 2018-06-14 | 2023-08-21 | Никовенчерс Трейдинг Лимитед | Система индукционного нагрева и нагреватель |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4424402C1 (de) * | 1994-07-11 | 1996-07-04 | Bayer Ag | Borsubphosphid-Aluminiumoxid-Verbundmaterialien, Verfahren zu deren Herstellung und deren Verwendung |
US5879794A (en) * | 1994-08-25 | 1999-03-09 | W. L. Gore & Associates, Inc. | Adhesive-filler film composite |
US5630994A (en) * | 1995-08-01 | 1997-05-20 | Boyle; Timothy J. | Non-aqueous solution preparation of doped and undoped lixmnyoz |
US5942054A (en) * | 1995-12-22 | 1999-08-24 | Texas Instruments Incorporated | Micromechanical device with reduced load relaxation |
DK0914191T3 (da) * | 1996-07-26 | 2003-09-22 | Shell Int Research | Katalysatorsammensætning, dens fremstilling og dens anvendelse til katalytisk afbrænding |
CN101538120B (zh) | 2001-08-02 | 2011-08-03 | 3M创新有限公司 | 从玻璃制备制品的方法以及所制备的玻璃陶瓷制品 |
US7625509B2 (en) * | 2001-08-02 | 2009-12-01 | 3M Innovative Properties Company | Method of making ceramic articles |
WO2003011782A2 (en) * | 2001-08-02 | 2003-02-13 | 3M Innovative Properties Company | Alumina-zirconia, and methods of making and using the same |
CA2454068A1 (en) | 2001-08-02 | 2003-02-13 | 3M Innovative Properties Company | Al2o3-rare earth oxide-zro2/hfo2 materials, and methods of making and using the same |
DE10237849A1 (de) * | 2002-03-12 | 2003-10-23 | Minebea Co Ltd | Spindelmotor für ein Plattenlaufwerk |
US7179526B2 (en) * | 2002-08-02 | 2007-02-20 | 3M Innovative Properties Company | Plasma spraying |
US8056370B2 (en) | 2002-08-02 | 2011-11-15 | 3M Innovative Properties Company | Method of making amorphous and ceramics via melt spinning |
US7258707B2 (en) * | 2003-02-05 | 2007-08-21 | 3M Innovative Properties Company | AI2O3-La2O3-Y2O3-MgO ceramics, and methods of making the same |
US7175786B2 (en) * | 2003-02-05 | 2007-02-13 | 3M Innovative Properties Co. | Methods of making Al2O3-SiO2 ceramics |
US7811496B2 (en) | 2003-02-05 | 2010-10-12 | 3M Innovative Properties Company | Methods of making ceramic particles |
US20040148869A1 (en) * | 2003-02-05 | 2004-08-05 | 3M Innovative Properties Company | Ceramics and methods of making the same |
US7197896B2 (en) * | 2003-09-05 | 2007-04-03 | 3M Innovative Properties Company | Methods of making Al2O3-SiO2 ceramics |
US7141522B2 (en) * | 2003-09-18 | 2006-11-28 | 3M Innovative Properties Company | Ceramics comprising Al2O3, Y2O3, ZrO2 and/or HfO2, and Nb2O5 and/or Ta2O5 and methods of making the same |
US7297171B2 (en) * | 2003-09-18 | 2007-11-20 | 3M Innovative Properties Company | Methods of making ceramics comprising Al2O3, REO, ZrO2 and/or HfO2 and Nb205 and/or Ta2O5 |
US20050137077A1 (en) * | 2003-12-18 | 2005-06-23 | 3M Innovative Properties Company | Method of making abrasive particles |
US20050132658A1 (en) * | 2003-12-18 | 2005-06-23 | 3M Innovative Properties Company | Method of making abrasive particles |
US20050132655A1 (en) * | 2003-12-18 | 2005-06-23 | 3M Innovative Properties Company | Method of making abrasive particles |
US20050132656A1 (en) * | 2003-12-18 | 2005-06-23 | 3M Innovative Properties Company | Method of making abrasive particles |
US7332453B2 (en) * | 2004-07-29 | 2008-02-19 | 3M Innovative Properties Company | Ceramics, and methods of making and using the same |
US7497093B2 (en) * | 2004-07-29 | 2009-03-03 | 3M Innovative Properties Company | Method of making ceramic articles |
US20070116631A1 (en) * | 2004-10-18 | 2007-05-24 | The Regents Of The University Of California | Arrays of long carbon nanotubes for fiber spinning |
US8095207B2 (en) * | 2006-01-23 | 2012-01-10 | Regents Of The University Of Minnesota | Implantable medical device with inter-atrial block monitoring |
RU2584992C1 (ru) * | 2014-12-16 | 2016-05-27 | федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный машиностроительный иниверситет (МАМИ)" (Университет машиностроения) | Способ получения алюмооксидной конструкционной керамики |
RU2581183C1 (ru) * | 2014-12-16 | 2016-04-20 | федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный машиностроительный университет (МАМИ)" (Университет машиностроения) | Способ получения алюмооксидной конструкционной керамики |
US20220020985A1 (en) * | 2020-07-17 | 2022-01-20 | Uop Llc | Mixed metal manganese oxide material |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4344926A (en) * | 1980-08-22 | 1982-08-17 | Texaco Inc. | Fluid catalytic cracking |
JPS5849623A (ja) * | 1981-09-21 | 1983-03-23 | Fuji Photo Film Co Ltd | 光導電材料の製造方法 |
DD256424A3 (de) * | 1985-12-31 | 1988-05-11 | Akad Wissenschaften Ddr | Verfahren zur darstellung von wismutverbindungen des sillenit-typs |
JP2984307B2 (ja) * | 1990-03-20 | 1999-11-29 | 旭化成工業株式会社 | アルミニウム系酸化物、その成型体及びアルミニウム系酸化物の製法 |
-
1990
- 1990-03-27 DE DE69009473T patent/DE69009473T2/de not_active Expired - Fee Related
- 1990-03-27 US US07/776,408 patent/US5413974A/en not_active Expired - Fee Related
- 1990-03-27 ES ES90904940T patent/ES2053184T3/es not_active Expired - Lifetime
- 1990-03-27 KR KR1019910701698A patent/KR950001661B1/ko not_active IP Right Cessation
- 1990-03-27 EP EP90904940A patent/EP0474866B1/en not_active Expired - Lifetime
- 1990-03-27 AT AT90904940T patent/ATE106365T1/de not_active IP Right Cessation
- 1990-03-27 AU AU52754/90A patent/AU628959B2/en not_active Ceased
- 1990-03-27 WO PCT/JP1990/000399 patent/WO1991014654A1/ja active IP Right Grant
-
1991
- 1991-11-26 RU SU915010479A patent/RU2041179C1/ru not_active IP Right Cessation
Non-Patent Citations (2)
Title |
---|
Заявка Японии N 60-204666, C 04B 35/10, 1985. * |
Заявка Японии N 62-27308, C 04B 13/24, C 01B 33/12, 1987. * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2572996C2 (ru) * | 2004-06-10 | 2016-01-20 | Сеул Семикондактор Ко., Лтд. | Люминесцентный материал для светодиода |
RU2453517C1 (ru) * | 2010-12-09 | 2012-06-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный индустриальный университет" (ФГБОУ ВПО "МГИУ") | Способ получения конструкционной алюмооксидной керамики |
RU2801933C2 (ru) * | 2018-06-14 | 2023-08-21 | Никовенчерс Трейдинг Лимитед | Система индукционного нагрева и нагреватель |
Also Published As
Publication number | Publication date |
---|---|
EP0474866A1 (en) | 1992-03-18 |
EP0474866A4 (en) | 1992-12-02 |
KR920701049A (ko) | 1992-08-11 |
AU628959B2 (en) | 1992-09-24 |
DE69009473T2 (de) | 1995-01-12 |
ES2053184T3 (es) | 1994-07-16 |
KR950001661B1 (ko) | 1995-02-28 |
WO1991014654A1 (fr) | 1991-10-03 |
DE69009473D1 (de) | 1994-07-07 |
EP0474866B1 (en) | 1994-06-01 |
US5413974A (en) | 1995-05-09 |
AU5275490A (en) | 1991-10-21 |
ATE106365T1 (de) | 1994-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2041179C1 (ru) | Керамический материал, металлокерамический композиционный материал и способ получения керамического материала | |
CA1174083A (en) | Process for the preparation of alloy powders which can be sintered and which are based on titanium | |
US7157148B2 (en) | Heat-resistant coated member | |
US4778778A (en) | Process for the production of sintered aluminum nitrides | |
JPH09143636A (ja) | 希土類−鉄−窒素系磁石合金 | |
US5089468A (en) | Process for producing bismuth-based superconducting oxide | |
US4985400A (en) | Process for producing superconductive ceramics by atomization of alloy precurser under reactive atmospheres or post annealing under oxygen | |
Kagawa et al. | Preparation of Ultrafine MgO by the Spray‐ICP Technique | |
EP0397207B1 (en) | Alloy catalyst for oxidation of hydrogen | |
CA2410805C (en) | Method for preparing reinforced platinum material | |
KR900003545B1 (ko) | 진공밸브용 접점합금의 제조방법 | |
JPH0119448B2 (ru) | ||
EP0834370A1 (en) | Coated metal powder and process for preparing the same by decomposition | |
JP2984307B2 (ja) | アルミニウム系酸化物、その成型体及びアルミニウム系酸化物の製法 | |
CA2056382C (en) | Aluminum-containing oxide, its molded article, and process for producing aluminum-containing oxide | |
EP1435501A1 (en) | Heat-resistant coated member | |
JP3244332B2 (ja) | 希土類金属球状粒子の製造方法およびその装置 | |
JPH01164730A (ja) | 超電導材料及びその製造方法 | |
JPH0682532B2 (ja) | 真空バルブ用接点合金の製造方法 | |
US6179897B1 (en) | Method for the generation of variable density metal vapors which bypasses the liquidus phase | |
JP3146861B2 (ja) | 脱バインダ方法及びセラミックス焼結体の製造方法 | |
JPS604898B2 (ja) | モリブデン基合金 | |
JPS63156007A (ja) | 窒化アルミニウム粉末の製造方法 | |
JPS63225413A (ja) | 化合物超伝導線の製造方法 | |
JP2605847B2 (ja) | 酸化亜鉛ウイスカーの製造法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20010328 |